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1. Introduction

There has been considerable interest in genomic signal processing recently. Since regulatory decisions within cells utilize
numerous inputs, analytical tools are necessary to model multivariate influences on decision-making produced by complex
genetic networks. Mathematical modeling and computational study of regulatory interactions between DNA, RNA, proteins
and small molecules based on the microarray data are hot topics in bioinformatics and have been studied by a number of
researchers [1-3]. There have been many formalisms proposed in the literature to study genetic regulatory networks such
as directed graphs, Boolean Networks (BNs) [4,5], Probabilistic Boolean Networks (PBNs) [6,7], multivariate Markov chain
models [8-10] and many other mathematical models [11]. Among these models, BNs and PBNs (an extension of BNs) have
attracted much attention.

BN was first introduced by Kauffman in [12,13]. We remark that a BN is a deterministic model. Due to the fact that a
genetic regulation process exhibits an uncertainty property and microarray data sets have errors due to experimental noise
in the complex measurement process, BNs have been extended to PBNs (stochastic models). The network dynamics of a PBN
can be studied in a Markov chain framework [6]. Owing to this, the rich theory and numerous tools developed for Markov
chains are applicable to the analysis of PBNs as well. PBNs also provide a natural way to quantify the relative influence and
sensitivity of genes in their interactions with other genes. Random gene perturbations are introduced into the PBN model
in [7], where the perturbation describes random inputs to the network. The effect of introducing random gene perturbations
is to make a network stable in the long run. A review on BNs and PBNs can be found in [14,15] and in Section 2, we shall give
a brief review of BNs, PBNs and PBNs with gene perturbations.

Given a PBN, an important problem is to study its steady-state probability distribution. It provides the first-order
statistical information of a PBN. Based on such information of a PBN, one can understand a genetic network, and identify
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the influence of different genes in a network [16,17]. Furthermore, one can figure out how to control some genes in a
network, such that the whole system can evolve into a target state or a desirable steady-state probability distribution [18].
In[19], efficient algorithms has been proposed for constructing a sparse probabilistic Boolean network using the steady-state
probability distribution.

It is well-known that in Markov chain theory, if a Markov chain is irreducible and aperiodic, the steady-state probability
distribution exist and is independent of the initial condition. We remark that in a PBN with random gene perturbations, the
underlying transition probability matrix can be shown to be irreducible and aperiodic. In [20], a matrix-based method has
been proposed for computing the steady-state probability distribution. Recently, an efficient matrix approximation method
is proposed to get the steady-state distribution of a PBN [10]. It is known that the size of a transition probability matrix of a
PBN is very huge, 2" x 2". Here n refers to the number of genes. In the literature, existing computational methods [17] can
handle n to be around 15. Therefore, it is necessary to develop fast algorithms for computing such a steady-state probability
distribution of a PBN. The main contribution of this paper is to develop a fast algorithm based on the special structure
of transition probability matrix of PBNs with gene perturbation to compute the steady-state probability distribution. Our
numerical results show that we can compute the steady-state probability distribution of a genetic network of size n to be
30 within a reasonable time on a desktop computer using MATLAB implementation.

On the other hand, in [7], the sensitivity of the steady-state probability distribution has been successfully analyzed based
on an effective construction of the transition probability matrix of a PBN with random perturbation. Recently, Xu et al. [21]
proposed a perturbation bound for the steady-state probability distribution of a PBN with gene perturbations. However,
this perturbation bound is not practical. The second contribution of this paper is to present a new perturbation bound of the
steady-state probability distribution of PBNs with gene perturbation without any additional condition.

The rest of the paper is organized as follows. In Section 2, a brief review of PBNs is presented. In Section 3, we give a
new perturbation bound of the steady-state probability distribution. In Section 4, we present a fast algorithm for computing
the steady-state probability distribution of PBNs with gene perturbations. In Section 5, numerical experiments are given to
demonstrate the effectiveness of the proposed algorithm. Finally, some concluding remarks are given in Section 6.

2. The review
2.1. Boolean networks

In this subsection, we give a brief review of Boolean Networks (BNs). ABN G(V, F) consists of a set of nodes V and Boolean
functions F where

V={vi,vy,...,v} and F={f;,fh,...,fu}

Let v, (t) be the state of vy at time t, where vy = 0 represents that the gene is unexpressed and vy = 1 means it is expressed.
The expression levels of all the genes in the network at the time t is given by the following column vector

v(t) = [v1(0), v2(0), - .., V(O]

This vector is called the Gene Activity Profile (GAP) of the network at time t. We note that when v(t) ranges from
[0,0,...,0]" to[1, 1, ..., 1], it takes on all the 2" possible states of the n genes. The list of Boolean functions represents
the rules of the regulatory interactions among the nodes (genes):

w(t+1) =f(®), k=1,2,...,n
Here each gene will update its state according to the states of its input genes in the previous step and its corresponding
Boolean function. Thus, a BN is a deterministic dynamical system.

