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a b s t r a c t

The Discrete Log Problem (DLP), that is computing x, given y = αx and ⟨α⟩ = G ⊂ F∗q ,
based Public Key Cryptosystem (PKC) have been studied since the late 1970’s. Such devel-
opment of PKC was possible because of the trapdoor function f : Zℓ → G = ⟨α⟩ ⊂ F∗q ,
f (m) = αm is a group homomorphism. Due to this fact we have; Diffie Hellman (DH) type
key exchange, ElGamal type message encryption, and Nyberg–Rueppel type digital signa-
ture protocols. The cryptosystems based on the trapdoor f (m) = αm are well understood
and complete. However, there is another trapdoor function f : Zℓ → G, f (m) → Tr(αm),
where G = ⟨α⟩ ⊂ F∗qk , k ≥ 2, which needs more attention from researchers from a cryp-
tographic protocols point of view. In the above mentioned case, although f is computable,
it is not clear how to produce protocols such as Diffie Hellman type key exchange, ElGamal
typemessage encryption, and Nyberg–Rueppel type digital signature algorithm, in general.
It would be better, of course if we can find a more efficient algorithm than repeated squar-
ing and trace to compute f (m) = Tr(αm) together with these protocols. In the literature
we see someworks for amore efficient algorithm to compute f (m) = Tr(αm) and notwon-
dering about the protocols. We also see some works dealing with an efficient algorithm to
compute Tr(αm) as well as discussing the cryptographic protocols. In this review paper, we
are going to discuss the state of art on the subject.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The public key cryptography plays an important role to ensure confidentiality, integrity, authentication, and non-
repudiation of the transmitted data. With the increase of computing speed the conventional public key cryptography over
finite fields required revival to ensure such properties. The trace based public key cryptography is one of the quests which
ensures higher security (over extension field), efficient transmission (over subfield) and faster computation (through linear
recursive relation). Due to these properties the trace based Public Key Cryptosystems (PKC) have become popular in the last
two decades. Therefore, the trace based PKC over finite fields are used for several modern cryptographic applications such
as key agreement, encryption and digital signatures with or without message recovery.

The trace based PKC are generally based on the concept of Discrete Log Problem (DLP), that is computing x, given y = αx

and ⟨α⟩ = G ⊂ F∗q . Such development of PKC was possible because of the trapdoor function f : Zℓ → G = ⟨α⟩ ⊂
F∗q, f (m) = αm is a group homomorphism. The cryptosystems based on the trapdoor f (m) = αm are well understood and
complete. However, the trapdoor based on trace function f : Zℓ → G, f (m)→ Tr(αm), where G = ⟨α⟩ ⊂ F∗qk , k ≥ 2, needs
more attention from researchers from a cryptographic protocols point of view.
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The development of the later trapdoor is based on the concept of the sum of the roots of an irreducible polynomial that
is a minimal polynomial of degree k over subfield or prime field. The computation of the sum of the roots that is trace
function (i.e; Tr(αm)) is accomplished through a faster algorithm based on a linear recursive relation when compared with
conventional square and multiply, and trace algorithms. Consequently, trace based PKC algorithms provide higher security
of extension field and faster computation through linear recursive relation over subfield. Moreover, the transmitted data is
also over subfield requiring less transmission bandwidth and hence efficient data transmission. Keeping these advantages
in mind, we see some works in the literature which are presented by Smith, Lennon and Skinner (LUC-PKC) in 1994 [1,2],
L. Horn and G. Gong, (GH-PKC) in 1998 [3,4], A.K. Lenstra and E.R. Verheul (XTR-PKC) in 2000 [5–8] and K. Giuliani, G. Gong
(GG-PKC) in 2003 [3,4] and Koray Karabina (KK-PKC) in 2009 [9].

In the literature there are also so called torus based cryptosystems introduced by K. Rubin and A. Silverberg in 2003 [10].
These systems depend on the parametric representation of the group Tk(Fq) ∼= Gq,k = ⟨α⟩ ⊂ F∗qk and Tk(Fq) rather than the
efficient algorithm to compute Tr(αm), where Tk(Fq) is a torus consisting of the elements in Fqk whose norm in unity down
to every intermediate subfield. Therefore, torus based cryptography is an area which applies a different technique, namely
rational parameterization of group elements, to develop cryptographic protocols. Therefore, it is not included in this note.

The aim of the note is to review the so called trace based cryptography studied in the literature and bring to the
attention of the researchers the challenges faced in these systems.Wewill not only review these systems but also introduce
cryptographic protocols which are not discussed in the literature.

This note is organized as follows: in Section 2, we will review the necessary mathematical background and protocols for
DLP based PKC. In Section 3, we review the trace based systems including mathematical structure for an efficient algorithm
to compute f (m) = Tr(αm) and cryptographic protocols such as Diffie Hellman key exchange, ElGamal type encryption
scheme and Nyberg–Rueppel type Digital Signature Algorithm. Although most of the facts discussed here are well known,
we have also added some new results such as ElGamal type encryption and Nyberg–Rueppel type signature schemes for
some cases which have not been discussed in the literature. Finally, we conclude the note in Section 4.

2. Discrete log based PKC over finite fields

The general mathematical structure of the PKCs based on finite field and cryptographic protocols such as key exchange,
encryption scheme, and Nyberg–Rueppel digital signature algorithm are basic building blocks for the PKC. Also the PKC
is considered practical if we have cryptographic protocols and efficient algorithms for computations involved in these
protocols. Keeping this in focus, we discuss DLP based PKC over subgroup G of a finite field.

2.1. DLP based PKC over G

Let,

G = ⟨α⟩ ⊂ F∗q, q = pr , i.e; prime power
G = ⟨α⟩ ∼= Zℓ, ord(α) = ℓ

f : Zℓ → G; with f (m) = αm.

The f is a computable trapdoor, and well known repeated squaring algorithm computes f in polynomial time.
For the DLP on G such that given y ∈ G, find f −1(y), one has in general Pollard’s Rho(O(e

√
log ℓ)) and Index Calculus

(O(e
√
2 log ℓ log log ℓ)) algorithms which are sub exponential time. By choosing the order G a large prime ℓ one can avoid these

algorithms so that f becomes a one-way function onF∗q .With this setup nowwegive thewell known following cryptographic
protocols:

2.2. Diffie Hellman key exchange

1. System public parameters: G = ⟨α⟩ ⊂ F∗q; ord(α) = ℓ.
2. A’s and B’s public keys are PA = αa, and PB = αb respectively, and private keys are 1 < a < ℓ and 1 < b < ℓ respectively.
3. Their common key, K = PAB = PBA = αab:

2.3. ElGamal encryption scheme

1. System public parameters: G = ⟨α⟩ ⊂ F∗q; ord(α) = ℓ.
2. A selects a random 1 < u < ℓ. A’s public key: h = αu, and private key = u.
3. Assumption: message is M ∈ G.
4. Encryption: B encrypts messageM as follows and sends to A:

(i) Chooses a random 1 < r < ℓ, then computes c1 = αr , s = hr and c2 = Ms.
(ii) Sends ciphertext C = {c1, c2} ∈ G2 to A.

5. Decryption: A decrypts C ∈ G2 based upon his private key u as follows;

c−u1 c2 = α−urMhr
= Mαurα−ur = M.
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2.4. Nyberg–Rueppel digital signature algorithm

1. System public parameters: G = ⟨α⟩ ⊂ F∗q, ord(α) = ℓ, and bijection map f : G −→ Zℓ.
2. A’s public key PA = αu, and private key: u ∈ Z.
3. Assumption: messagesM are in G.
4. Signature: A signs messageM ∈ G as follows:

(i) Chooses a random 1 < v < ℓ.
(ii) Computes r = Mα−v and s = v−1(1− f (r)u)(mod ℓ). A’s signature is (r, s) ∈ (G× Zℓ) and sends (M, r, s) to B.

5. Verification: B verifies by computing (PA)−f (r)r s = αsv−1−svMs
= Msα−1.

On the DLP based PKC, the main point is the trapdoor function:

G = ⟨α⟩ ⊂ F∗q, ord(α) = ℓ,

f : Zℓ −→ F∗q, f (m) = αm.

Note 1. The trapdoor function f is a group homomorphism; f (m + k) = f (m)f (k), and one should be careful to choose
⟨α⟩ = G ⊂ F∗q to avoid algorithms to attack DLP on G and choose, if possible, the smallest size G such that DLP on G is
computationally equivalent to DLP on F∗q .

3. Trace based public key cryptosystems over finite fields

Let α be an element over Fqk with the characteristic polynomial;

g(x) = xk − a1xk−1 + · · · + (−1)kak,

over Fq and let, Tr,Norm : Fqk → Fq, given by;

Tr(β) =

k−1
i=0

βqi , Norm(β) =

k−1
i=0

βqi .

Note that,

g(x) =
k−1
i=0

(x− αqi),

and ai = σi(α, αq, . . . , αqk−1), σi is the ith elementary symmetric function in k variables. For any integerm, let gm(x) be the
characteristic polynomial of αm,

gm(x) =
k−1
i=0

(x− (αm)q
i
),

= xk − f1(m)xk−1 + · · · + (−1)ifi(m)xk−i + · · · + (−1)kfk(m).

Note that; g1 = g.

This gives us for i = 1, 2, . . . , k,

fi : Zn −→ F∗q, fi(m) = σi(α
m, (αm)q, . . . , (αm)q

k−1
).

3.1. Relation of fi(m) with LFSR

Let, α be an element of finite field Fqk , with characteristic polynomial over Fq:

g(x) = xk + b1xk−1 + · · · + bk.

For a given initial state {s0, s1, . . . , sk−1} one produces a unique periodic sequence, {sm = −b1sm−1 − b2sm−2 − · · · −
bksm−k, m ≥ k}, generated by g(x). The general term sn can be expressed uniquely in the form:

sn = c1αn
1 + c2αn

2 + · · · + ckαn
k , for some ci ∈ Fq,

and

g(x) =
k

i=1

(x− αi), αi ∈ Fqk .
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Remark 1. It is well known that finding an efficient algorithm to compute fi(m) = σi(α
m, (αm)q, . . . , (αm)q

k−1
) is com-

putationally equivalent to finding an algorithm to compute sn, with given specific initial conditions s0, . . . , sk−1, where for
i = 1, 2, . . . , k;αi = (αm)q

i−1
.

Remark 2. We note that by means of Newton’s formula, having an efficient algorithm to compute f1(m) = Tr(αm) is
computationally equivalent to finding such an algorithm for fi(m).

Fromnowonourworkwill be restricted to the function f1(m) = Tr(αm) and for simplicitywedenote f1 as f . Form = 1, 2, . . .
and α ∈ Fqk , let,

gm(x) =
k−1
i=0

(x− (αm)q
i
),

gm(x) =
k−1
i=0

(x− (α−m)q
i
).

Heregm(x) = xkgm( 1
x ), is the reciprocal of gm(x).

