
Journal of Computational and Applied Mathematics 235 (2010) 263–269

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

New choices of preconditioning matrices for generalized inexact
parameterized iterative methodsI

Yang Cao a, Mei-Qun Jiang a,∗, Lin-Quan Yao a,b
a School of Mathematical Science, Soochow University, Suzhou, Jiangsu, 215006, PR China
b School of Urban Transportation, Soochow University, Suzhou, Jiangsu, 215021, PR China

a r t i c l e i n f o

Article history:
Received 28 December 2009
Received in revised form 30 May 2010

MSC:
65H10
65W05

Keywords:
Saddle point problems
Iterative method
Preconditioning

a b s t r a c t

For large sparse saddle point problems, Chen and Jiang recently studied a class of gener-
alized inexact parameterized iterative methods (see [F. Chen, Y.-L. Jiang, A generalization
of the inexact parameterized Uzawamethods for saddle point problems, Appl. Math. Com-
put. 206 (2008) 765–771]). In this paper, the methods are modified and some choices of
preconditioning matrices are given. These preconditioning matrices have advantages in
solving large sparse linear system. Numerical experiments of a model Stokes problem are
presented.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We consider the solution of systems of linear equations of the block 2× 2 form[
A BT

B 0

] [
x
y

]
=

[
f
g

]
, or Âu = b̂, (1.1)

where A ∈ Rn×n, B ∈ Rm×n, x, f ∈ Rn, y, g ∈ Rm, and m ≤ n. We assume that the matrix A is symmetric positive definite
and B has full rank. Under those conditions we know that the solution of (1.1) exists and is unique. The system (1.1) is called
symmetric saddle point problem. We further assume that the matrices A, B, and C are large and sparse.
The system (1.1) arises in a variety of scientific and engineering applications, including computational fluid dynamics,

mixed finite element methods for solving elliptic PDEs, constrained optimization, constrained least-squares problems and
so on. Therefore, it is of great importance to develop efficient iterative methods for such problems.
When the matrix blocks A ∈ Rn×n and B ∈ Rm×n are large and sparse, iterative methods become more attractive than

direct methods for solving the saddle point problems (1.1), but direct methods play an important role in the form of precon-
ditioners embedded in an iterative framework. The best known and the oldest methods are the Uzawa and preconditioned
Uzawa methods. In recent years, a large variety of methods for solving (1.1) have been studied. For example, the inexact
Uzawa algorithms [1–7], the nonlinear Uzawa algorithms [8], the HSS algorithms [9] and so on. It should be mentioned that
the HSSmethod is very useful for non-Hermitian positive definite systems of equations. Algorithmic variants and theoretical
analyses of theseHSS iterationmethods for the saddle point problemshave been extensively anddeeply discussed in [10–15]

I This work is supported by The National Natural Science Foundation (No. 10672111), PR China.
∗ Corresponding author.
E-mail addresses: caoyangsqq@163.com (Y. Cao), mqjiang@suda.edu.cn (M.-Q. Jiang), lqyao@suda.edu.cn (L.-Q. Yao).

0377-0427/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2010.05.054

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:caoyangsqq@163.com
mailto:mqjiang@suda.edu.cn
mailto:lqyao@suda.edu.cn
http://dx.doi.org/10.1016/j.cam.2010.05.054

264 Y. Cao et al. / Journal of Computational and Applied Mathematics 235 (2010) 263–269

and so on. A large variety of othermethods for solving linear systems of the form (1.1) can be found in the excellent survey pa-
per [16] and references therein. In this paper, the important class of iterativemethods that we focus on is the class of inexact
parameterizedUzawamethods. Thesemethods have been studied inmany papers, such as [1,2,5,7] and so on. Recently, Chen
and Jiang studied a class of generalized parameterized inexact Uzawa (GPIU) methods in [5]. The GPIUmethod outperforms
the parameterized inexact iterative method [1]. The convergence results under suitable restrictions on the precondition-
ing matrices are given. In this paper, the GPIU method is modified and called the MGPIU method. Besides, some choices of
preconditioning matrices are given. These preconditioning matrices have advantages in solving large sparse linear systems.
The remainder of this paper is arranged as follows. In Section 2, a class of generalized parameterized inexact Uzawa

methods are modified for solving saddle point problems and the conditions for guaranteeing its convergence are derived. In
Section 3, Numerical experiments of a model Stokes problem are presented. The numerical results show that the modified
methods given in this paper have a better convergence rate than the generalized inexact parameterized iterative methods
studied in [5]. Finally, we give some conclusions in Section 4.