Example 2.1. Suppose we are given a BN consisting of two genes V = (vq, v,) and the function set F = f1, f. The Boolean
functions are given in Table 1.
The transition probability matrix is given by the following Boolean matrix:

A=

o= OO0
(== N w]

0
1
0
0

O OO =

2.2. Probabilistic Boolean networks

In a Probabilistic Boolean Network (PBN), for each target gene, it has a number of Boolean functions having equivalent
prediction abilities. All these Boolean functions can be selected randomly with some probabilities. We assume that for the
kth gene, there are [(k) possible Boolean functions:

Fo — {fj(k) cforj=1,...,1(k)}
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Table 1
The truth table.
State v1(t) vy (t) f(]) f(z)
1 0 0 0 0
2 0 1 1 0
3 1 0 0 1
4 1 1 1 0
Table 2
The truth table of the PBN.
state  vivvs fi0 K0 (P (P Y
1 000 0 0 0 0 0
2 001 1 1 1 0 0
3 010 1 1 1 0 0
4 011 1 0 0 1 0
5 100 0 0 1 0 0
6 101 1 1 1 1 0
7 110 1 1 0 1 0
8 1 1 1 1 1 1 1 1
c? 06 04 1 05 05

]

and the probability of choosing function fj(k) is Cj(k) , where j;-<k) is a function with respect to the activity levels of n genes. A

PBN is said to be independent if the elements from different F*) are independent. For an independent PBN of n genes, there
are at most

N = ]_[ 1(k) (2.1)
k=1

different possible BNs. This means that there are totally N possible realizations of the genetic network. Suppose f; is the jth
possible realization,
F="020 5P 1<qe<I(, k=1,2,....n.

n

The probability to choose the jth realization is given by

n
k .
pi=[]cq’ ji=12...N. (2.2)
k=1
If the joint probability distribution of FV, F®, ... F™ cannot be factorized as the product of F®, then it is a dependent

PBN. For a dependent PBN, one can still use the same notations as those for independent PBNs.
Let a and b be any two column vectors with n entries being either 0 or 1, which represent the states of the system at time
t + 1and t. Then we have

Prob{v(t + 1) = alv(t) = b} = ZProb{v(t + 1) = ajv(t) = b, the jth BN is selected} - p;. (2.3)
=1

Lettingaand brange from[0, 0, ...,0]7to[1, 1, ..., 1]7, one can get the transition probability matrix A with size 2" x 2".
It can be expressed as:

N
A=) ph
j=1
where A; is the transition matrix corresponding to the jth BN.

Example 2.2 ([6]). Suppose we are given a PBN consisting of three genes V = (vy, v2, v3) and the function sets F(V =
U0, FLFD = (VY and F® = {1, £?}. Let the functions be given in Table 2. The state transition probability matrix
is then given by

1 0 0 02 0 O 0 O

0 0 0 02 0 O 0 0

0 00 0 1 O 0 O
A= 0 00 0 0 O 0 O
~]10 0 0 03 0 0O 05 O
0 0 003 0 0 05 0
011 0 O0OO05 0 O

0 0 0 0 0 05 0 1
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2.3. PBNs with gene perturbations

In this subsection, we recall the PBN model with gene perturbations [7]. Random gene perturbation is the description
of the random input from the outside due to external stimuli. This is meaningful in an open genome system. The effect of
random gene perturbations is to make genes flip from state 1 to state O or vice versa. It makes the underlying Markov chain
of the PBN ergodic, and therefore all the 2" states in the system are communicated. When random gene perturbation is
included, the transition probability matrix A is

A=(1—p)"A+D,=A+P,, (2.4)

where P, is the perturbation matrix (see [7]). Xu et al. [21] studied the properties of such perturbation matrix, and gave a
useful form of the perturbation matrix.

Theorem 2.1 ([21]). Let P, be the 2" x 2" perturbation matrix of a PBN with n genes, then we have forn = 1,2, . ..

Py =Qu— (1—p)"ln, (2.5)
where

Q=uRQUR - Y

n terms

_(1-p P
Q‘_<p 1—p>'

Here  refers to the Kronecker product of two matrices.

From (2.5), we see that the transition matrix A is the sum of the transition matrix without perturbation A multiplied by
(1 — p)" and the perturbation matrix P,. We know the perturbation matrix P, depends on the number of genes and the
random gene perturbation probability. When the number of genes and the gene perturbation probability in different PBNs
are the same, the perturbation matrices are the same. If the perturbation probability p = 0, thenA = A. If p=1, thenA = 0,
which is of no significance. Hence we always assume that 0 < p < 1 throughout the paper without further illustration.
According to Theorem 2.1, we have

Umax(ﬁn) =1- (] - P)n, (26)
where 0,4 (-) denotes the largest singular value of a matrix.

3. The new perturbation bound

A matrix A is called nonnegative, semi-positive and positive if each entry of A is nonnegative, nonnegative but at least a
positive entry and positive, respectively. We denote them respectively by A > 0,A > 0and A > 0.

Definition 3.1 ([22]). Areal n x n matrix A = [a;;] with a; < 0 for all i # j is an nonsingular M-matrix if A=sI —B,B > 0
and s > p(B); a Stieltjes matrix if A is symmetric and positive definite.

Lemma 3.1 ([23,22]).

(1) If Ais a Stieltjes matrix, then it is also a nonsingular M-matrix.

(2) A matrix A is a nonsingular irreducible M-matrix (for the definition of an irreducible matrix, e.g., see [23]) if and only if
Al>0.

(3) If Ais a singular irreducible M-matrix, then each principal submatrix of A other than A itself is a nonsingular M-matrix.

In this section, we give a new perturbation bound for the steady-state probability distributions of PBNs. Let x and x be
the steady-state probability distribution of A and A, the transition probability matrix with and without gene perturbation,
respectively, i.e.,, Ax = x and A% = %,

Let H = (1 — p)"A — I. Since A is a transition probability matrix, 1 is the spectral radius of A, and thus H is nonsingular
for any nonzero p. This implies that

o5 (H) = omin(H),

+

where o (-) and omin(-) denote the smallest positive singular value and smallest singular value of a matrix respectively.

Xu et al. in [21] presented a bound for ||x — X|| under the assumption that

o (H) > Umax(ﬁn)-

min

However, this condition is not practical by the following property.
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Property 3.1. In the notation above, then we always have
UI;H(H) = O'max(f)n)»
forall0 <p <1

Proof. It is noted that —H = I — (1 — p)"A is a nonsingular matrix with p((1 — p)"A) < 1, where p(-) denotes the spectral
radius of a matrix. Hence

- '=a-0-p"A)"
=1+(10-p"A+(1A—-p>A>+---.