Note that; for f : Zℓ → F∗q, f (m) = Tr(αm), computing f −1(β) is computationally equivalent to solving DLP on
G = ⟨α⟩ ⊂ F∗qk . Since f (m) = Tr(αm) is not a group homomorphism, it is not known, in general, how to obtain cryptographic
protocols like the ones in DLP case based on α → αm. Certainly, the PKC based on f (m) = Tr(αm) will give a more
compressed system versus the system based on α → αm in F∗qk . With this development we define the trace based PKC
as follows:

Definition 2. By a trace based cryptosystem we mean a Public Key Cryptosystem based on the one-way function,

f : Zℓ → G = ⟨α⟩ ⊂ F∗qk ,

f (m) = Tr(αm).

We mean a cryptosystem having an adaptability to cryptographic protocols such as, DH type key exchange, ElGamal type
message encryption scheme, and Nyberg–Rueppel type digital signature algorithm, based on f .

Main challenges for trace based cryptography. Letα be an element ofFqk having characteristic polynomial g(x) = xk−a1xk−1+
· · · + (−1)kak over Fq, find conditions on α such that:

(i) There is a more efficient polynomial time algorithm than the algorithm that first computes αm using the square-and-
multiply algorithm, then computes the trace of αm, for a given m ∈ Z.

(ii) Introduce cryptographic protocols similar to protocols discussed above for DLP-based system.
(iii) Compare the security and implementation of these protocols with the existing ones.

Remark 3. The problem (i) arose also in pairing based cryptosystems [11] and there have been some works done there
for some values of k and special conditions on α such as ord(α) = ℓ|Φk(q), where Φk(q) is the kth cyclotomic polynomial
evaluated at q.

By keeping in mind the above challenges, we now discuss the related work done in the literature and in this respect the
following is the list of Public Key Cryptosystems.

(i) LUC-PKC: k = 2, q = prime power , p-arbitrary; [1,2].
(ii) GH-PKC: k = 3, q = prime power , p-arbitrary; [12,13].
(iii) GH-PKC Special Case: k = 3, q = p2, p-arbitrary; [5–7].
(iv) GG PKC: k = 5, q = prime power, p-arbitrary; [3].
(v) GG-PKC Special Case: k = 5, q = p2, p-arbitrary; [4].

3.2. Motivations to use trace based public key cryptography

The main reasons for developing cryptographic protocols on Trace Based construction are as follows:

(i) Security: In GH-PKC, the trace based construction provides security of extension field Fqk , that is DLP lies in Fqk with
faster exponentiation and compressed data for transmission.

(ii) Transmission size: Due to the compression of operands the overall data transmission size is also reduced to implement
PKC protocols as given in Table 1.

(iii) The cost of exponentiation is better than the generic square and multiply algorithm and elliptic curve (E(Fq)) based
exponentiation. The details are given in Table 2.



E. Akyıldız, M. Ashraf / Journal of Computational and Applied Mathematics ( ) – 5

Table 1
Trace based compression factors for cryptographic protocols.

Extension field Compression factor PKC system

αn
∈ Fq2 , q = pr , r ∈ Z 1/2 LUC-PKC

αn
∈ Fq3 , q = p2 , 1/3 GH-PKC and XTR-PKC

αn
∈ Fq5 , q = p2 , 2/5 GG-PKC

αn
∈ Fq6 , q = 32r+1, r ∈ Z 1/6 KK-PKC

αn
∈ Fq4 , q = 22r+1, r ∈ Z 1/4 KK-PKC

Table 2
Exponentiation comparison.

Process Multiplications over Fq Squaring over Fq

Fq2

αn
∈ Fq2 , q = pr , r ∈ Z weight(n)− 1 ⌊log n⌋

sn, αn
∈ Fq2 0.75 log n 0.17 log n

nP, P ∈ E(Fq2 ) 7 log n 3.6 log n

Fq3

αn
∈ Fq3 , q = pr , r ∈ Z (7r log3+10.8r−10.8) log n 3.8r log3 log n

sn, αn
∈ Fq3 5.2 log n –

nP, P ∈ E(Fq) 4 ⌈log n⌉ + 12(weight(n)) 4 ⌈log n⌉ + 4(weight(n))

Fq5

αn
∈ Fq5 , q = p2 , 45(weight(n)− 1) 30 ⌊log n⌋

sn, αn
∈ Fq5 , q = p2 108.5 log n 13 log n

3.3. Algorithm to compute mixed term su+v = Tr(αuαv), given Tr(α), u, Sv = (sv−k+1 · · · sv), sj = Tr(αj) for j ∈ Z, and
v-unknown

Before discussing PKC systems we give a generalized algorithm to compute mixed terms, that is su+v = Tr(αuαv) given
u, Tr(α), Sv = (sv−k+1, . . . , sv), v-unknown. This algorithm will be required in a Nyberg–Rueppel type digital signature
system. Note that the algorithm to compute Tr(αu) given Tr(α) and u will be discussed in respective PKC and here we
assume such an algorithm already exists. In fact, one can always take repeated squaring and trace for such computations.

Let G = ⟨α⟩ ⊂ F∗qk , p-arbitrary, q = pr , and g(x) be the characteristic polynomial of α:

g(x) =
k−1
i=0

(x− αqi) = xk − a1xk−1 + a2xk−2 − · · · + (−1)k−1ak−1x+ (−1)k.

Let A be the companion matrix associated with g(x):

A =


0 0 · · · 0 (−1)k−1

1 0 · · · 0 (−1)k−2ak−1
0 1 · · · 0 (−1)k−3ak−2
...

...
...

...
...

0 0 · · · 1 a1

 . (1)

Using the algorithm for Tr(αu), we form the state matrixMu associated with u such that:

Mu =


su−k+1 su−k+2 · · · su−1 su
su−k+2 su−k+3 · · · su su+1
su−k+3 su−k+4 · · · su+1 su+2

...
...

...
...

...
su su+1 · · · su+k−2 su+k−1

 . (2)

Let the vector Sm = (sm−k+1, . . . , sm) be given for any integerm then we have,

Sm+1 = SmA,

and therefore for any integer r ,

Sm+r = SmAr .
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This gives,Mu = M0Au therefore, Au
= M−10 Mu and vector,

Su+v = Sv(M−10 Mu) = (su+v−k+1, . . . , su+v). (3)

Algorithm 1 to compute Su+v = (su+v−k+1, . . . , su+v) for v-unknown
Require: k ≥ 2, Sv, u, Tr(α).
Ensure: Su+v .
1: Construct A as in Eq. (1),
2: Construct Mu as in Eq. (2),
3: Compute, M−10 ,
4: Compute, Au

← M−10 Mu,
5: Compute, C ← Sv(Au).
6: return (C).

Remark 4. Following is the step by step computational complexities:

(i) The computational cost to constructMu is the cost of algorithm to compute Su + O(k3) field multiplications.
(ii) M0 can be constructed from initial states with O(k3) field multiplications.
(iii) The complexity of computing M−10 and M−10 Mu is also bounded by O(k3). Therefore, su+v = Tr(αu+v) can be computed

in about O(k3) field multiplications.
(iv) The precomputation phase that is computing Su depends upon the extension field and corresponding sub field of the

PKC. Therefore, it is not included in the generic version of the algorithm.

3.4. LUC-PKC: case k = 2, p-arbitrary, q = pr , for any positive integer r

Let G = ⟨α⟩ ∼= Zℓ ⊂ F∗
q2

, ord(α) = ℓ|(q+ 1), then, the polynomial

g(x) = x2 − ax+ 1, a = Tr(α), Norm(α) = 1, and
gm(x) = (x− αm)(x− (αm)q) = x2 − Vm(a)x+ 1, m ∈ Z.

Note that, g̃(x) = g(x) and g̃m(x) = gm(x).

Notation: For any integer r , let Vr : Fq → Fq be a function given by Vr(b) = Tr(βr), where β is a root of x2 − bx+ 1 = 0. It
is clear that Vr is well defined, namely it is independent than the choice of the root β of x2 − bx+ 1 = 0. Note that for any
integer r

hr(x) =
1

i=0

(x− βrqi) = x2 − Vr(b)x+ 1,

in particular, V0(b) = 2, V1(b) = b. Furthermore, for any integerm, we have

hmr(x) =
1

i=0

(x− (βmr)q
i
) = x2 − Vm(Vr(b))x+ 1

over Fq. Which implies that, for any integers r andm we have Vm(Vr(b)) = Vmr(b).
The LFSR sequence {sm} with initial conditions {2, a} associated to characteristic polynomial g(x) = x2 − ax + 1, gives

us the general term:

sm = Vm(a) = Tr(αm).

Properties: Following properties for all integersm and n are proved in [1] and we list them;

(i) Vm(a) = V−m(a) = sm;
(ii) Vm(Vn(a)) = Vmn(a) = smn;
(iii) s2m = s2m − 2;
(iv) sm+n = smsn − sm−n.

These properties give us the following efficient algorithm to compute sm = Tr(αm).
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Algorithm 2 to compute sm = Tr(αm)

Require: α ∈ Fq2 , ord(α) = ℓ|(q+ 1), Tr(α) = a ∈ Fq and m =
t−1

j=0 ϵj2j
∈ Z with ϵj = {0, 1}, ϵt−1 = 1.

Ensure: (sm, sm+1)
1: (sy, sy+1)← (2, a)
2: for j← t − 1 to 0 do
3: if ϵj = 1 then
4: sy ← sysy+1 − s1, sy+1 ← s2y+1 − 2.
5: else
6: sy ← s2y − 2, sy+1 ← sysy+1 − s1.
7: end if
8: end for
9: return (sy, sy+1)

Remark 5. For any integerm this algorithm actually computes (sm−1, sm) from the initial conditions {2, a}.

This algorithm is more efficient than computing αm and taking Tr(αm). In fact this algorithm does compute Tr(αm) by
using logm multiplications and logm squaring on Fq.

3.4.1. LUC-DH type key exchange
1. System public parameters: LetG = ⟨α⟩ ⊂ F∗

q2
, ord(α) = ℓ|(q+1), and g(x) = x2−ax+1, be the characteristic polynomial

of α.
2. Private keys: Randomm, and r satisfying 1 < m, r < ℓ are the private keys of A and B respectively.
3. Public keys: Both A and B computes their public keys as follows:

(i) A computes her public key PA = Vm(a) = sm, by running Algorithm 2 with inputs a = Tr(α) and her private keym.
(ii) B computes his public key PB = Vr(a) = sr , by running Algorithm 2 with inputs a = Tr(α) and his private key r .

4. Common key: Both A and B agrees on the common key K = PAB = PBA = Vmr(a) = smr as follows:
(i) A acquires B’s public key and constructs gr(x) = x2 − PBx + 1 = X2

− Vr(a)x + 1. Then she computes gmr(x) =
x2 − Vm(Vr(a))+ 1, by running Algorithm 2 with inputs PB = Vr(a) and her private keym such that,

K = PAB = Vm(PB) = Vm(Vr(a)) = Vmr(a) = smr .