2. Iterative method

In [5], the authors first rewrite (1.1) as its equivalent form[
A BT

−B 0

] [
x
y

]
=

[
f
−g

]
, or Au = b. (2.1)

The coefficient matrixA in (2.1) has the following desirable properties.

Lemma 2.1 ([14]). Let A ∈ C(m+n)×(m+n) be the coefficient matrix defined in (2.1), where A is symmetric and positive definite
and B has full row-rank. Let σ(A) denote the spectrum of A and λ ∈ σ(A) be an eigenvalue of A. Then

1. A is nonsingular;
2. A is positive real, i.e., ξ ∗Aξ > 0 for all ξ ∈ C(m+n) (ξ 6= 0);
3. A is positive stable, i.e., Re(λ) > 0 holds for all λ ∈ σ(A), where Re(λ) denotes the real part of the complex number λ.

Thus by changing the sign of the lastm equations in (1.1), we can gain the positive definiteness. The positive definiteness
of the coefficient matrix is very important for many simple iterative solvers [14,7,15]. Then the following splitting is
considered in [5][

A BT

−B 0

]
=

[
A+ Q1 0
−B+ Q3 Q2

]
−

[
Q1 −BT

Q3 Q2

]
,

whereQ1 ∈ Rn×n is symmetric positive semi-definite,Q2 ∈ Rm×m is symmetric positive definite, andQ3 ∈ Rm×n is arbitrary.
The corresponding iterative method is described below.

Algorithm 2.1.{
xn+1 = xn + (A+ Q1)−1(f − Axn − BTyn),
yn+1 = yn + Q−12 ((B− Q3)xn+1 + Q3xn − g).

It should be mentioned that Algorithm 2.1 presents a general framework for the PIU methods for solving the saddle-
point problems. Choosing different preconditioning matrices, we obtain different algorithms. If Q1 = 1

δ
A − A,Q2 = 1

τ
Q ,

Q3 = 0 (δ > 0) and Q is symmetric positive definite, then this gives the following well-known generalized successive
overrelaxation (GSOR) method [1].

Algorithm 2.2. GSOR method{
xn+1 = (1− δ)xn + δA−1(f − BTyn),
yn+1 = yn + τQ−1(Bxn+1 − g).

In particular, when δ = τ , the GSOR method becomes the SOR-like method [7]. For other algorithms with different choices
of Q1,Q2 and Q3, one can see [5, Algorithms 3.1–3.5].
The convergence analysis of Algorithm 2.1 is summarized as follows.

Theorem 2.1 ([5]). Assume that A is symmetric positive definite and B has full row rank. If Q1 is symmetric positive semidefinite,
Q2 is symmetric positive definite, and Q3 ∈ Rm×n is such that BTQ−12 Q3 is symmetric, then the generalized iterative method is
convergent provided that

γ − 4α − 2β < 2τ < 2β,

Y. Cao et al. / Journal of Computational and Applied Mathematics 235 (2010) 263–269 265

where

α =
u∗Q1u
u∗u

≥ 0, β =
u∗Au
u∗u

> 0, γ =
u∗BTQ−12 Bu
u∗u

≥ 0, τ =
u∗BTQ−12 Q3u

u∗u
and (u∗, v∗)∗ is an eigenvector of the iteration matrix with u ∈ Cn and v ∈ Cm.

In [5], the authors choose Q3 = tB (t is a parameter) such that BTQ−12 Q3 is symmetric. Then, the generalized iterative
method becomes

Algorithm 2.3. GPIU method{
xn+1 = xn + (A+ Q1)−1(f − Axn − BTyn),
yn+1 = yn + Q−12 ((1− t)Bxn+1 + tBxn − g).

In fact, we can choose Q3 = −Q2B such that BTQ−12 Q3 is symmetric. Then, the new iterative scheme is given.

Algorithm 2.4. MGPIU method{
xn+1 = xn + (A+ Q1)−1(f − Axn − BTyn),
yn+1 = yn + B(xn+1 − xn)+ Q−12 (Bxn+1 − g).

In the following, we deduce the convergence property for the MGPIU iteration. Note that the iteration matrix of the
MGPIU iteration is

Γ =

[
A+ Q1 0
−(Q2 + I)B Q2

]−1 [
Q1 −BT

−Q2B Q2

]
.