Since A is a nonnegative matrix with the spectral radius 1 (noting that the spectral radius of a nonnegative matrix is equal
to its maximum eigenvalue), we have

p(—H)™) =14+1-p)"+A—p*" +---
1-a-pH " (3.1)

Clearly,

P((=H)™) < I(=H)""ll2 = 1/0omin(H),
which together with (3.1) gives that

Omin(H) <1—(1-p)".
Then the result follows from (2.6). O

Next we show the perturbation bound without assuming an additional condition. Let B € R™". B;; (1 <i < j < n)and
B(i) denote the submatrix of B whose rows are taken from ith to jth of B and the submatrix of B by deleting the ith row of B,
respectively. Let P® be a (2" + 1) x (2" + 1) matrix with the following form:

(@)

P

pi — :(,.) , i=1,2,...,2"
Pzn
(i)
Py i1

where

1,...,1,0), k=i

P(i) _ k

k = —— e,
o,...,0,1,0,...,0), otherwise.

Let1y,n = (1,..., 1)and 0y = (0, ..., 0) be row vectors with dimension 2". By (2.4) and (2.5) we have A = 12\+Qn—(1+p)”1.

Let
H; = PO (’;A> . Kk=pPO (Q';,_I) ,i=1,2,...,2" (32)
2n 2n
Lemma 3.2. The matrix ((1 _12':)(")) is nonsingular fori =1, ...,2".

Proof. Otherwise, there is a nonzero vector u € R?" such that

I-AMY, _
< Ln )u_O. (3.3)

Without lqss of generaljty we assume that i = 2". Let Ayn be a principal submatrix of A by deleting row i and column i of A.
Then (I — A)(i) = (I — Ay, a), where « is a nonpositive vector in R . Since Q, is positive, & # 0.Letu = (", usn)". Then
by (3.3) we have
(I — Ayn)T + ugne = 0, (3.4)
1271,]":[ + Uy = 0. (35)
Since A is an irreducible and positive transition probability matrix, —Aisa singular irreducible M-matrix. So, by Lemma 3.1,
I — Aun is a nonsingular M-matrix. By (3.4) we have

U= —upm( —Ap) e,
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which is substituted to (3.5) gives
(1 = 1gn_1(I — Agn) " '&)un = 0.

Assume that u;n = 0,thent = —ux(l — ;\zn)*‘a = 0, which contradicts that u # 0. Hence uyn # 0. This implies that
1—1n_1(I —Ayn) ' = 0. However 1yn_1(I —Asn) “'ae < 0,and hence 1 — 1,n_1(I —As») ' > 1, which is a contradiction.
This proves the lemma. O

Now we present a bound between steady-state probability distributions of A and A.

Theorem 3.3. For an ergodic PBN of n genes, let x and x be the steady-state probability distributions of the PBN and the PBN with
gene perturbation, respectively. Then

X = X[l2 < min {omax(Ki) /o, (H X2, (3.6)
1<i<2?

where H; and K; are given by (3.2).

Proof. The Markov chain is ergodic if and only if its transition probability matrix is irreducible and aperiodic. Then the
eigenvalue 1 of the transition probability matrix is single. So the geometric multiplicity of eigenvector x corresponding to

eigenvalue 1 is one. Since the vector x is the steady-state distribution of A, we have Zf; x; = 1. Then the following linear
systems (3.7) and (3.8) have a unique solution x and X, respectively.

Ax = X,
271
7
in =1, (3 )
i=1
A% = %,
271
- 3.8
%=1, G8)
i=1

Let Ax = x — x. Then we have

(I—Aax = (Q+A—p"A-1)—Dx
= (Qn — Dx.
On the other hand, by (3.7) and (3.8) we have

2n 2n 2"
E X = E Xi + E Axi =1,
i=1 i=1 i=1

thus

211
Z AXj = 0.
i=1

Therefore, we obtain the following linear system:

In — A (-1
(21'; )A"—( 0,n )X' (3.9)

Because A is a transition probability matrix, the summation of every column of A is one, and so is Q,. By the definition of H;
and K; we have

B (I = Ay
I—A 0yn
H — P, - .
l ' ( 1; ) (I' = A)it12n
1“
2
and

(Qu — D1iicq

Q,—1 0,n
K = P -
! ! ( 0,0 > (Qu — Dig1n
0y
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The upperbound of different i, (n=9, p=0.35)
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*  The upperbound of different i
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Fig. 1. The upper bounds for different i.

It is easy to see that P; is a nonsingular matrix. Left-multiplying by P; on the Eq. (3.9) leads to the following equivalent
equation:

H;Ax = Kix.
Deleting the ith row of both matrices H; and K; gives the following equation:
HiAx = Kix, (3.10)
where H; and K; are square matrices with the block form:
i = ((1 —é\)(i)) and K — <(Qn 0—;)(:‘)) .
By Lemma 3.2 H; is nonsingular, and hence
Ax = H 'Kix.
Taking the 2-norm in the both side of the above equality gives
IAX]2 < I1H'Killzl1Xll2 < [1H 12 1Kill2 11Xl = Omax (Ki) /Omin (H) X2
Let ® (H;) and © (H;) denote the singular values set of H; and H;, respectively. Then we get ® (H;) = ® (H;) U {0}, implying
omin(H) = 0%, (Hy).
By the definition of K; we have omax(Ki) = omax(K;). Hence
x —Xll2 < 1r<l}i<2n{amax(1<i)/o';;in(Hi)}”XHZ-

This proves the theorem. O

Remark 3.1. By using Example 2.2 of n = 9, we consider the gene perturbation probability to be p = 0.35and p = 0.01.In
Figs. 1 and 2 we show the upper bounds of the perturbation bound in Theorem 3:

Omax (K Jo b (H)X[2, i=1,...,2"
We see from the figures that these upper bounds are concentrated on their minimum value. Also the difference between
their maximum and minimum values is very small, namely, 3.9 x 10~ and 3.2 x 1073 in Figs. 1 and 2 respectively.