(ii) B does the similar things to compute,
K = PBA = Vr(PA) = Vr(Vm(a)) = Vrm(a) = srm.

3.4.2. LUC-ElGamal encryption scheme
1. System public parameters: LetG = ⟨α⟩ ⊂ F∗

q2
, ord(α) = ℓ|(q+1), and g(x) = x2−ax+1, be the characteristic polynomial

of α.
2. B runs Algorithm 2with inputs a and his private key 1 < t < ℓ to compute his public key PB = Vt(a) = st , and publishes

PB.
3. Assumption: messagesM are in G.
4. A sends message M ∈ G as follows:

(i) Chooses a random 1 < r < ℓ and runs Algorithm 2 with inputs a and r to compute mask Vr(a) = sr .
(ii) Acquires B’s public key PB = st and computes symmetric key K = Vr(PB) = Vr(Vt(a)) = Vrt(a) = srt , by running

Algorithm 2 with inputs PB = Vt(a) = st and session key r .
(iii) A encryptsM by computing c = KM = srtM and sends ciphertext C = (sr , c).

5. Decryption: B decrypts C as follows:
(i) Based upon mask sr and his private key t B computes symmetric key K = Vt(sr) = Vt(Vr(a)) = Vtr(a) = str .
(ii) Decrypts c to obtainM with symmetric key K (computed in 5(i)), such thatM = K−1c = s−1tr c.

3.4.3. LUC-Nyberg–Rueppel type digital signature algorithm
Awants to send signed messageM ∈ Fq to B and B verifies it. To do this, they proceed as follows:

1. System public parameters: LetG = ⟨α⟩ ⊂ F∗
q2

, ord(α) = ℓ|(q+1), and g(x) = x2−ax+1, be the characteristic polynomial
of α, and H : G→ Zℓ valued hash function.

2. Public keys:
(i) A randomly selects 0 < e < ℓ and computes public key PA = Ve(a) = se by running Algorithm 2 with inputs a and

her secret key e.
(ii) B randomly selects 0 < r < ℓ and computes his public key PB = Vr(a) = sr by running Algorithm 2 with inputs a

and his secret key r .
3. Private keys: The private keys of both A and B are e and r , respectively.
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Table 3
LUC-NR-DSA analysis.

Process Cost

Signature generation 1 exponentiation (0.75 log q)M+ (0.75 log q)S
Signature verification 1 exponentiation (1.5 log q)M+ (1.5 log q)S
Comm. overhead 1 element over Fq
Public key size 1 element over Fq

WhereM stands for multiplication and S stands for squaring.

4. Signature: A signs the messageM containing agreed upon redundancy as follows:
(i) Randomly selects ephemeral private key 0 < t < ℓ and computes ephemeral public key Vt(a) = st , by running

Algorithm 2 with inputs a, t and symmetric key Vt(sr) = Vtr(a, b) = str by running the same algorithm with inputs
sr and session key t .

(ii) Computes ciphertext C by encrypting themessageM using generic symmetric encryption scheme and computes the
hash value of C , i.e., h = H(C) mod ℓ.

(iii) Computes n = t − he mod ℓ.
(iv) A sends the signature (n, C) to B.

5. Verification: B verifies A’s signature and recovers message as follows:
(i) Computes h = H(C) ∈ Zℓ,
(ii) By running Algorithm 2with inputs PA = se and h, computes Vh(se) = Vhe(a) = she. Note that, as stated in Remark 5,

Algorithm 2 computes both she as well as she−1.
(iii) Computes sn+he by running Algorithm 1 with inputs k = 2, She = (she−1, she), n.
(iv) Computes symmetric key by using sn+he and his private key r and decrypts C to M using generic symmetric

encryption scheme. B accepts ifM contains agreed upon redundancy.

The analysis of LUC-NR-DSA is given in Table 3.

3.5. GH-PKC: case k = 3, p-arbitrary, q = pu, u ≥ 1

Let, G = ⟨α⟩ ∼= Zℓ ⊂ F∗
q3

, α ∈ Fq3 , ord(α) = ℓ|(q2 + q+ 1). Then, one can check that characteristic polynomial g(x) of
α and its reciprocal g̃(x) have the following properties;

g(x) =
2

i=0

(x− αqi) = x3 − ax2 + bx− 1, and

g̃(x) =
2

i=0

(x− α−q
i
) = x3 − bx2 + ax− 1,

namely a = Tr(α), b = Tr(α−1). In fact, for all integersm, let gm(x), g̃m(x) be the following polynomials;

gm(x) =
2

i=0

(x− (αm)q
i
) = x3 − smx2 + s−mx− 1, and

g̃m(x) =
2

i=0

(x− (α−m)q
i
) = x3 − s−mx2 + smx− 1,

where sm = Tr(αm) and s−m = Tr(α−m).
Notation: For any integer r let Vr : F2

q → Fq be a function given by Vr(c, d) = Tr(βr), where β is a root of x3 − cx2 +
dx− 1 = 0. It is clear that Vr is well defined, namely it does not depend on the choice of a root β of h(x) = 0.

In particular, V0(c, d) = 3, V1(c, d) = c and V2(c, d) = c2 − 2d. It is clear that:

hr(x) =
2

i=0

(x− (βr)q
i
) = x3 − Vr(c, d)x2 + V−r(c, d)x− 1,

and for any m ∈ Z we also have, Vm(Vr(c, d), V−r(c, d)) = Vmr(c, d) = Tr(βmr).
The LFSR sequence {si}with initial conditions {3, a, a2− 2b} associated to g(x) = x3− ax2+ bx− 1, gives us the general

term sn = Vn(a, b) = Tr(αn), for any integer n.
Properties: For all integers m and n the following properties are proved in [12] and we list them here;

(i) Vm(Vn(a, b), V−n(a, b)) = Vmn(a, b) = smn,
(ii) s2m = s2m − 2s−m,
(iii) sm+n = smsn − sm−ns−n + sm−2n.
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Based upon above properties the GH-PKC algorithm to Compute sm = Tr(αm) givenm ∈ Z, a, b ∈ Fq and Tr(α) is as follows:

Algorithm 3 GH Algorithm to Compute sm = Tr(αm)

Require: An integer m =
t

i=0 ϵi2t−iϵi ∈ {−1, 0, 1} with T0 = ϵ0 ≠ 0 and Tj = ϵj + 2Tj−1, 1 ≤ j ≤ t , g(x) =
x3 − ax2 + bx− 1 ∈ Fq[x] : g(α) = 0.

Ensure: (sm−1, sm, sm+1),
1: (sTj−1, sTj , sTj+1)← (3, a, a2 − 2b),
2: for j = 0 to t do
3: if ϵj = 0 then
4: sTj−1 = sTj−1sTj−1−1 − bs−Tj−1 + s−(Tj−1+1);

5: sTj = s2Tj−1 − 2s−Tj−1;
6: sTj+1 = sTj−1sTj−1+1 − as−Tj−1 + s−(Tj−1−1).
7: else if ϵj = 1 then
8: sTj−1 = s2Tj−1 − 2s−Tj−1 ;
9: sTj = sTj−1sTj−1+1 − as−Tj−1 + s−(Tj−1−1);

10: sTj+1 = s2Tj−1+1 − 2s−(Tj−1−1).
11: else
12: sTj−1 = s2Tj−1−1 − 2s−(Tj−1−1);
13: sTj = sTj−1sTj−1+1 − as−Tj−1 + s−(Tj−1−1);
14: sTj+1 = s2Tj−1+1 − 2s−(Tj−1+1).
15: end if
16: end for
17: return (sTj−1, sTj , sTj+1).

Remark 6. The GH Algorithm 4 requires 4 ⌊logm⌋ multiplications and 4 ⌊logm⌋ squaring on Fq for computing both sm =
Tr(αm) and s−m = Tr(α−m). Moreover, for any integer m, this algorithm actually computes (sm−2, sm−1, sm) from the initial
conditions {3, a, a2 − 2b}.

Note that Algorithm 5 due to Stam and Lenstra can compute sm given s1 and any integer m in 5.2 logm multiplications
over Fp.

3.5.1. GH-DH type key exchange
1. System public parameters. Let, G = ⟨α⟩ ⊂ F∗

q3
, ord(α) = ℓ|(q2+q+1), and g(x) = x3−ax2+bx−1, be the characteristic

polynomial of α.
2. A chooses a random 1 < e < ℓ and computes her public key PA = (Ve(a, b), V−e(a, b)) = (se, s−e), by running Algorithm

3 with inputs e and a, b.
3. Similarly, B chooses a random 1 < t <ℓ and computes his public key PB = (Vt(a, b), V−t(a, b)) = (st , s−t), by running

Algorithm 3 with inputs t and a, b.
4. Both A and B computes common key as follows:

(i) A acquires B’s public key PB and constructs gt(x) = x3− stx2+ s−tx− 1. Then she computes K by running Algorithm
3 with inputs PB = (st , s−t) and her private key e such that,

K = PAB = (Ve(PB), V−e(PB)) = (Ve(st , s−t), V−e(st , s−t))
= (set , s−et).

(ii) B does the similar things using his private key t to compute common key:
K = PBA = (Vt(PA), V−t(PA)) = (Vt(se, s−e), V−t(se, s−e))
= (ste, s−te).

3.5.2. GH-PKC ElGamal type encryption scheme
The GH-ElGamal type encryption scheme was introduced by M. Ashraf and B.B. Kirlar in, 2013 [14] and it is as follows:

1. System public parameters. Let, G = ⟨α⟩ ⊂ F∗
q3

, ord(α) = ℓ|(q2+q+1), and g(x) = x3−ax2+bx−1, be the characteristic
polynomial of α.

2. A chooses a random 1 < e < ℓ and computes her public key PA = Ve(a, b), V−e(a, b) = (se, s−e) by running Algorithm
3 with inputs a, b and her private key e. Similarly, B computes his public key PB = (Vt(a, b), V−t(a, b)) = (st , s−t), by
running Algorithm 3 with inputs a, b and his private key 1 < t < ℓ.

3. Private key: 1 < e < ℓ and 1 < r < ℓ are private keys of A and B, respectively.



10 E. Akyıldız, M. Ashraf / Journal of Computational and Applied Mathematics ( ) –

Table 4
Comparison of proposed encryption scheme with the similar ones.

ElGamal GH-RSA-type XTR-ElGamal Proposed

Encryption (2+ 2(9r log3 + 13r − 13) log n)M+ 4r log3 log n S 10 M′ 10.4 log n M (10.4 log n)M
Decryption (2+ 2(9r log3 + 13r − 13) log n)M+ 4r log3 log n S 12 logN M′ 5.2 log nM (5.2 log n)M
Throughput m1 m1,m2 m1 m1
Comm. overhead in bits |q|with q = pr 2|N| |q|with q = p2 2|q|
Decryption overhead 1I 9 decryption keys Symmetric decipher 1I

Where N is product of two distinct primes used in GH RSA encryption scheme [13] and I is field inversion.