Let ρ(Γ) denote the spectral radius of Γ . Then the MGPIU iteration converges if and only if ρ(Γ) < 1 [17]. Let λ be an
eigenvalue of Γ and

(
u
v

)
be the corresponding eigenvector. Then we have[

Q1 −BT

−Q2B Q2

] [
u
v

]
=

[
A+ Q1 0
−(Q2 + I)B Q2

] [
λu
λv

]
,

or equivalently,

Q1u− BTv = λ(A+ Q1)u, (2.2)
−Q2Bu+ Q2v = −λ(Q2 + I)Bu+ λQ2v. (2.3)

To get a convergence condition, we first give some lemmas.

Lemma 2.2 ([5]). If λ is an eigenvalue of the matrix Γ , then λ 6= 1.

Lemma 2.3 ([5]). If
(
u
v

)
is an eigenvector of the matrix Γ corresponding to the eigenvalue λ, then u 6= 0. Moreover, if v = 0,

then 0 ≤ λ < 1.

Theorem 2.2. Assume that A is symmetric positive definite and B has full row rank. Let Q1 be symmetric positive semidefinite
and Q2 be symmetric positive definite, then the MGPIU method is convergent provided that

γ < 4α + 2β + 2τ ,

where

α =
u∗Q1u
u∗u

≥ 0, β =
u∗Au
u∗u

> 0, γ =
u∗BTQ−12 Bu
u∗u

≥ 0, τ = −
u∗BTBu
u∗u

≤ 0.

Proof. By Lemma 2.2 we have λ 6= 1. As Q2 is symmetric positive definite, (1 − λ)Q2 is nonsingular. Hence, from (2.3) we
obtain

v = Bu−
λ

1− λ
Q−12 Bu.

By eliminating v from (2.2), we have

(1− λ)Q1u− λAu− BTBu+
λ

1− λ
BTQ−12 Bu = 0. (2.4)

266 Y. Cao et al. / Journal of Computational and Applied Mathematics 235 (2010) 263–269

If Bu = 0, then from (2.3) we have v = 0. By the second part of Lemma 2.3 we know 0 ≤ λ < 1. If Bu 6= 0, we obtain
τ = − u

∗BT Bu
u∗u < 0. In this case, (2.4) can be rewritten as

λ2(α + β)+ λ(γ − 2α − β − τ)+ α + τ = 0.

From [1,2], we know that a sufficient and necessary condition for the roots of the real quadratic equation

x2 + bx+ c = 0

to satisfy |x| < 1 is that

|c| < 1 and |b| < 1+ c.

Therefore, it is easy to check that the MGPIU method is convergent provided that∣∣∣∣α + τα + β

∣∣∣∣ < 1 and
∣∣∣∣γ − 2α − β − τα + β

∣∣∣∣ < 1+ α + τ

α + β
. (2.5)

By straightforwardly solving (2.5), we get

γ − 4α − 2β < 2τ < 2β, (2.6)

where

α =
u∗Q1u
u∗u

≥ 0, β =
u∗Au
u∗u

> 0, γ =
u∗BTQ−12 Bu
u∗u

≥ 0, τ = −
u∗BTBu
u∗u

≤ 0.

The right-hand of the inequality (2.6) unconditionally holds. The left-hand of the inequality (2.6) can be written as

γ < 4α + 2β + 2τ .

Thus we complete the proof. �

Let λmax(W) and λmin(W) denote the maximum and the minimum eigenvalues of an symmetric matrixW , respectively.
Under suitable restrictions on the preconditioningmatrix, the convergence condition of theMGPIUmethod can be simplified
below.

Corollary 2.1. Assume that the preconditioning matrix Q1 satisfies λmin(Q1) > 1
2σ1, where σ1 is the largest singular value of B.

Then by the definition of α, β and τ , the new iterative method converges provided that

2λmax(BTB)+ λmax(BTQ−12 B) < 4λmin(Q1)+ 2λmin(A).