Next we show a corollary to obtain the upper bound of || Ax||, more quickly and effectively.
By the proof of Theorem 3.3 we have

<(1 - F\)(i))1
1;

Hence we have the following result.

Umin(I:Ii) = and O'max(I_(i) = omax[(Qn — D(D)].

2

Corollary 3.4. In the notation of Theorem 3.3, we have

~oN -1
Ix = &> < 1@ ~ DO, (“ ‘1{2?)(')) Il (3.11)

2
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The upperbound of different i, (n=9, p=0.01)
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Fig. 2. The upper bounds of differenti, (n = 9, p = 0.01).
and

) (3.12)
2

-
Hx—ﬂbMMhslmb—JXMbHCL]?OU

foreveryi=1,2,...,2"

In the following we give a simple bound.

Corollary 3.5. In the notation of Theorem 3.3, we have

a—Aa)
1

a—Aa)
1n

2

[1—(1-=2p)"]

(

Proof. Notice that [|(Q, — I)(i)|l2 < ||(Q, — I)||2. By the definition of Q,, we know that its singular values are
1,(1-2p),....,(1—-2p".

Hence we have

0<p=<-
b < — =
P=3
2 (3.13)

! 1
) - < <1,
2 p

llx = Xll2/lIx|l2 <

2p

2
fori=1,...,2"

1
1-(1-2p", 0<p<-
@i = Dll2 = Omax[(Qu — D] = 1 2
2p, —<p<l
2
Then the result follows from Corollary 3.4. O
Now we present a bound which is independent of i.

Corollary 3.6. In the notation of Theorem 3.3, let B = (’ *A), then

1yn
1—(1—-2p)"
—_—F, 0 <1/2
- Vool B) <p=1/2
llx = Xll2/lIxll2 < 2p (3.14)
7+, 1/2 <p< ],
\/éamin(B)

2" 4+1)—4/(2"+1)2—4 2"+ 1)+4/ (2" +1)2—-4
where &1 2(-H §9§(+)+ 2(+) )

Proof. Let H; be as in the proof of Theorem 3.3. Then by the Ostrowski theorem, we get

o*(H;) = AM(H;H]) = A(P;BB"P]) = 0(P;P] )A(BB"),

where

Amin(PiPT) < O(PiP]) < Amax (PiP] ).
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Since P,'PiT is similar with P1P1T, PiPiT has the same spectrum fori = 1, 2, 3, ..., 2". It is easy to see that the eigenvalues
n n 2_
of PyP] are 1, (CIRRIEVAC ) V;H])‘l. Hence

Q"+1)—/Q2"+ 12 —4

2"+ 1 J2r4+1)2 -4
SQ(PiPiT)S( +*D+V@+ D
2 2
fori=1,2,3,...,2" Notice that PiBBTPiT and BBT have the same number of positive eigenvalues. Then

Ortn(H) = [0 (PPT) 5, (B).

Then the result follows from Corollary 3.5. O

Remark 3.2. (1) For an ergodic PBN model, our bound in (3.6) is given without any restriction.

(2) LetB = A—Iand PBJ; be the projection complementary to Pg+. In [21] the authors obtained that X —x = Qx+ PE#Z, where
zeR* andQ = Bt (=QAQ=p"I— Fn), B is the Moore-Penrose inverse of B. In their numerical tests, z is taken to be
zero, which leads to X — x = Qx, but it is very difficult to judge whether Zf:n] (Qx); = O or not. If ZIZ:”] (Qx); # 0, then x
is not a steady distribution of the PBN with gene perturbation.

(3) Inthe literature, Wei [24] gave a relative perturbation bound of a singular linear system with index one by group inverse.
Here we give a randomly chosen example to compare two perturbation bounds. We consider the following transition
probability matrix of 3 genes PBN:

0.2417 0.1117 0.0195 0.1916 0.1698 0.2687 0.1480 0.1066
0.0588 0.1557 0.0439 0.0155 0.1255 0.0213 0.0358 0.1569
0.1701 0.1943 0.1735 0.1361 0.1887 0.1324 0.0770 0.1541
0.1820 0.0065 0.1524 0.1732 0.0948 0.3083 0.1315 0.0595
0.1920 0.1745 0.1724 0.0688 0.0199 0.0025 0.1572 0.1717
0.0129 0.1794 0.1162 0.1148 0.1989 0.0211 0.1035 0.1535
0.0857 0.0994 0.2045 0.1855 0.0896 0.1066 0.1729 0.0627
0.0568 0.0784 0.1177 0.1144 0.1127 0.1390 0.1739 0.1349

and set the perturbation probability is p = 0.1. We find that the relative bound in [24] is 1.5679, while our bound is 0.6691.

4. The computation of the steady-state probability distribution

In this section, we propose a fast algorithm to compute the steady-state probability distribution of a PBNs with gene
perturbation. For convenience, some notations, definitions and results which will be used in sequel are given below.

Definition 4.1 (/25]). Let A be an n x n matrix. The splitting A = M — N is called:

(a) weak regular if M~! > 0and M~IN > 0;
(b) regularif M~! > 0and N > 0;
(c) an M-splitting if M is a nonsingular M-matrix and N > 0.