4. Encryption: A encrypts a messageM ∈ F∗q as follows:
(i) A randomly selects an ephemeral private key t ∈ Z satisfying 0 < t < ℓ such that gcd(t, ℓ) = 1 and computes her

ephemeral public key (st , s−t) ∈ F2
q .

(ii) A computes (str , s−tr) = (st(sr , s−r), s−t(sr , s−r)) ∈ F2
q using the static public key PB = (sr , s−r) of B.

(iii) A computes K̄ = (str + s−tr) and c = MK̄ and, sends the ciphertext C = (st , s−t , c) to B.
5. Decryption: B decrypts C as follows:

B runs Algorithm3with inputs,mask (st , s−t) and his private key r to compute session key (Vr(st , s−t), V−r(st , s−t)) =
(str , s−tr), and computes K̄ = (str + s−tr) and M = cK̄−1.

Remark 7 (Security Analysis). The security of key exchange in the proposed encryption scheme depends on the difficulty
of solving 3-LFSR-DLP, 3-LFSR-DHP and 3-LFSR-DDHP whereas semantic security depends upon splitting z ∈ Fq into two
elements (X, Y ) ∈ F2

q such that z = X + Y , where str → X and s−tr → Y . Moreover, tr ∈ Zℓ and Zℓ is chosen large enough
so that the brute force attack becomes infeasible. The details are given in Remark 17.

Letm1 ∈ F∗q,m2 ∈ F∗q be two messages. The comparison of related encryption schemes is given in Table 4.

3.5.3. GH-Nyberg–Rueppel type digital signature algorithm based on GH-ElGamal encryption scheme
Based upon GH-ElGamal encryption scheme by M. Ashraf and B.B. Kırlar given at Section 3.5.2 they also introduced GH-

NR-DSA in [14]. Let A send signed messageM ∈ F∗q to B and B verifies it. They proceed as follows:

1. System Public parameters. Let G = ⟨α⟩ ⊂ F∗
q3

, ord(α) = ℓ|(q2 + q + 1), g(x) = x3 − ax2 + bx − 1, be the characteristic
polynomial of α, and H : G→ Zℓ valued hash function.

2. Public keys:
(i) A selects random 0 < e < ℓ and computes public key PA = (Ve(a, b), V−e(a, b)) = (se, s−e) by running Algorithm 3

with inputs a, b and her private key e.
(ii) Similarly, B selects random 0 < r < ℓ and computes his public key PB = (Vr(a, b), V−r(a, b)) = (sr , s−r) by running

Algorithm 3 with inputs a, b and his private key r .
3. Private keys: The private keys of both A and B are e and r , respectively.
4. Signature: A signs the messageM containing agreed upon redundancy as follows:

(i) A randomly selects ephemeral private key 0 < t < ℓ and computes ephemeral public key (st , s−t) = (Vt(a, b),
V−t(a, b)), and symmetric key (Vt(sr , s−r), V−t(sr , s−r)) = (str , s−tr) by running Algorithm 3with inputs a, b, t and
sr , s−r .

(ii) Computes the hash value ofM , i.e., h = H(M) mod ℓ and computes K̄ = str + s−tr .
(iii) Computes the ciphertext C = MK̄ by encrypting the messageM using GH-ElGamal encryption scheme [14].
(iv) Computes n = t − he mod ℓ.
(v) A sends the signature (n, st , s−t , C) to B.

5. Verification: B recovers messageM and verifies A’s signature as follows:
(i) Decrypts C toM : M = CK̄−1. IfM contains agreed upon redundancy then computes h = H(M) mod ℓ,
(ii) B computes (she, s−he) from h and A’s static public key (se, s−e) by running Algorithm 3. Note that as stated in

Remark 6 the Algorithm 3 computes She = (she−2, she−1, she).
(iii) Computes (sn+he) and (s−(n+he)) by running Algorithm 1 with input k = 3, and vector She, n.
(iv) Checks whether (sn+he, s−(n+he)) is equal to (st , s−t). If yes, B accepts.

Letm1 ∈ F∗q,m2 ∈ F∗q be twomessages and P be the point on given elliptic curve. The comparison of related digital signatures
is given in Table 5.
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Table 5
Comparison of GH-NR-DSA with the similar DSAs.

GH-DSA XTR-NR-DSA EC-DSA GH-NR-DSA

Double exponentiation (sc(h−dl), s−c(h−dl)) (ss+hk) (u1 + u2d)P (sn+eh, s−(n+eh))

Cost 16 log ℓ M+ 16 log ℓ S 6 log ℓ M 7 log ℓ M+ 3.7 log ℓ S 12 log ℓ M
Throughput m1,m2 m1 m1 m1
Message recovery No Yes No Yes
Comm. overhead in bits 2|q| + |H| |q| + |H| |p| + |H| |q| + |H|

3.6. GH-PKC: special Case k = 3, p-arbitrary, q = p2

We keep the same notations above and now assume that ord(α) = ℓ|(p2 − p + 1). Note that (q2 + q + 1) =
(p2 − p + 1)(p2 + p + 1). In the case q = p2, the important point is that Tr(α−m) = Tr(αm)p for any integer m which
was shown in [5]. Therefore for any integermwe get,

gm(x) =
2

i=0

(x− (αm)q
i
) = x3 − smx2 + spmx− 1,

where sm = Tr(αm).
The LFSR sequence {sm} associated to g(x) = x3− ax2+ bx−1, with initial conditions {3, a, a2−2b} gives us the general

term:

sm = Vm(a, b) = Tr(αm), and
s−m = V−m(a, b) = Vm(a, b)p = Tr(αm)p = spm.

Properties: For all integers m and n the following properties are consequences in [5] and they are the special case of
GH-PKC;

(i) V−m(a, b) = Vm(a, b)p.
(ii) Vm(Vn(a, b), Vn(a, b)p) = Vmn(a, b) = smn.
(iii) s2m = s2m − 2spm
(iv) sm+n = smsn − sm−ns

p
n + sm−2n.

Note that the advantage of special conditions on α and q is that g(x) can be realized only by one element that is Tr(α).
However, the same Algorithm 3, given in GH-PKC, can be used to compute Tr(αm), given Tr(α) andm, for the special case as
well. Now we discuss the cryptographic protocols for the special case.

3.6.1. GH-DH type key exchange: special case
1. System public parameters. Let, G = ⟨α⟩ ⊂ F∗

q3
, p-arbitrary, q = p2, ord(α) = ℓ|(p2− p+1), and g(x) = x3− ax2+ bx−1,

be the characteristic polynomial of α.
2. Both A and B choose random 1 < e < ℓ and 1 < r < ℓ respectively as their private keys.
3. A computes her public key PA = Ve(a, b) = se, by applying Algorithm 3 with inputs e and a, b.
4. Similarly, B computes his public key PB = Vr(a, b) = sr , by applying Algorithm 3 with inputs r and a, b.
5. Both A and B compute their common key as follows:

(i) A acquires B’s public key PB and constructs gr(x) = x3 − srx2 + spr x− 1. Then she computes common key by running
Algorithm 3 with inputs PB = (sr , s

p
r ) and her private key e such that,

K = PAB = Ve(sr , spr ) = Ver(a, b) = ser .
(ii) B does the similar things using his private key r to compute common key:

K = PBA = Vr(se, spe) = Vre(a, b) = sre.

3.6.2. GH-ElGamal type encryption: special case
1. System public parameters. Let, G = ⟨α⟩ ⊂ F∗q3 , p-arbitrary, q = p2, ord(α) = ℓ|(p2−p+1), and g(x) = x3− ax2+bx−1,

be the characteristic polynomial of α.
2. B’s static public key PB = Vr(a, b) = sr , static private key: random 1 < r < ℓ.
3. Assumption: messageM ∈ G.
4. Encryption: A encrypts messageM ∈ F∗q and sends to B as follows:

(i) Chooses a random private ephemeral key 1 < t < ℓ, computes ephemeral public key Vt(a, b) = st , and session key
K = Vt(sr , s

p
r ) = Vtr(a, b) = str by running Algorithm 3 with inputs a, b, t and sr , s

p
r .

(ii) Encrypts messageM by computing c = MK = Mstr .
(iii) A sends ciphertext C = (st , c) to B.

5. Decryption: B decrypts C by computing session key K with the public ephemeral key st and his private key r : K =
Vr(st , s

p
t ) = Vrt(a, b) = srt , and, decrypts c to obtainM : M = cK−1 = cs−1rt .



12 E. Akyıldız, M. Ashraf / Journal of Computational and Applied Mathematics ( ) –

3.6.3. GH-Nyberg–Rueppel type signature: special case
In the special case q = p2, the GH-NR type signature given above in Section 3.5.3 namely, (n, sr , s−r , C) will be changed

to (n, sr , C) as we do not need to include s−r in the signature because s−r = spr . So, we get a shorter signature by applying a
special condition for q = p2 above.

3.6.4. Lenstra and Verheul–Nyberg–Rueppel type signature algorithm
We would like to recall a work done by Lenstra and Verheul ‘‘The XTR Public Key system’’ in 2000. In their paper the

public key cryptosystem for the parameters k = 3, q = p2 is discussed. Note that the basic strength of XTR, that is the
GH-PKC special case, is the underlying arithmetic operations. Moreover the main contribution of the XTR public key system
to the literature as we see, is the Nyberg– Rueppel type signature scheme which was not discussed before in the literature.
In the light of our note we now want to state their algorithm below.

Algorithm 4 to compute Tr(αnαmh) for the given: Tr(α) = s, (sm−1, sm, sm+1), n, h ∈ Zℓ,m ∈ Z is unknown.
Require: n, h, Sm = (sm−1, sm, sm+1), Tr(α) = s.
Ensure: sn+mh.
1: Compute e = n/h (mod ℓ),
2: Use Algorithm 3 to compute (se−1, se, se+1),
3: Based on s and (se−1, se, se+1) compute;

A = D−1

 2s2 − 6sp 2s2p + 3s− sp+2 sp+1 − 9
2s2p + 3s− sp+2 (s2 − 2sp)p+1 − 9 (2s2p + 3s− sp+2)p

sp+1 − 9 (2s2p + 3s− sp+2)p (2s2 − 6sp)p

 se−1
se

se+1



where, D = s2p+2 + 18sp+1 − 4(s3p + s3)− 27 ,
4: Compute (sm−1, sm, sm+1)A = se+m,
5: C ← Vh(se+m, spe+m) = sh(e+m) = sn+mh.
6: return (C).

Remark 8. The Tr(αnαmh) can be computed in 8 log2(n/h(mod ℓ))+ 8 log2(h)+ 34 multiplications in Fp.