3. Numerical experiments

In this section, we use the GSOR method, the GPIU method and the MGPIU method to solve a model Stokes problem.
To discretize the Stokes problem, we take two methods. One is the upwind scheme [13,1]. The second is the ‘‘marker and
cell’’ (M.A.C.) finite difference scheme [18]. In our computations, we take kmax = 1000. All runs with respect to each it-
eration scheme are started from the initial vector (xT0, y

T
0)
T
= 0, and terminated if the current iterations satisfy ERR =

‖rk‖2/‖r0‖2 ≤ 10−5 (where rk is the residual at the kth iteration) or if the numbers of the prescribed iteration kmax are
exceeded. We use IT and CPU to represent the number of iteration steps and the elapsed CPU time in seconds. All runs are
performed in MATLAB 6.5 on an Intel Pentium 4 (512 M RAM) Windows XP system.
Consider Stokes problem: find u and p such that

−ν1u+5p = f̃ , inΩ
5 · u = g̃, inΩ
u = 0, on ∂Ω∫
Ω

p(x)dx = 0

(3.1)

where Ω = (0, 1) × (0, 1) ⊂ R2, ∂Ω is the boundary of Ω, ν stands for the viscosity scalar, ∆ is the componentwise
Laplace operator, u = (uT , vT)T is a vector-valued function representing the velocity, and p is a scalar function representing
the pressure. By discretizing (3.1) with the upwind scheme and the M.A.C. finite difference scheme, we obtain the system
of linear equations[

A BT

−B 0

] [
u
p

]
=

[
f
−g

]
(3.2)

with different structure of submatrices in the coefficient matrix. We consider the two examples in the following.

Y. Cao et al. / Journal of Computational and Applied Mathematics 235 (2010) 263–269 267

Table 1
Choices of the matrices Q ,Q1 and Q2 .

Case no. Matrix Q Matrix Q1 Matrix Q2 Descripition

I BA−1BT δA BQ−11 B
T

II BÂ−1BT δÂ BQ−11 B
T Â = diag(A)

III BÂ−1BT δÂ BQ−11 B
T Â = tridiag(A)

Table 2
Results of Case I for Example 3.1.

q = 16 q = 24
IT CPU ERR IT CPU ERR

GSOR δ = 1 2 0.031 4.0384 δ = 1 2 0.187 5.7294
τ = 1 τ = 1

GPIU δ = 0.3 22 0.390 9.5700 δ = 0.3 22 2.094 8.9994
δ = 0.4 18 0.313 8.2943 δ = 0.4 18 1.687 8.1071

MGPIU
δ = 0.3 23 0.406 6.7981 δ = 0.3 22 2.172 9.9898
δ = 0.4 18 0.312 6.6677 δ = 0.4 18 1.735 6.9395
δ = 0.5 20 0.359 5.2022 δ = 0.5 20 1.9690 5.4769

Table 3
Results of Case II for Example 3.1.

q = 16 q = 24
IT CPU ERR IT CPU ERR

GSOR δ = 0.3419 74 1.313 8.3469 δ = 0.2488 96 9.927 8.2548
τ = 0.2066 τ = 0.1423

GPIU δ = 0.1 100 1.078 7.0302 δ = 0.1 176 10.266 8.6183
δ = 0.2 185 2.109 6.5916 δ = 0.2 258 15.031 9.3994

MGPIU
δ = 0.1 86 0.922 6.8367 δ = 0.05 93 5.531 6.4722
δ = 0.15 119 1.359 7.1338 δ = 0.1 153 9.078 8.1611
δ = 0.2 149 1.641 7.3246 δ = 0.15 213 12.671 7.0390

Example 3.1. By discretizing (3.1) with the upwind scheme, the submatrices in the coefficient matrix (3.2) have the
following form

A =
[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]
∈ R2q

2
×2q2 ,

and

BT =
[
I ⊗ F
F ⊗ I

]
∈ R2q

2
×q2 ,

where

T =
ν

h2
· tridiag(−1, 2,−1) ∈ Rq×q, F =

1
h
· tridiag(−1, 1, 0) ∈ Rq×q

with⊗ being the Kronecker product symbol and h = 1
q+1 the discretization meshsize.

For this example, we have n = 2q2 and m = q2. Hence, the total number of variables is m + n = 3q2. In computation,
we choose the matrices Q ,Q1 and Q2 according to the three cases listed in Table 1. The parameters in the GSOR method are
taken from [1, Table 2]. Parameter t in the GPIU method is chosen as 0.02 [5]. The corresponding numerical results of each
method in different cases are listed in Tables 2–4.
The numerical results in Tables 2–4 show that theMGPIUmethod has better convergence property than the GPIUmethod

and is slightly less efficient than the GSORmethod. Choosing appropriate parameter, theMGPIUmethodmay be better than
the GSOR method. From Tables 2–4, we can also see that using the tridiagonal matrix as preconditioning matrix is better
than the diagonal matrix. It should be pointed out that Case I in Table 2 is not very useful in practice, because it needs to
solve the inverse of BA−1BT . In fact, once the inverse of BA−1BT can be solved exactly, the direct method can be applied to
solve the original system.