Lemma 4.1 ([25]). Let A be an irreducible singular M-matrix, and let A = M — N be a weak regular splitting. ThenB = [ —M N
is a singular M-matrix and indy(B) = 1, where ind, (B) denotes the index of the eigenvalue A for B; that is, the size of the largest
Jordan block of B associated with .

Lemma 4.2 ([23]). Let A be singular but the linear system Ax = b be consistent. The stationary iteration

X1 =Txp+c¢, k=1,2,...,x€C"

whereA =M —N,T = M™'N =1 — M~ 'A ¢ = M~'b, semi-converges to a solution of Ax = b if and only if the following
conditions are satisfied:

(@) p(T) =1,
MY T)=max{|r | L eo(T),A#1} <1,
(c) all elementary divisors associated with the eigenvalue 1 of T are linear, i.e., ind{(T) = 1.
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4.1. Semi-convergent splittings

In this subsection, a semi-convergent splitting of I — Ais proposed. By Theorem 2.1 we get,

[—A=(1+(1—p" —Q,—A (4.1)

Since Q, has Kronecker product structure and QnT = Q,, all the eigenvalues of Q, are real. Furthermore, the summation of

each column of Q; is 1and Q; > 0, then p(Q;) = 1.LetM = (1+ (1 —p)")I — Q;,, N = A.ThenMisa Stieltjes matrix. If
0 < p < 1,then Q, > 0. Hence M is a positive Stieltjes matrix. It follows from Lemma 3.1 that M is a nonsingular M-matrix
with M~ >> 0. Then the splitting (I —A) = M — N is an M-splitting, and hence we have p(M~'N) = 1and ind; (M~ 'N) = 1
by Lemma 4.1. On the other hand, since M~ > 0, N > 0, and every column of N is nonzero, we have M~'N > 0, and thus,
for every A € o(M~'N) and A # 1, we have [A| < p(M~'N),ie., ®(M~'N) < 1.By the argument as above we have the
following theorem:

Theorem4.3. [et M = (14+ (1 —p)")I — Q,, N = A, then the splitting I — A=M—Nisa semi-convergent splitting.
4.2. The algorithm

Let X be the steady-state distribution of PBN with gene perturbation, i.e., AX = X. Then (I — A)X = 0, that is

(M —N)x=0. (4.2)
By Theorem 4.3, the following iteration is semi-convergent for every initial approximation:

¥ =M7INX, k=1,2,....
To avoid to compute the inverse of M, we use the following iteration

M =NX*, k=1,2,.... (4.3)
In this iteration, we must solve the linear equation

MR =y, (4.4)

in every iteration step. In order to reduce the computation cost, the special structure of perturbation matrix Q, must be
considered.
Since Qg is a 2 x 2 symmetric matrix, it can be decomposed as follows:

1-p p
= = P APy,
Q <p 1—p) 1A1P;

where

Al:((lJ 1—02p)’ Pl:ﬁ/z(} —11)

P; has the LU decomposition:

10 11
Py = LUy, le(l 1>,U1:ﬁ/2<0 _2). (45)

Hence we have

n trems

Q=UU®--®Q
= (P1A1P) ® -+ ® (P1APy)
=P® - QPN Q- RANDPI®---QPy)
= PnApPy, (4.6)

n terms n terms

—— —
where P, = P1® ---®P1, Ay = A1 ® --- ® Aq. Furthermore, P; is a orthogonal and symmetric matrix, then P, is also
orthogonal and symmetric.

M =P, (1+ (1 - p)n)l — Ap)Py.
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By considering the Kronecker structure of P, and the LU decomposition of P; we get

P, = (LiU) ®---® (L1Uy)
=Li® --QLNU®---®Up)

= L,U,.
Finally, we have
M= LnUn((1 + (11— p)n)l - An)LnUn~ (4-7)

From (4.7), we know that the matrices L, and U, are independent of the gene perturbation probability p, so we need
not to compute these matrices every time, just only need to store the diagonal elements of A, as a vector. So we can solve
the linear system (4.4) by solving four triangular equations. Furthermore, the matrix L, is a lower triangular matrix with all
lower triangular elements are 1 or 0, so, when we solve the system L,y = z, we need not to compute the product between
the entries of L, and y, just need to substitute the entries of y to the system and do some additions and subtractions. So
the equations L,y = z can be solved more quickly. The transition probability matrix A of a PBN is sparse, so the matrix
N = (1 — p)"Ais. A sparse matrix multiplies by a vector, i.e., Nx*, can reduce the computation cost, too. According to the
discussion above, we have the algorithm as follows:

(1) Algorithm 1:
(2) k=0,x"=1./2"
(3) Do

(a) )y Nx;

olve the lower triangular equation L,x = y;
olve the upper triangular equation U,y = x;

(a
(b)
s
s

)

)

)

Yx =diag(1+ (1 —p)" — A) "L xy;

(f) solve the lower triangular equation L,y = x;
) solve the upper triangular equation U,x = y;
)
)
)

(k) residual(k) = ||AX — X|;
(4) Until residual(k) < tol.

We also get X*+! from ¥**1 = M~'y, where
M~ =P (14 (1 =p)DI = AP,
furthermore, P,P,, = I, hence we have
M~ =P,(1+ (1 —p)"I — Ay) " 'Py
= LyUp((1+ (1 = p)") — Ap) 'Ly,
and

Ln:<LH 0 ) Un:(x/i/zunl ﬁ/zu,”).