3.7. Simultaneous double exponentiation for cubic extensions

The double exponentiation algorithm for cubic extensions and 4th extension were introduced by Stam and Lenstra [8]
and Koray Karabina [9]. LetG = ⟨α⟩ ⊂ Fq3 , q = p2, ord(α) = ℓ|(p2−p+1) and su = Tr(αu) for u ∈ Z. Let 0 < a, b, n,m < ℓ
be integers then computing sbn+am, given sn, sm, Sn,m = [sn−m, sn−2m] and positive integers a, b. Let u = n, v = m, d = b
and e = a, thenwe canwrite ud+ve = bn+am. The sum d+e is decreased until d = e in such away that ud+ve = constant
and d = e. At the point ud + vd = d(u + v) = constant, single exponentiation is applied to compute sd(u+v). The update
rules and related algorithm are given in Table 6.

Algorithm 5 Double Exponentiation for NR-GH-DSA
Require: (a > 0, b > 0) ∈ ℓ, sl, sk, sk−l, and sk−2l.
Ensure: sbk+al
1: f2 ← 1, d← b, e← a, u← k, v← l
2: while d and e are both even do
3: d← d/2, e← e/2, f2 ← 2f2
4: end while
5: while d ≠ e do
6: Execute the applicable rule in Table 6
7: end while
8: compute sd(u+v) using Algorithm [13, Algorithm 1] with inputs d and su+v .
9: return (sf2(d(u+v)))

Remark 9. The Algorithm 5 can compute sbk+al in 6 log(max(a, b)) multiplications in Fp given sl, 0 < a, b < ℓ, sk, sk−l, and
sk−2l. Note that Algorithm 5 can be used for single exponentiation for given s1 and u ∈ ℓ. In this case, single exponentiation
takes 5.2 log umultiplications in Fp.

Now we describe Lenstra and Verheul’s Nyberg–Rueppel Type Digital Signature Scheme.

1. System public parameters. Let, G = ⟨α⟩ ⊂ F∗
q3

, p-arbitrary, q = p2, ord(α) = ℓ|(p2−p+1), and g(x) = x3− ax2+bx−1,
be the characteristic polynomial of α, and H : G→ Zℓ valued hash function.
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Table 6
The rules for double exponentiation.

Rule Condition d e u v su sv su−v su−2v

If d > e

R1 d ≤ 4e e d− e u+ v u su+v su sv s(v−u)
R2 d ≡ 0(mod 2) d/2 e 2u v s2u sv s2u−v s2(u−v)

R3 e odd (d− e)/2 e 2u u+ v s2u su+v su−v s−2v
R4 e ≡ 0(mod 2) d e/2 2v u s2v su s2v−u s2(v−u)

Else

Sub e > d e d v u sv su sv−u s2v−u

2. A’s public key PA = Vm(a, b) = (sm) := (sm−1, sm, sm+1), private key: random 1 < m <∈ Zℓ and B’s public key
PB = Ve(a, b) = (se) := (se−1, se, se+1), private key: random 1 < e <∈ Zℓ.

3. Assumption: messageM ∈ G.
4. Signature: A signs the messageM as follows:

(i) Chooses a random 1 < r < ℓ and computes sr .
(ii) Based on mask sr determine session key K = Vm(sr , s

p
r ) = Vmr(a, b) = smr .

(iii) Encrypts messageM −→ C using K and agreed upon symmetric encryption scheme.
(iv) Computes h = H(C) mod ℓ

(v) Computes n = (r −mh)(mod ℓ).
(vi) A’s resulting signature onM is (n, C).

5. Verification: B verifies A’s signature as follows:
(i) B checks whether 0 < n < ℓ; if not failure.
(ii) Computes h = H(C) mod ℓ,
(iii) Running Algorithm 4 above with inputs h, n, (sm−1, sm, sm+1), s, computes sn+mh = Tr(αnαmh).
(iv) Computes symmetric key Ḱ based upon sn+mh and decrypts C toM using this Ḱ and agreed upon symmetric scheme.

IfM contains required redundancy, B accepts.

Remark 10. The GH-NR digital signature algorithm we have given above in the GH-PKC case is due to M. Ashraf and
B.B. Kirlar [14]. When we compare their algorithm with Lenstra and Verheul’s algorithm we note the following:

(i) In one the digital signature is (n, C) and in the other the signature is (n, st , s−t , C).
(ii) The static public key in one is se−1, se, se+1 whereas in the other it is shorter i.e; (se, s−e).
(iii) In one the ElGamal type encryption is used whereas in other agreed upon symmetric encryption is used.
(iv) With the introduction of simultaneous double exponentiation for the GH-PKC case [14], the resulting cost of computing

mixed term si+j is similar for both XTR and GH digital signatures.

3.8. GG public key cryptosystem

We will introduce two cases given by K. Giuliani and G. Gong in 2003 [3,4] and fill the gap in this PKC by introducing an
GG-ElGamal type encryption scheme and Nyberg–Rueppel type digital signatures.

Case 1: k = 5, p-arbitrary, q = pu, u ≥ 1 ∈ Z.
Case 2: k = 5, p-arbitrary, q = p2.

3.8.1. GG PKC: case k = 5, p-arbitrary, q = pu

Let, G = ⟨α⟩ ∼= Zℓ ⊂ F∗q5 , ord(α) = ℓ|(q4 + q3 + q2 + q + 1), note that Φ5(q) = (q4 + q3 + q2 + q + 1) is the 5th
cyclotomic polynomial evaluated at q, then let g(x) be the characteristic polynomial of α:

g(x) =
4

i=0

(x− αqi) = x5 − ax4 + bx3 − cx2 + dx− 1.

One can check that,

a = Tr(α), d = Tr(α−1), b =


0≤i<j≤4

αqi+qj , c =


0≤i<j≤4

α−q
i
−qj .

For all integersm, let gm(x) be the characteristic polynomial of αm:

gm(x) =
4

i=0

(x− (αm)q
i
) = x5 − amx4 + bmx3 − cmx2 + dmx− 1.
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One can check that,

am = Tr(αm), dm = a−m = Tr(α−m),

bm =


0≤i<j≤4

αmqi+mqj , cm = b−m =


0≤i<j≤4

α−mqi−mqj .

So let, Vm(a, b, c, d) = am = sm, and Vm(a, b, c, d) = bm = ŝm. In particular, s0 = 5, s1 = a, s2 = a2 − 2b, s3 =
a3 − 3ab+ 3c, s4 = s22 − 2b2 − 4d+ 4c. Then we have,

gm(x) = x5 − smx4 + ŝmx3 − ŝ−mx2 + s−mx− 1.

Now if we replace α above by β = αr for any integer r , then we have the characteristic polynomial for βm in the form,

hm(x) =
4

i=0

(x− (βm)q
i
) =

4
i=0

(x− (αrm)q
i
) = grm(x).

Therefore,

Vm(sr , ŝr , ŝ−r , s−r) = Vmr(a, b, c, d) = smr ,Vm(sr , ŝr , ŝ−r , s−r) = Vmr(a, b, c, d) = ŝmr .

Properties: For all integersm, n following are the properties:

(i) s2n = s2n − 2ŝn, and ŝ2n = ŝ2n + 2s−n − 2snŝ−n.
(ii) s3n = s3n − 3snŝn + 3ŝ−n.
(iii) ŝ3n = ŝ3n − 3s3nŝn − 3snŝnŝ−n + 3s2nsn + 3ŝ−2n − 3sn.
(iv) sn+m = snsm − sn−mŝm + sn−2mŝ−m − sn−3ms−m + sn−4m.
(v) ŝnŝm − s−mŝn−m + 3ŝn+m = snsmsn+msn−2msn−m + s2n−3m − sn+2msn − s2n+msm + s2n+m.
(vi) sn+2m = sn+mŝm − snŝm + sn−mŝ−m − sn−2ms−m + sn−3m.

Using above properties the algorithm introduced by K. Giuliani and G. Gong in [3,4] to compute nth terms of sequences
{su, ŝu} is as follows:

Algorithm 6 to compute sn = Tr(αn) and ŝn =


0≤i<j≤4 αnqi+nqj using triple-add-subtract

Require: n ∈ Zℓ : n =
l

j=0 nj3j
∈ Z+, nj ∈ {−1, 0, 1} with nl ≠ 0, and initial conditions (s−1, 5, s1, s2, s3),

(ŝ−1, 5, ŝ1, ŝ2, ŝ3).
Ensure: (sn−2, sn−1, sn, sn+1, sn+2), (ŝn−2, ŝn−1, ŝn, ŝn+1, ŝn+2)
1: u← 1, S ← (s−1, 5, s1, s2, s3), Ŝ ← (ŝ−1, 5, ŝ1, ŝ2, ŝ3)
2: for i← 0 to l do
3: if ni = −1 then
4: S ← (s3u−3, s3u−2, s3u−1, s3u, s3u+1),
5: Ŝ ← (ŝ3u−3, ŝ3u−2, ŝ3u−1, ŝ3u, ŝ3u+1).
6: else if ni = 0 then
7: S ← (s3u−2, s3u−1, s3u, s3u+1, s3u+2),
8: Ŝ ← (ŝ3u−2, ŝ3u−1, ŝ3u, ŝ3u+1, ŝ3u+2).
9: else

10: S ← (s3u−1, s3u, s3u+1, s3u+2, s3u+3),
11: Ŝ ← (ŝ3u−1, ŝ3u, ŝ3u+1, ŝ3u+2, ŝ3u+3).
12: end if
13: u = 3u+ ni
14: end for
15: return ((sn−2, sn−1, sn, sn+1, sn+2), (ŝn−2, ŝn−1, ŝn, ŝn+1, ŝn+2)) = (Sn, Ŝn).

The average cost of computations is approximately 108.5 log n multiplications, 13 log n scalar multiplications and
280.1 log n additions.

For the case k = 5, p-arbitrary, q = pu, it is not difficult to give the cryptographic protocols to have a trace based
cryptosystem. However, it is not interesting from the implementation point of view and therefore we leave this and discuss
the next special case together with cryptographic protocols.
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3.8.2. GG PKC: special case, k = 5, p-arbitrary, q = p2

K. Giuliani and G. Gong introduced special case for their cryptosystem in 2004 [4]. Let G = ⟨α⟩ ⊂ F∗
q5

, p-arbitrary,
q = p2, ord(α) = ℓ|(p4− p3+ p2− p+ 1)|(q4+ q3+ q2+ q+ 1). We keep the notations above and note that in this special
case for any integerm we have,

Tr(α−m) = Tr(αm)p = spm,
0≤i<j≤4

α−mqi−mqj
= Tr(α−m(p+1)

+ α−m(p2+1)) = Tr(αm(p+1)
+ αm(p2+1))p

= ŝpm.

Thus, for any integerm the characteristic polynomial gm(x) of αm is

gm(x) =
4

i=0

(x− αmqi) = x5 − smx4 + ŝmx3 − ŝpmx
2
+ spmx− 1.