Example 3.2. By discretizing (3.1) with the M.A.C. difference scheme, the coefficient matrix of (3.2) contains three block
rows, the first two of which come from the momentum equations for the individual components of the discrete velocity

268 Y. Cao et al. / Journal of Computational and Applied Mathematics 235 (2010) 263–269

Table 4
Results of Case III for Example 3.1.

q = 16 q = 24
IT CPU ERR IT CPU ERR

GSOR δ = 0.4429 52 0.891 9.2195 δ = 0.3308 90 8.734 9.6850
τ = 0.2854 τ = 0.1985

GPIU δ = 0.15 81 0.891 5.0512 δ = 0.15 142 8.328 6.3785
δ = 0.2 102 1.078 5.9508 δ = 0.2 191 11.265 6.2958

MGPIU
δ = 0.1 77 0.844 9.9826 δ = 0.1 89 5.406 6.9972
δ = 0.15 74 0.828 5.8852 δ = 0.15 122 7.406 6.5512
δ = 0.2 92 0.988 7.6556 δ = 0.2 152 9.234 8.8822

Table 5
Results of Case I for Example 3.2.

q = 16 q = 24
IT CPU ERR IT CPU ERR

GSOR δ = 1 2 0.031 2.3866 δ = 1 2 0.172 3.4079
τ = 1 τ = 1

GPIU δ = 0.8 28 0.438 7.4230 δ = 0.8 28 2.574 6.7762
δ = 0.9 31 0.453 6.6486 δ = 0.9 31 2.782 6.0750

MGPIU
δ = 0.7 26 0.406 8.4598 δ = 0.7 26 2.344 9.2703
δ = 0.8 25 0.306 2.0358 δ = 0.8 25 2.235 2.2170
δ = 0.9 24 0.359 1.7658 δ = 0.9 24 2.156 1.6248

Table 6
Results of Case II for Example 3.2.

q = 16 q = 24
IT CPU ERR IT CPU ERR

GSOR δ = 0.3427 50 0.734 8.7297 δ = 0.2442 125 11.156 9.8717
τ = 0.2071 τ = 0.1392

GPIU δ = 0.3 288 2.766 9.3569 δ = 0.3 644 35.609 8.3031
δ = 0.4 388 3.734 8.3867 δ = 0.4 963 54.359 8.4441

MGPIU
δ = 0.2 116 1.140 7.1398 δ = 0.1 176 12.125 9.9408
δ = 0.3 161 1.532 9.2489 δ = 0.3 309 17.438 8.1422
δ = 0.4 209 1.984 7.4705 δ = 0.4 396 22.251 8.5670

field and the last from the incompressibility constraint. A and B have the form

A = ν
[
A1 0
0 A2

]
, B =

[
B1 B2

]
.

The submatrices are defined as follows. Assume thatΩ is divided into a uniform q× q grid of cells of width h = 1/q. Let φjk
denote the value of a mesh function φ at the point (jh, kh) ∈ Ω . The form of the indices (j, k) depends on the mesh function
to which they correspond. In particular, they need not be integers. The first block row of (3.2) is defined by

[−1u]jk ≈ [A1u]jk ≡
1
h2
(4ujk − uj−1,k − uj+1,k − uj,k+1 − uj,k−1),

and

[px]jk ≈ [BT1p]jk ≡
1
h
(pj+1/2,k − pj−1/2,k).

The second block row (associated with v) is defined analogously. The discrete incompressibility constraint is

[ux + vy]jk ≈ [−Bu]jk ≡
1
h
(uj+1/2,k − uj−1/2,k)+

1
h
(vj+1/2,k − vj−1/2,k).