Ln—l Ln—l 0 —\/EUn_1

Ly_1 %X 1
Ly#x = -1 T A ,
Ln 1 % Xq.on— 1+Ln 1% Xy on—1.n
Un g — ((V2/2Uno1 % Xignt +¥/2/2Un1 % Xy ne1n
n =
_fUn ]*X1+2n 1.on

In order to compute both L, * x and U, * x it need only to compute Ly_1 * X301, Ln—1 * Xy pn—1.5n and Up_1 * Xqon-1,
Up_1 * x1 4on—1.on, Tespectively. By this way we reduce half of the computation cost. We change the step (b) to the following

step (b’) and give Algorithm 2.
(1) ()
(2) x1 = Un—1 % Yyn-15 X2 = Un—1 % Yy on-1.9n;
3) x= (f/zm +f/2xz);
—/2xp
(4) X1 =Lh_q * Xq.on-1; X2 = L1 * Xq4on—1.9n;
By =y
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x=diag(1+ (1—p)"I — A, xy;

X1 = Un—1 #Xyn-1; X2 = Up—1 % Xy n-1.9n;
_ ﬁ/2x1+«/5/2x2 .

y= < —/2x) )‘

Xy = Lp_1%Y1on-15X2 = Ly_1 * Y1 o010}

b%

We note that Algorithms 1-2 must store the matrix P, or L, and U,and the method in (2.11) can reduce the storage of
algorithm. So we may use the method in (2.11) to avoid to store these matrices. Let M| = HZT on(Ipn-1 @ P1). Then

P,=P,® --®@P,=M;---M,. (4.8)
———
n terms

The vector M~y can be computed by the following step (b”). Changing the step (b) to (b”) gives Algorithm 3. This algorithm
need only to store a 2 x 2 real matrix P, and hence can reduce much storage.

(1) (b")
(2) Fori=1:n

(a) y = (P; - reshape(y, 2, 2" '))';
(3) en
(4) y = reshape(y, 2", 1);
(5) x
(6)

(=N

=diag(1+ (1 —p)")I — A" xy;

Fori=1:n
(a) x = (P; - reshape(x, 2,2"~"))T;
(7) end

(8) x = reshape(x, 2", 1).
As we know, the generalized minimal residual (GMRES) method is widely used for solving a general linear system
Ax=b, AeR™" b#0.

From the proof of Theorem 3.3, the following system of linear Eq. (4.9) have a unique solution X:

A% = b, (4.9)

= ((A=1Daan s (00
i) o= ().

Hence b # 0, alternatively, we may use GMRES method to solve the linear system (4.9). We denote the method by

‘M-GMRES'. Notice that this method destroys the special structure of the perturbation matrix P,, actually.

The transition probability matrix A of PBN is a sparse matrix, sois N = A= (1 — p)"A. The complexity to compute NX
in (4.3) is 0(m2"), where m is the maximum number of nonzero elements of every row of A. The matrices Py, L,, and U, are
fixed for the given n, so it is not necessary to compute these matrices every time. In Algorithm 1, we need only to compute
the product of a triangular matrix and a vector, and thus the complexity is 0(22"~1). By using the above argument, we know
thatif m <« 2", the complexity of each step for Algorithms 1 and 2 is 0(22"~') and 0(22"~3), respectively, and the complexity
of every step of Algorithm 3 is 0(2").

If we use the same technique in the power method,

Ax = Ax + Py( Ay — (1 — p)")IPyx,

we could also reduce the complexity of the power method to O(2"). But the numerical examples show that number of
iterations of the power method is more than number of iterations of Algorithm 3.

5. Numerical examples

In this section we demonstrate the efficiency of the proposed algorithms by some numerical examples. Firstly, we test
our algorithms by an example with 3-genes network proposed in [6]. Secondly, we generate some random 2" x 2" sparse
nonnegative matrix as the transition probability matrix of a PBN to show the effectiveness of the proposed algorithms.
Finally, we compare the relative error d computed by the proposed methods and the Xu et al.’s method [21]. All the runs
were done in Matlab 7.9.0 on a CPU 2.66 GHz and 3.48 GB memory computer, and the termination tolerance ¢ = 1.0e — 9.
When we use the power method, we will stop calculating as it iterate 5000 times.
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Gene number n=9, Size(Z9 29), Perturbation probability p=0.1, tol=1e-009
2 T T T

—©6— Algorithm 1

& - Algorithm 2

Algorithm 3

+  M-GMRES
—%— POWER METHOD

211G

Log10 of Relative Residual Norm
1
~

1‘0 1‘5 2‘0 2‘5 30
Number of Iteration
Fig. 3. The relative residual norm for n = 9 and p = 0.1 of different methods.
Example 5.1 ([6]). The truth table and the state transition probability matrix of the PBN are also given in the Example 2.2.

Suppose the perturbation probability p = 0.2. Then the steady state distributions X, and X given by the power method and
Algorithm 3 are

0.12364045178 0.12364045170
0.06123450558 0.06123450557
0.12683169459 0.12683169455

% — 0.06269248594 and % — 0.06269248596

P ™ 10.12755601798 1 0.12755601796 | °
0.12010837289 0.12010837292
0.19350277613 0.19350277612
0.18443369507 0.18443369517

respectively. Hence the residual errors are
A%, — X, = 0.1808 x 10™° and |[|A% — X[, = 0.1245 x 10~°.
The iteration number of the power method and Algorithm 3 are 31 and 29, respectively, and

% — Xpll2 = 1.3950 x 107 .

Example 5.2. In this example, we show numerically the effectiveness of the proposed algorithm by counting iteration
numbers (denoted by ‘IT’), elapsed CPU time in seconds (denoted by ‘CPU’), and relative residual error (denoted by ‘RES’)
defined by

IARE — &1,

RES = —.

[|[AX0 — XO]|,
The transition probability matrix without gene perturbations A is produced by using the Matlab function A =
sprand(2", 2", density) that give a random 2" x 2" sparse matrix with approximately density % 2" x 2™ uniformly distributed
nonzero entries then following by a column normalization. The number of nonzero entries of A around 5.0 x 10%.