Properties: For all integersm and n the following properties are proved by K. Giuliani and G. Gong in [3,4] andwe list them
here. Let α ∈ Fq5 , having order ℓ|(p4− p3+ p2− p+1), and characteristic polynomial g(x) = x5− ax4+ bx3− cx2+ dx−1,
then,

(i) sm = Tr(αm), s−m = spm and,
ŝm = Tr(αm(p+1)

+ αm(p2+1)), ŝ−m = ŝpm.
(ii) Vm(sn, ŝn, ŝ

p
n, s

p
n) = smn, andVm(sn, ŝn, ŝ

p
n, s

p
n) = ŝmn.

(iii) s2n = s2n − 2ŝn, and
ŝ2n = ŝ2n + 2s−n − 2snŝ

p
n.

(iv) s3n = s3n − 3snŝn + 3ŝpn.
(v) ŝ3n = ŝ3n − 3s3nŝn − 3snŝnŝ

p
n + 3s2nsn + 3ŝp2n − 3sn.

(vi) sn+m = snsm − sn−mŝm + sn−2mŝ
p
m − sn−3ms

p
m + sn−4m.

(vii) ŝnŝm − s−mŝn−m + 3ŝn+m = snsmsn+msn−2msn−m + s2n−3m − sn+2msn − s2n+msm + s2n+m.
(viii) sn+2m = sn+mŝm − snŝm + sn−mŝ

p
m − sn−2ms

p
m + sn−3m.

Remark 11. Algorithm 6 also computes the nth term just by replacing s−1 = sp1 and ŝ−1 = ŝp1 and accordingly in subsequent
computations. Actually the GG algorithm computes for a given m and (s1, ŝ1); the terms (sm−4, sm−3, sm−2, sm−1, sm) and
(ŝm−4, ŝm−3, ŝm−2, ŝm−1, ŝm).

With this setup, now we discuss the cryptographic protocols and add the ElGamal type encryption scheme and
Nyberg–Rueppel type digital signature scheme to GG-PKC.

3.8.3. GG-DH type key exchange: special case
1. System public parameters: Let, G = ⟨α⟩ ⊂ F∗

q5
, p-arbitrary, q = p2, ord(α) = ℓ|(p4 − p3 + p2 − p+ 1), and g(x) = x5 −

ax4 + bx3 − cx2 + dx− 1, be the characteristic polynomial of α.
2. A computes her public key PA = (se, ŝe), by running Algorithm 6 with inputs a, b, c, d and her private key, a random

1 < e < ℓ.
3. Similarly, B computes his public key PB = (sr , ŝr), by running Algorithm 6 with inputs a, b, c, d and his private key, a

random 1 < r < ℓ.
4. Both A and B compute common key K = PAB = PBA = (ser , ŝre) as follows:

(i) A acquires B’s public key PB and constructs
gr(x) = x5 − srx4 + ŝrx3 − ŝpr x

2
+ spr x− 1.

Then she computes common key by running Algorithm 6 with inputs PB = (sr , ŝr , ŝ
p
r , s

p
r ) and her private key e such

that,
K = PAB = (Ve(sr , ŝr , ŝpr , s

p
r ),
Ve(sr , ŝr , ŝpr , s

p
r )) = (ser , ŝer).

(ii) B does the similar things using his private key r to compute the common key:
K = PBA = (Vr(se, ŝe, ŝpe, s

p
e),
Vr(se, ŝe, ŝpe, s

p
e)) = (sre, ŝre).

3.8.4. GG-ElGamal type encryption scheme: special case
For the sake of completeness of GG-PKC, the ElGamal type encryption scheme is being introduced for the first time. A

wants to send a messageM ∈ F∗q to B, both proceed as follows:

1. System public parameters: Let, G = ⟨α⟩ ⊂ F∗q5 , p-arbitrary, q = p2, ord(α) = ℓ|(p4 − p3 + p2 − p + 1), and
g(x) = x5 − ax4 + bx3 − cx2 + dx− 1, be the characteristic polynomial of α.
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Table 7
GG-ElGamal type encryption scheme analysis.

Process Cost

Encryption ≈120 log p M
Decryption ≈120 log p M
Comm. overhead 2 elements over Fq
Public key size 2 elements over Fq

2. Public keys: Following are the public keys of A and B:
(i) A selects random 0 < e < ℓ, and computes her public key PA = (se, ŝe) by running Algorithm 6 with inputs a, b, c, d

and e.
(ii) Similarly, B selects random 0 < r < ℓ, and computes public key PB = (sr , ŝr) by running Algorithm 6 with inputs

a, b, c, d and r .
3. Private keys: e and r are the private keys of A and B respectively.
4. Encryption: A encrypts messageM and sends to B as follows:

(i) A randomly selects ephemeral private key 0 < t < ℓ and computes ephemeral public key (Vt(a, b, c, d), V̂t(a, b,
c, d)) = (st , ŝt) by running Algorithm 6 with inputs a, b, c, d and t .

(ii) A acquires B’s public key PB = (sr , ŝr) and computes common key (str , ŝtr) = (Vt(sr , ŝr , ŝ
p
r , s

p
r ),Vt(sr , ŝr , ŝ

p
r , s

p
r )) by

running Algorithm 6 with inputs (sr , ŝr , ŝ
p
r , s

p
r ) and t . Also computes K̄ = str + ŝtr .

(iii) A computes, c = MK̄ , then she sends the ciphertext C = ((st , ŝt), c) to B.
5. Decryption: B recovers the messageM as follows:

(i) Using ephemeral public key (st , ŝt) and his private key r , computes common key (srt , ŝrt) = Vr(st , ŝt , ŝ
p
t , s

p
t ), V̂r(st , ŝt ,

ŝpt , s
p
t )and K̄ = str + ŝtr as above.

(ii) Computes,M = cK̂−1.

Remark 12. The semantic security of GG-ElGamal type encryption is computationally equivalent to splitting z ∈ Fq into
two numbers (X, Y ) ∈ F2

q such that z = X + Y where str → X and s−tr → Y . Moreover, tr ∈ Zℓ and Zℓ is chosen large
enough so that the brute force attack becomes infeasible. The number of such (X, Y ) are equal to q−1

2 as given in Remark 17.

The analysis of GG-ElGamal type encryption is given in Table 7.

3.8.5. GG-NR type digital signature algorithm based on GG-ElGamal encryption: special case
After introduction of GG-ElGamal type encryption scheme now we introduce Nyberg–Rueppel type digital signature

scheme based on GG-ElGamal type encryption scheme. A wants to send signed message M ∈ F∗q containing agreed upon
redundancy to B and B verifies it. To do this, A and B proceed as follows:

1. System public parameters: Let, G = ⟨α⟩ ⊂ F∗q5 , p-arbitrary, q = p2, ord(α) = ℓ|(p4 − p3 + p2 − p + 1), and
g(x) = x5 − ax4 + bx3 − cx2 + dx− 1, be the characteristic polynomial of α and H : G→ Zℓ valued hash function.

2. Public keys:
(i) A chooses random 0 < e < ℓ, and computes public key PA = (se, ŝe) by running Algorithm 6 with inputs a, b, c, d,

and e.
(ii) B chooses random 0 < r < ℓ, and computes public key PB = (sr , ŝr) by running Algorithm 6 with inputs a, b, c, d,

and r .
3. Private keys: The private keys of A and B are e and r , respectively.
4. Signature: A signs the messageM as follows:

(i) A chooses random ephemeral private key 0 < t < ℓ, and computes ephemeral public key (Vt(a, b, c, d),Vt(a, b,
c, d)) = (st , ŝt), and common key (Vt(sr , ŝr , ŝ

p
r , s

p
r ),Vt(sr , ŝr , ŝ

p
r , s

p
r )) = (str , ŝtr). Also computes K̄ = str + ŝtr .

(ii) Computes hash value ofM : h = H(M) mod ℓ.
(iii) A obtains ciphertext C by encrypting message M : c = MK̄ .
(iv) A computes n = t − he mod ℓ.
(v) A sends the signature (n, (st , ŝt), c) to B.

5. Verification: B recovers messageM and verifies A’s signature as follows:
(i) Checks 0 ≤ n < ℓ, if not failure.
(ii) Computes common key (Vr(st , ŝt , ŝ

p
t , s

p
t ),Vr(st , ŝt , ŝ

p
t , s

p
t )) = (srt , ŝrt), K̄ = str + ŝtr and decrypts c toM : M = cK̄−1.

If M does not contain agreed upon redundancy then failure.
(iii) Computes h = H(M) mod ℓ, and (she, ŝhe) = (Vh(se, ŝe, ŝ

p
e, s

p
e), V̂h(se, ŝe, ŝ

p
e, s

p
e)) from h and A’s public key (se, ŝe).

Note that Algorithm 6 computes vector She = (she−4, . . . , she).
(iv) Computes (sn+he, ŝn+he) by running Algorithm 1 with inputs k = 5, She, n.
(v) B checks whether (sn+he, ŝn+he) is equal to (st , ŝt), if yes accepts.

The analysis of GG-NR-DSA is given in Table 8.
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Table 8
GG-NR-DSA analysis.

Process Cost

Signature generation ≈120 log pM
Signature verification ≈240 log pM
Comm. overhead 3 elements over Fq
Public key size 2 elements over Fq

3.9. Koray Karabina PKC: case k = 4, p = 2, q = p2u+1, u ≥ 1

K. Karabina introduced an efficient algorithm to compute Tr(αm) in [9] for the characteristic 2-case when q is an odd
power of 2. However, he has not discussed some of the cryptographic protocols attached to his algorithm α→ Tr(αm). We
now discuss his algorithm and related protocols for the sake of completeness.

Let G = ⟨α⟩ ⊂ F∗
q4

, t =
√
2q, p = 2, q = p2u+1, u ≥ 1, ord(α) = ℓ|(q − t + 1)|(q2 + 1). Note that, Φ4(q) = q2 + 1 =

(q+ t + 1)(q− t + 1), is the 4th cyclotomic polynomial evaluated at q. Let g(x) be the characteristic polynomial of α:

g(x) =
3

i=0

(x− αqi) = x4 − ax3 + bx2 − cx+ 1.

One can check that a = Tr(α), b = Tr(αq+1) = Tr(α)t , and c = Tr(α). So g(x) is completely determined by only one variable
that is Tr(α). For any integerm, similarly gm(x) becomes;

gm(x) =
3

i=0

(x− αmqi) = x4 − Tr(αm)x3 + (Tr(αm)t))x2 − Tr(αm)x+ 1.

Let Vn : Fq → Fq be the function defined by Vn(a) = Tr(βn), where β is the root of h(x) = x4 − ax3 + atx2 − ax + 1 = 0.
It is clear that Vn is independent of the choice of the root β of h(x) = 0. Now replacing α by β = αm above we get for any
integer r the characteristic polynomial hr(x) of βr ;

hr(x) =
3

i=0

(x− βrqi),

= x4 − Tr(αmr)x3 + (Tr(αmr))tx2 − Tr(αmr)x+ 1 = gmr(x).