For this example, we have n = 2(q − 1)q and m = q2. Hence, the total number of variables is m + n = 3q2 − 2q. In
computation, we also choose the matrices Q ,Q1 and Q2 according to the three cases listed in Table 1. The parameters in the
GSORmethod are taken as the optimal iteration parameters [1, Theorem 4.1]. Parameter t in the GPIUmethod is also chosen
as 0.02 [5]. The corresponding numerical results of each method with different cases are listed in Tables 5–7.
Clearly, the above numerical results show that the GSOR method has a faster convergence rate than the MGPIU method

and the GPIU method. The MGPIU method is also more efficient than the GPIU method. Using the tridiagonal matrix as

Y. Cao et al. / Journal of Computational and Applied Mathematics 235 (2010) 263–269 269

Table 7
Results of Case III for Example 3.2.

q = 16 q = 24
IT CPU ERR IT CPU ERR

GSOR δ = 0.4437 36 0.563 8.2055 δ = 0.3246 77 6.922 9.2712
τ = 0.2856 τ = 0.1939

GPIU δ = 0.3 163 1.563 9.6676 δ = 0.3 343 19.172 9.3652
δ = 0.4 214 2.047 8.9275 δ = 0.4 467 26.062 9.6939

MGPIU
δ = 0.3 97 0.922 9.6724 δ = 0.2 143 7.984 9.9260
δ = 0.4 121 1.72 8.1661 δ = 0.3 182 10.125 7.8671
δ = 0.5 148 1.453 8.6813 δ = 0.4 233 13.063 9.6435

preconditioning matrix is also better than the diagonal matrix. Moreover, the results show that the methods presented in
this paper are powerful solvers for the large sparse saddle point problems.

4. Conclusion

In this paper, a new iterative (MGPIU)method is studied and somenew choices of preconditioningmatrices are presented
for solving saddle point problems. In fact, the new method belongs to a class of parameterized inexact Uzawa (PIU)
methods,which have been studied inmanypapers, see [1,2,5] and references therein. The convergence results under suitable
restrictions on the preconditioningmatrices are discussed. Numerical experiments of amodel Stokes problem are presented
to show the effectiveness of the MGPIU method.

References

[1] Z.-Z. Bai, B.N. Parlett, Z.-Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math. 102 (2005) 1–38.
[2] Z.-Z. Bai, Z.-Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl. 428 (2008) 2900–2932.
[3] J.H. Bramble, J.E. Pasciak, A.T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal. 34 (1997) 1072–1092.
[4] J.H. Bramble, J.E. Pasciak, A.T. Vassilev, Uzawa type algorithm for nonsymmetric saddle point problems, Math. Comp. 69 (1999) 667–689.
[5] F. Chen, Y.-L. Jiang, A generalization of the inexact parameterizedUzawamethods for saddle point problems, Appl.Math. Comput. 206 (2008) 765–771.
[6] H. Elman, G.H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal. 31 (1994) 1645–1661.
[7] G.H. Golub, X. Wu, J.-Y. Yuan, SOR-like methods for augmented systems, BIT 41 (2001) 71–85.
[8] Z.-H. Cao, Fast Uzawa algorithm for generalized saddle point problems, Appl. Numer. Math. 46 (2003) 157–171.
[9] Z.-Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix
Anal. Appl. 24 (2003) 603–626.

[10] Z.-Z. Bai, Optimal parameters in the HSS-like methods for saddle point problems, Numer. Linear Algebra Appl. 16 (2009) 447–479.
[11] Z.-Z. Bai, G.H. Golub, C.-K. Li, Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices, SIAM J.

Sci. Comput. 28 (2006) 583–603.
[12] Z.-Z. Bai, G.H. Golub, L.-Z. Lu, J.-F. Yin, Block triangular and skew-Hermitian splittingmethods for positive-definite linear systems, SIAM J. Sci. Comput.

23 (2005) 844–863.
[13] Z.-Z. Bai, G.H. Golub, J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear

systems, Numer. Math. 98 (2004) 1–32.
[14] M. Benzi, G.H. Golub, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl. 26 (2004) 20–41.
[15] M.-Q. Jiang, Y. Cao, On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math.

231 (2009) 973–982.
[16] M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer. 14 (2005) 1–137.
[17] Y. Saad, Iterative Methods for Sparse Linear Systems, Publishing Company, Boston, 1996.
[18] H.C. Elman, Preconditioning for the steady-state Navier–Stokes equations with low viscosity, SIAM J. Sci. Comput. 20 (1999) 157–171.

	New choices of preconditioning matrices for generalized inexact parameterized iterative methods
	Introduction
	Iterative method
	Numerical experiments
	Conclusion
	References