Numerical results for p = 0.10 and different values of n are given in Table 3. Table 4 gives the numerical results for
n = 10 and different values of p. By Tables 3 and 4, it can be seen that for each gene perturbation probability p or for each
gene number n, the iteration numbers and most of relative residual errors of the proposed method are smaller than those by
the power method. On the other hand, the iteration number of the proposed method is decreasing as the gene perturbation
probability p is increased. The relative residual errors of every step of different methods are shown in Fig. 3. Table 5 gives
the numerical results for p = 0.01 and a large value of n. The example shows that the proposed method is numerically
effective.

Example 5.3. In this example, we compare the relative error computed by the proposed method, by the power method, by
M-GMRES and by the approximation method given in [21]. Let X and X, denote the steady-state probability distributions
computed by one of the proposed methods and the power method, respectively, and denote by d as

1 P

1% 12
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Table 3
Numerical results for p = 0.10 and different n.
n p Algorithm 1 Algorithm 2 Algorithm 3
IT CPU RES IT CPU RES IT CPU RES
7 0.10 9 0.0174 4.43e—010 9 0.0000 4.43e—010 9 0.0000 4.43e—010
8 0.10 8 0.0573 9.13e—011 8 0.0000 9.12e—011 8 0.0000 9.12e—011
9 0.10 7 0.1391 7.21e—011 7 0.0000 7.20e—011 7 0.0000 7.20e—011
10 0.10 6 0.5328 1.47e—010 6 0.0625 1.46e—010 6 0.0313 1.47e—010
11 0.10 5 2.7607 6.80e—010 5 0.1719 6.78e—010 5 0.1250 6.78e—010
12 0.10 5 18.2859 1.03e—010 5 0.5000 7.02e—011 5 0.3906 6.88e—011
n p M-GMRES Power method
IT CPU RES IT CPU RES
7 0.10 10 0.0000 3.84e—009 22 0.0000 5.04e—010
8 0.10 10 0.0000 9.02e—010 25 0.0000 9.47e—010
9 0.10 10 0.0000 3.89e—010 29 0.0156 4.26e—010
10 0.10 9 0.0625 6.94e—010 32 0.1250 8.89e—010
11 0.10 9 0.1250 3.06e—010 36 0.5938 8.26e—010
12 0.10 9 0.3281 1.74e—010 40 2.5000 7.15e—010
Table 4
Numerical results for n = 10 and different p.
n p Algorithm 1 Algorithm 2 Algorithm 3
IT CPU RES IT CPU RES IT CPU RES
10 0.08 6 0.4993 5.53e—010 6 0.0625 5.52e—010 6 0.0313 5.52e—010
10 0.18 5 0.4200 6.73e—011 5 0.0625 5.92e—011 5 0.0313 591e—011
10 0.28 4 0.3303 6.44e—011 4 0.0625 3.29e—011 4 0.0313 3.29e—011
10 0.38 3 0.2555 2.20e—010 3 0.0313 1.46e—010 3 0.0313 1.46e—010
10 0.48 4 0.3484 9.32e—010 3 0.0156 6.71e—012 3 0.0156 6.49e—012
n p M-GMRES Power method
IT CPU RES IT CPU RES
10 0.08 10 0.0469 2.54e—010 28 0.1094 9.68e—010
10 0.18 8 0.0625 8.55e—010 37 0.1406 7.11e—010
10 0.28 7 0.0156 8.32e—011 28 0.1094 9.57e—010
10 0.38 5 0.0313 4.12e—010 18 0.0625 7.52e—010
10 0.48 3 0.0156 4.26e—010 5000 17.5156 2.42e—009
Table 5
Numerical results for p = 0.01 and large n.
n p Algorithm 3 Power method
IT CPU RES IT (h) CPU (h) RES (h)
24 0.01 5 83.4920 5.84e—13 >5 >5 >5
25 0.01 6 210.0700 6.47e—13 >5 >5 >5
26 0.01 6 436.3000 5.89e—11 >5 >5 >5
27 0.01 4 603.1700 1.25e—14 >5 >5 >5
28 0.01 4 1249.8500 4.14e—12 >5 >5 >5
29 0.01 4 2700.2700 4.01e—16 >5 >5 >5
30 0.01 3 6946.6425 8.69e—13 >5 >5 >5

In [21] the authors set the number of substitutions of Q; with I; to be 2 and set z = 0 for testing their approximation method.
Here we do the same setting with [21] for checking the relative error about the power method with the approximation
method. However, it is not necessary to set it in the proposed methods. It is also noted that the approximation method
in [21] needs to compute the Moore-Penrose generalized inverse of a matrix, which is very expensive. Table 6 gives the
relative error about the power method with different methods. From the table, it is shown that the proposed method and
M-GMRES are better than the approximation method in [21], Algorithm 3 also gives the best results among all the testing

methods.

6. Discussions

In this paper, we gave a new perturbation bound without any restriction for the steady-state distribution of PBN with gene
perturbation, firstly. And then, we have proposed fast algorithms for computing the steady-state probability distribution
of PBNS with gene perturbation by considering the special structure of a transition probability matrix of PBNs with gene
perturbation. Numerical experiments are given to demonstrate the efficiency of the proposed methods.
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Table 6
Relative error d about the power method for different methods.
n p Algorithm3 ~ M-GMRES Approximation method [21]
5 001 2.44e—010 6.36e—005 9.60e—003
6 001 1.72e—010 2.33e—006 6.34e—003
7 0.01 1.01e—010 9.49e—008 3.40e—003
8 001 7.63e—011 5.76e—009 2.78e—003
9 001 1.40e—011 3.59e—009 1.93e—003
10 0.01 7.54e—012 6.96e—009 1.31e—003

Acknowledgments

The work was supported by National Natural Science Foundation (Grant No. 10971075), Research Fund for the Doctoral
Program of Higher Education of China (Grant No. 20104407110001) and Guangdong Provincial Natural Science Foundation
(Grant No. 9151063101000021).