This in particular gives, Vm(Vr(a)) = Vmr(a) = smr = Tr(αmr).
Properties: For all integersm and nwe have the following properties:

(i) sn = Tr(αn) = Vn(a).
(ii) sn = s−n.
(iii) s2u = s2u.
(iv) smsn = sm+n + sm−n + sm+n(t−1) + sn+m(t−1).
(v) sm+n = smsn − sm−nsnt + sm−2nsn − sm−3n.

K. Karabina’s algorithm to compute Tr(αn), given Tr(α), and n, is as follows:

Algorithm 7 Compute sn = Tr(αn), given s = Tr(α) ∈ Fq, n, q = 22r+1

Require: n ∈ Zℓ : n =
l−1

i=0 ni2i, ni ∈ {0, 1}with nl−1 ≠ 0, and initial conditions (s1, 0, s1, s21).
Ensure: (sn−1, sn, sn+1, sn+2).
1: Su ← [su−2, su−1, 0, su+1] = (s1, 0, s1, s21).
2: m1 ← 1/st+11 and m2 ← 1/c1.
3: for r ← l− 2 to 0 do
4: s2u−1 ← m1((su+1 + s+ su−1 + su−2)2 + (su + su−1)2(st + s2)).
5: s2u ← s2
6: s2u+1 ← s2u−1 +m2((su+1 + su−1)2 + s2us

t)
7: if nr = 1 then
8: s2u+2 ← s2u+1, (s3u−3, s3u−2, s3u−1, s3u, s3u+1),
9: Su ← [s2u−1, s2u, s2u+1, s2u+2].

10: else
11: s2u−2 ← s2u−1,
12: Su ← [s2u−2, s2u−1, s2u, s2u+1].
13: end if
14: end for
15: return (Su).
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Table 9
The computations and rules for double exponentiation.

Rule Condition d e u v sv s2u−v su−2v, su−v, su+v

If d > e

R1 d ≤ 4e d− e e u u+ v su+v su−v su+2v, sv, s2u+v

R2 d ≡ e(mod 2) (d− e)/2 e 2u u+ v su+v s3u−v s2v, su−v, s3u+v

R3 d ≡ 0(mod 2) d/2 e 2u v sv s4u−v s2u−v, s2u−v, s2u+v

R4 e ≡ 0(mod 2) d e/2 u 2v s2v s2u−v su−4v, su−2v, su+2v

Else

Sub e > d e d v u sv su−2v s2u−v, su−v, su+v

The above algorithm computes Tr(αn) given Tr(α), n in (1I + 1M) as precomputation and (4M + 4S)(l− 1) operations
for main loop, where I, M, and S stand for inversion, multiplication and squaring respectively.

3.9.1. Simultaneous double exponentiation
The double exponentiation for this case is given below in Algorithm 8. The variation rules and corresponding effects on

variables are given in Table 9. Let 0 < a, b,m, n < ℓ be integers then,
Note that the Algorithm 8 is similar to the Algorithm 5. The main difference lies in the update rules given in Table 9 and

background construction of the recursive relations for the KK-PKC 3.9.

Algorithm 8 Double Exponentiation for Factor 4, for NR-KK-DSA
Require: (a > 0, b > 0) ∈ Fq, sm, sn, sn−m, and sn−2m.
Ensure: san+bm
1: f2 ← 1, d← a, e← b, u← n, v← m
2: Use Algorithm 5, with update rules from Table 9 and compute sd(u+v) using Algorithm 7.
3: return (sd(u+v))

f2

Remark 13. The Algorithm 8 can compute san+ml in ≈ 6.37 log(max(a, b)) multiplications in Fp given sm, 0 < a, b <
ℓ, sn, sn−m, and sn−2m.

Now we look at the protocols to validate this trace based PKC.

3.9.2. KK-DH type key exchange: case k = 4, p = 2, q = p2u+1, u ≥ 1
1. System public parameters: Let G = ⟨α⟩ ⊂ F∗

q4
, p = 2, q = p2u+1, u ≥ 1, t =

√
2q, ord(α) = ℓ|(q − t + 1), and

g(x) = x4 − ax3 + bx2 − cx+ 1, be the characteristic polynomial of α.
2. A computes her public key PA = Vm(a) = sm by running Algorithm 7 with inputs a and her secret key e, and B computes

his public key PB = Vr(a) = sr by running Algorithm 7 with inputs a and his secret key r .
3. Private keys: Random 1 < m < ℓ and 1 < r < ℓ are secret keys of A and B respectively.
4. Common key: Both A and B compute their common key K = PAB = PBA = smr as follows:

(i) A acquires B’s public key and runs Algorithm 7with input sr and her private keym to obtain common key: K = PAB =
Vm(sr) = Vmr(a) = smr .

(ii) B does the similar things by using his private key r to compute common key: K = PBA = Vr(sm) = Vrm(a) = srm.

3.9.3. KK-ElGamal type encryption scheme: case k = 4, p = 2, q = p2u+1, u ≥ 1
1. System public parameters: Let G = ⟨α⟩ ⊂ F∗q4 , p = 2, q = p2u+1, u ≥ 1, t =

√
2q, ord(α) = ℓ|(q − t + 1), and

g(x) = x4 − ax3 + bx2 − cx+ 1, be the characteristic polynomial of α.
2. B’s public key PB = Vm(a) = sm, private key: 1 < m < ℓ.
3. Assumption: messageM ∈ G.
4. A sends messageM ∈ F∗q as follows:

(i) Chooses a random 1 < r < ℓ and computes symmetric key K = Vr(PB) + Vr(PB)t = Vr(sm) + Vr(sm)t = srm + strm,
mask sr , by running Algorithm 7 and then computes c = KM .

(ii) A sends ciphertext C = (sr , c) to B.
5. Decryption: B decrypts C as follows:

(i) Based on mask sr and his private key m computes symmetric key K = Vm(sr) + Vm(sr)t = smr + stmr by running
Algorithm 7 with inputs sr and his private key m.

(ii) Then decrypts message by computing,M = K−1c .
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Table 10
KK-ElGamal type encryption scheme anal-
ysis.

Process Cost

Encryption ≈6.4 log(u) M
Decryption ≈6.4 log(u) M
Comm. overhead 1 element over Fq
Public key size 1 element over Fq

Table 11
Analysis of KK-NR-DSA based on generic sym-
metric encryption.

Process Cost

Signature generation ≈6.37 log pM
Signature verification ≈6.37 log pM
Comm. overhead 2 elements over Fq
Public key size 4 elements over Fq

Remark 14. The semantic security of KK-ElGamal type encryption is similar to the one given in Remark 12.

The analysis of KK-ElGamal type encryption scheme is given in Table 10.

3.9.4. KK-Nyberg–Rueppel type digital signature algorithm based on generic symmetric encryption: case k = 4, p = 2, q =
p2u+1, u ≥ 1

This scheme was introduced by Koray Karabina in [15].Awants to send signed messageM ∈ F∗q to B and B verifies it. To
do this, A and B do the following:

1. System public parameters: Let G = ⟨α⟩ ⊂ F∗
q4

, p = 2, q = p2u+1, u ≥ 1, t =
√
2q, ord(α) = ℓ|(q − t + 1), g(x) =

x4 − ax3 + bx2 − cx+ 1, be the characteristic polynomial of α and H : G→ Zℓ-valued hash function.
2. Public keys:

(i) A randomly selects 1 < m < ℓ and computes public key PA = Vm(a) := Sm = {sm−2, sm−1, sm, sm+1} by running
Algorithm 7 with inputs a and her private keym.

(ii) B also randomly selects 1 < r < ℓ and computes public key PB = Vr(a) := Sr = {sr−2, sr−1, sr , sr+1} by running
Algorithm 7 with inputs a and his private key r .

3. Private keys: The private keys of A and B arem and r , respectively.
4. Signature: A signs the messageM as follows:

(i) A randomly selects 1 < d < ℓ, and computes mask Vd(a) = sd, and extracts session key K = Ext(sd) from sd.
(ii) A obtains ciphertext C by encrypting the messageM with K , using generic symmetric encryption and computes the

hash value of C , that is h = H(C) mod ℓ.
(iii) A computes n = d+mh mod ℓ.
(iv) A sends the signature (n, C) to B.

5. Verification: B verifies A’s signature and recovers message as follows:
(i) Computes h = H(C) mod ℓ and replaces h by−h.
(ii) Computes shm+n from Sm = {sm−2, sm−1, sm, sm+1} and a using double exponentiation Algorithm 8.
(iii) Computes session key Ḱ = Ext(sn+hm) from sn+mh and computes Ć using Ḱ andM .
(iv) B accepts if and only if Ć = C .

The analysis of KK-NR-DSA based on generic symmetric encryption scheme is given in Table 11.

3.9.5. KK-Nyberg–Rueppel type digital signature algorithm based on KK-ElGamal type encryption: case k = 4, p = 2, q =
p2u+1, u ≥ 1

Awants to send signed encrypted messageM ∈ F∗q containing agreed upon redundancy to B and B verifies and recovers
the message. To do this, A and B do the following:

1. System public parameters: Let G = ⟨α⟩ ⊂ F∗
q4

, p = 2, q = p2u+1, u ≥ 1, t =
√
2q, ord(α) = ℓ|(q − t + 1), g(x) =

x4 − ax3 + bx2 − cx+ 1, be the characteristic polynomial of α and H : G→ Zℓ-valued hash function.
2. Public keys:

(i) A randomly selects 1 < m < ℓ and computes public key PA = Vm(a) = sm by running Algorithm 7 with inputs a and
her private keym.

(ii) B also randomly selects 1 < r < ℓ and computes public key PB = Vr(a) = sr by running Algorithm 7 with inputs a
and his private key r .

3. Private keys: The private keys of A and B arem and r , respectively.
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Table 12
Analysis of KK-NR-DSA based on KK-ElGamal
encryption.

Process Cost

Signature generation ≈6.37 log p M
Signature verification ≈12.74 log pM
Comm. overhead 2 elements over Fq
Public key size 1 element over Fq

4. Signature: A signs the messageM as follows:
(i) A randomly selects ephemeral private key 1 < d < ℓ and computes ephemeral public key Vd(a) = sd, and computes

common key K = Vd(sr)+ Vd(sr)t = sdr + stdr .
(ii) A computes h = H(M) mod ℓ, obtains ciphertext C = MK .
(iii) A computes n = d+mh(mod ℓ).
(iv) A sends the signature (n, sd, C) to B.

5. Verification: B recovers messageM and verifies A’s signature as follows:
(i) Checks 0 ≤ n < ℓ, if not failure.
(ii) Computes common key K = Vr(sd) + Vr(sd)t = srd + strd, and decrypts C to M : M = CK−1. If M does not contain

agreed upon redundancy then failure.
(iii) Computes h = H(M) mod ℓ and computes Shm := {shm−2, shm−1, shm, shm+1} using Algorithm 7.
(iv) Computes shm+n from Sm = {sm−2, sm−1, sm, sm+1} and a using double exponentiation Algorithm 8.
(v) Accepts if shm+n = sd.