References

[1] J.E. Celis, M. Kruh@fer, I. Gromova, C. Frederiksen, M. Ostergaard, T. Thykjaer, P. Gromov, ]. Yu, H. Plsdttir, N. Magnusson, T.F. Orntoft, Gene expression
profiling: monitoring transcription and translation products using DNA microarrays and proteomics, FEBS Lett. 480 (2000) 2-16.

[2] T.R. Hughes, M. Mao, AR. Jones, ]. Burchard, M.J. Marton, KW. Shannon, S.M. Lefkowitz, M. Ziman, ].M. Schelter, M.R. Meyer, S. Kobayashi, C. Davis,
H. Dai, Y.D. He, S.B. Stephaniants, G. Cavet, W.L. Walker, A. West, E. Coffey, D.D. Shoemaker, R. Stoughton, A.P. Blanchard, S.H. Friend, P.S. Linsley,
Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer, Nat. Biotechnol. 19 (2001) 342-347.

[3] K. Murphy, S. Mian, Modelling gene expression data using dynamic Bayesian networks, Technical Report, Berkeley, 1999.

[4] T.Akutsu, S. Miyano, S. Kuhara, Identification of genetic networks from a small number of gene expression patterns under the Boolean network model,
Pac. Symp. Biocomput. 4 (1999) 17-28.

[5] T. Akutsu, M. Hayasida, W. Ching, M. Ng, Control of Boolean networks: hardness results and algorithms for tree structured networks, J. Theor. Biol.
244 (2007) 670-679.

[6] 1. Shmulevich, E.R. Dougherty, S. Kim, W. Zhang, Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks,
Bioinformatics 18 (2002) 261-274.

[7] 1. Shmulevich, E.R. Dougherty, W. Zhang, Gene perturbation and intervention in probabilistic Boolean networks, Bioinformatics 18 (2002) 1319-1331.

[8] W. Ching, E. Fung, M. Ng, T. Akutsu, On construction of stochastic genetic networks based on gene expression sequences, Int. J. Neural Syst. 15 (2005)
297-310.

[9] W. Ching, M. Ng, Markov chains: models, algorithms and applications, in: International Series on Operations Research and Management Science,
Springer, New York, 2006.

[10] W. Ching, S.Zhang, M. Ng, T. Akutsu, An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks,
Bioinformatics 12 (2007) 1511-1518.

[11] P. Smolen, D. Baxter, . Byrne, Mathematical modeling of gene network, Neuron. 26 (2000) 567-580.

[12] S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol. 22 (1969) 437-467.

[13] S.A. Kauffman, The Origins of Order: Self-organization and Selection in Evolution, Oxford University Press, Oxford, 1993.

[14] T.Akutsu, W. Ching, Analysis and control of deterministic and probabilistic Boolean networks, in: Huma M. Lodhi, Muggleton Stephen (Eds.), Elements
of Computational Systems Biology, in: Wiley Book Series on Bioinformatics, John Wiley & Sons, Inc., 2010, pp. 235-256.

[15] L. Shmulevich, E.R. Dougherty, Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks, SIAM Press, 2009.

[16] M. Brun, E.R. Dougherty, I. Shmulevich, Steady-state probabilities for attractors in probabilistic Boolean networks, Signal Processing 85 (2005)
1993-2013.

[17] 1. Shmulevich, I. Gluhovsky, R. Hashimoto, E.R. Dougherty, W. Zhang, Steady-state analysis of genetic regulatory networks modelled by probabilistic
Boolean networks, Comp. Funct. Genomics 4 (2003) 601-608.

[18] L. Shmulevich, E.R. Dougherty, W. Zhang, Control of stationary behavior in probabilistic Boolean networks by means of structural intervention, J. Biol.
Syst. 10 (2002) 431-445.

[19] L. Cui, W. Li, W. Ching, On construction of sparse probabilistic Boolean networks from a prescribed transition probability matrix, in: Proceedings of
The Fourth International Conference on Computational Systems Biology, in: Lecture Notes in Operations Research, vol. 13, 2010, pp. 227-234.

[20] S. Zhang, W. Ching, M. Ng, T. Akutsu, Simulation study in probabilistic Boolean network models for genetic regulatory networks, Int. J. Data Min.
Bioinform. 1(2007) 217-240.

[21] W. Xu, W. Ching, S. Zhang, W. Li, X. Chen, A matrix perturbation method for computing the steady-state probability distributions of probabilistic
Boolean networks with gene perturbations, J. Comput. Appl. Math. 235 (2011) 2242-2251.

[22] R.Varga, Martix Iterative Analysis, second ed., Science press, Beijing, 2005.

[23] A.Berman, RJ. Plemmons, Non-Negative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.

[24] Y. Wei, Perturbation analysis of singular linear systems with index one, Int. ]. Comput. Math. 74 (2000) 483-491.

[25] H. Schneider, Theorems of M-splittings of a singular M-matrix which depend on graph structure, Linear Algebra Appl. 58 (1984) 407-429.



	On computation of the steady-state probability distribution of probabilistic Boolean networks with gene perturbation
	Introduction
	The review
	Boolean networks
	Probabilistic Boolean networks
	PBNs with gene perturbations

	The new perturbation bound
	The computation of the steady-state probability distribution
	Semi-convergent splittings
	The algorithm

	Numerical examples
	Discussions
	Acknowledgments
	References