The analysis of KK-NR-DSA based on the KK-ElGamal encryption scheme is given in Table 12.

Remark 15. The KK-NR-DSA based on KK-ElGamal type encryption scheme is resistant to both forgery attacks discussed in
Remark 18.

3.10. KK-PKC: case k = 6, p = 3, q = pu, u ≥ 1, u = odd, t =
√
3q

Let α ∈ Fq6 with ord(α) = ℓ|(q ± t + 1). Note that ℓ|Φ6(q) = (q2 − q + 1) = (q + t + 1)(q − t + 1). Here Φ6(q) is
the 6th cyclotomic polynomial evaluated at q. It is shown in [9] that the characteristic polynomial g(x) of α is nothing but
in the form,

g(x) =
6

i=0

(x− αqi),

= x6 − (Tr(α))x5 + (Tr(α)t + Tr(α))x4 − (Tr(α2)+ 2Tr(α)+ 2)x3 − (Tr(α)t + Tr(α))x2 + (Tr(α))x− 1.

Note that it is also shown in [9] that Tr(α2) = Tr(α)2 + Tr(α)+ Tr(α)t , and therefore g(x) becomes;

g(x) = x6 − (Tr(α))x5 + (Tr(α)t + Tr(α))x4 − (Tr(α)2 + Tr(α)t + 2)x3 − (Tr(α)t + Tr(α))x2 + (Tr(α))x− 1.

Hence g(x) is completely determined by Tr(α). For any integerm, let,

gm(x) =
6

i=0

(x− (αm)q
i
),

be the characteristic polynomial of αm, then it can be checked that

gm(x) = x6 − (Tr(αm))x5 + (Tr(αm)t + Tr(αm))x4 − (Tr(αm)2 + Tr(αm)t + 2)x3 − (Tr(αm)t + Tr(αm))x2

+ (Tr(αm))x− 1.

Now let us introduce Vr : Fq → Fq as follows, for any b; Vr(b) = Tr(β), where β is a root of,

h(x) = x6 − bx5 + (b+ bt)x4 − (b2 + bt + 2)x3 + (bt + b)x2 − bx+ 1 = 0.

It is clear that Vr is well defined and for any integerm,

Vm(Vr(b)) = Vmr(b) = smr .

Properties: It is shown in [9] that for all integersm, nwe have the following properties;

(i) s−n = sn.
(ii) s2n = s2n + sn + stn.
(iii) snsm = sn+m + sn−m + sn+m(t−1) + sn+m(t−2) + sm+n(t−2).
(iv) sn+m = snsm − (sn−m + sn−3m)(stv + sv)+ sn−2m(s2v + stv + 2)+ sn−4msm − sn−5m.
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Based upon above properties K. Karabina in [9] also gave algorithm to compute sn = Tr(αn), given n and Tr(α) which is
as follows:

Algorithm 9 Compute sn = Tr(αn), given s = Tr(α), n, q = 3u, u = odd

Require: n ∈ Zℓ : n =
l−1

j=0 nj2j, nj ∈ {0, 1}with nl−1 ≠ 0, and initial conditions (s1, 0, s1, s2, s31, s4).
Ensure: (sn−2, sn−1, sn, sn+1, sn+2, sn+3).
1: C2 ← s21 and Ct ← st+11 , C1,t ← s1 + st1, C1,t,2 ← C2 + st1 + 2,
2: s2 ← C1,t,2 + s1 + 1, s4 ← s22 + s2 + st2.
3: Su ← (su−2, su−1, su, su+1, su+2, su+3) = (s1, 0, s1, s2, s31, s4).
4: M ← (st1(s

3
1 + C t

+ 2(st1 + 1))+ 2(s31 + s1 + 1))−1
5: for i← l− 2 to 0 do
6: s2u−4 ← s2u−2+ su−2+ stu−2, s2u−2 ← s2u−1+ su−1+ stu−1, s2u ← s2u+ su+ stu, s2u+2 ← s2u+1+ su+1+ stu+1, s2u+4 ←

s2u+2 + su+2 + stu+2, s2u+6 ← s2u+3 + su+3 + stu+3,
7: Y1 ← s1(s2u+2 + s2u−2)+ s2uC1,t,2,
8: Y2 ← s1(s2u+4 + s2u)+ s2u+2C1,t,2,
9: Y4 ← C1,t(s2u + s2u−2)+ s2u+2 + s2u−4,

10: Y5 ← C1,t(s2u+2 + s2u)+ s2u+4 + s2u−2,
11: Y6 ← C1,t(s2u+4 + s2u+2)+ s2u+6 + s2u.
12: s2u−1 ← M((s31 + 2(C2 + s1)+ Ct)Y1 + C2Y2 + (2(C2 + st1)+ s1 + 1)Y4 + (2(C2 + Ct)+ s1)Y5 + 2s1Y6)
13: s2u+1 ← M(2C2(Y1 + Y2)+ s1(Y4 + Y6)+ (2st1 + Ct + s1 + 1)Y5)

14: s2u+3 ← M(C2Y1 + (s31 + 2(C2 + s1)+ Ct)Y2 + 2s1Y4 + (2(C2 + Ct)+ s1)Y5 + (2(C2 + st1)+ s1 + 1)Y6)
15: if ni = 1 then
16: Su ← (su−1, su, su+1, su+2, su+3, su+4)
17: else
18: Su ← (su−2, su−1, su, su+1, su+2, su+3)
19: end if
20: end for
21: return (Su).

The above algorithm computes Tr(αn) given, Tr(α) and n in (1I + 2M + 2S) as precomputation and (53A+ 6F + 23M +
6S)(l − 1) for the main loop, where A, M, S, F , I stands for addition, multiplication, squaring, exponentiation by the
power of the finite field characteristic and inversion respectively. In literature we do not see cryptographic protocols for
this case as well. We add the cryptographic protocols to this system and comment that it is a valid PKC.

3.10.1. KK-DH type key exchange: case k = 6, p = 3, q = pu, u = odd
1. System public parameters: Let G = ⟨α⟩ ⊂ F∗q6 , p = 3, q = pu, u = odd, t =

√
3q, ord(α) = ℓ|(q − t + 1), and

g(x) = x6 − ax5 + bx4 − cx3 + dx2 − ex+ 1, be the characteristic polynomial of α.
2. Public keys: A’s public key PA = Vm(a) = sm, and B’s public key PB = Vr(a) = sr .
3. Private keys: The private keys of A and B are random 1 < m < ℓ and 1 < r < ℓ respectively.
4. Common key: Both A and B computes common key K = PAB = PBA = smr .

(i) A acquires B’s public key and runs Algorithm 9with input sr and her private keym to obtain common key: K = PAB =
Vm(sr) = smr .

(ii) B does the similar things to compute common key using his private key r : K = PBA = Vr(sm) = smr .

It is not difficult to give the KK-ElGamal Type encryption scheme and KK-Nyberg–Rueppel Type DSA for this case also. It is
step by step similar to the one discussed in Sections 3.9.3 and 3.9.5 respectively, so we leave it to the reader for verification.

Remark 16. It is clear that the security of trace based Public Key Cryptosystems so far discussed depends on the trapdoor
function α → Tr(αm) which is equivalent to DLP on the group G = ⟨α⟩ ⊂ Fqk . Therefore for the maximum security one
should choose α such that Fqk = Fq(α), namely the characteristic polynomial of α is equal to its minimal polynomial, and
DLP on G is computationally equivalent to DLP on F∗qk .

3.11. Security analysis

The security of the trace based encryption scheme and Nyberg–Rueppel type digital signatures are discussed below.
Although the security of the trace based Diffie Hellman key exchange depends upon the solving DLP over respective
extension fields but semantic security of the encryption scheme differs from this DLP which is given below. However, the
trace based digital signatures exhibits natural resistance to forgery attacks.
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Semantic security. Suppose that m1 ∈ F∗q and m2 ∈ F∗q are two known messages from the attacker E and A encrypts
messagem1 such that c = m1K = m1(str + s−tr) and sends the ciphertext c to attacker E who wants to determine whether
c is an encryption of m1 or, m2. To do this attacker E divides c with m1 such that Ḱ = c/m1. Now if attacker E can find out
either str or s−tr from Ḱ then he can form cubic equation ḡ(x) = x3 − strx2 + s−trx − 1 over Fq. Then he determines the
irreducibility of ḡ(x), if it is irreducible the attacker E concludes that c is encryption ofm1. But to determine str or s−tr from
Ḱ is computationally equivalent to splitting z ∈ Fq into two numbers (X, Y ) ∈ F2

q such that z = X + Y where str → X and
s−tr → Y . The number of such (X, Y ) are equal to q−1

2 . Moreover, the product tr ∈ Zℓ and Zℓ is chosen large enough so that
the brute force attack becomes infeasible.

Remark 17 (Semantic Security). Given G = ⟨α⟩ ⊂ Fq3 , (s1, s−1) and z ∈ Fq. Finding (se, s−e) such that z = se + s−e is
computationally equivalent to computing z = X + Y , (X, Y ) ∈ F2

q . Since there is no polynomial time algorithm to split z as
a sum of two elements in Fq, where the total number of unknown such as (X, Y ) are equal to q−1

2 and se → X and s−e → Y .
Moreover, e ∈ Zℓ and Zℓ is chosen large enough so that the brute force attack becomes infeasible.

Remark 18 (Security of Trace Based NR Type DSA:). The well known attacks on the Nyberg–Rueppel signature scheme are
forgery attacks such as the congruence equation attack and homomorphism attack [16]. In the proposed scheme such attacks
are restricted due to the following reasons.

(i) The congruence equation attack is avoided by using hash value of encrypted message.
(ii) The homomorphism attack is restricted in this case due to the fact that trace function is notmultiplicative and this attack

exploits the fact that σ(gu−1)/σ (gu) = σ(1/g), where g is generator of subgroup and σ : Zp → Zp. Therefore, this
attack is restricted for trace based signature schemes. For example let u, v ∈ Z and anyβ ∈ Fq3 : ord(β) = Q |(q2+q+1)
then;

Tr(β2) = s2 = s21 − 2s−1; and Tr(βu+v) = su+v = susv − su−vs−v + su−2v,

⇒
su+v

sv
≠ su,

∴
Tr(βu+v)

Tr(βv)
≠ Tr(βu).

4. Conclusion

For a given α ∈ Fqk , one can compute for any integer m the Tr(αm) by repeated squaring and then trace mapping in a
polynomial time. We have searched the literature and found out that for some special conditions on α, q, and k that there
are more efficient algorithms to compute Tr(αm) from the above classical one. We also found out that in some of these cases
there are protocols based on this algorithm and working more efficiently and securely. In this note we discussed all these
cases and introduced cryptographic protocols to the ones that were not discussed. With this we formalized the problem in
a general setting and brought it to the attention of the researchers from this point of view.
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