
Accepted Manuscript

On an application of symbolic computation and computer graphics to
root-finders: The case of multiple roots of unknown multiplicity

Ivan Petković, Beny Neta

PII: S0377-0427(16)30278-3
DOI: http://dx.doi.org/10.1016/j.cam.2016.06.008
Reference: CAM 10674

To appear in: Journal of Computational and Applied
Mathematics

Received date: 29 March 2016
Revised date: 31 May 2016

Please cite this article as: I. Petković, B. Neta, On an application of symbolic computation and
computer graphics to root-finders: The case of multiple roots of unknown multiplicity, Journal
of Computational and Applied Mathematics (2016),
http://dx.doi.org/10.1016/j.cam.2016.06.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cam.2016.06.008

On an application of symbolic computation and computer graphics
to root-finders: the case of multiple roots of unknown multiplicity

Ivan Petkovića,∗ , Beny Netab

a Faculty of Electronic Engineering, University of Nǐs, 18000 Nǐs, Serbia
b Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA 93943, United States

Abstract

The contemporary powerful mathematical software enables a new approach to handling and
manipulating complex mathematical expressions and other mathematical objects. Particularly,
the use of symbolic computation leads to new contribution to constructing and analyzing nu-
merical algorithms for solving very difficult problems in applied mathematics and other scientific
disciplines. In this paper we are concerned with the problem of determining multiple zeros when
the multiplicity is not known in advance, a task that is seldom considered in literature. By the
use of computer algebra system Mathematica, we employ symbolic computation through several
programs to construct and investigate algorithms which both determine a sought zero and its
multiplicity. Applying a recurrent formula for generating iterative methods of higher order for
solving nonlinear equations, we construct iterative methods that serve (i) for approximating a
multiple zero of a given function f when the order of multiplicity is unknown and, simultaneously,
(ii) for finding exact order of multiplicity. In particular, we state useful cubically convergent iter-
ative sequences that find the exact multiplicity in a few iteration steps. Such approach, combined
with a rapidly convergent method for multiple zeros, provides the construction of efficient com-
posite algorithms for finding multiple zeros of very high accuracy. The properties of the proposed
algorithms are illustrated by several numerical examples and basins of attraction.

AMS Mathematical Subject Classification (2010): 65H05, 65D18, 68W30, 33F05, 65Gxx
Keywords: Nonlinear equations, iterative methods, multiple zeros, symbolic calculation, computer
graphics.

1 Introduction

The development of digital computers, circa 1970, has enabled easy and successful computations
in many scientific disciplines such as engineering disciplines, physics, chemistry, communication,
biology, education, astronomy, geology, banking, business, insurance, health care, social science,
as well as many other fields of human activities. In this paper we pay our attention to applied
mathematics, in particular, to the construction of algorithms in numerical analysis, and a specific
application of computers – symbolic computation. In the course of the development of numerical
methods, it turned out in the last quarter of the 20th century that further development of new
algorithms of higher efficiency and greater accuracy was not possible due to the lack of fast hardware
and advanced software. At the beginning of the 21st century the rapid development of computer
power and accessibility, computer multi-precision arithmetics and symbolic computation enabled
the construction, testing and analysis of very efficient numerical algorithms, even “confirmation

∗Corresponding author
E-mail addresses: ivan.petkovic@elfak.ni.ac.rs (I. Petković), bneta@nps.edu (B. Neta)

1

Manuscript
Click here to view linked References

analytically derived results” [1]. Simply, symbolic computation replaced lengthy hand derivations
and manipulation with computer-based derivation and manipulation.

Symbolic computation, employed in solving mathematical problems, is concerned with software
for handling and manipulating mathematical expressions and other mathematical objects. It is im-
portant to emphasize that these expressions contain variables in general form such as f(a, b, c, ...),
where a, b, c are not numerical values and f may or may not be given explicitly. Various manip-
ulations (automatic simplification of expressions, differentiation, indefinite integration, polynomial
decomposition, polynomial factorization, etc.) treat these variables as symbols (hence the name
symbolic computation) and provide exact computation. It is superfluous to emphasize that, in the
case of complex and lengthly expressions, symbolic computation is the only tool for solving given
problems; their solution and analysis would not be possible by a classic “paper-and-pencil” fash-
ion. Note that software applications that execute symbolic computation are most frequently called
computer algebra systems (shorter CAS) although some authors make distinction between “symbolic
computation” and “computer algebra,” see, e.g., [2]. For more details on symbolic computation and
its applications see the book [3].

As mentioned in [4], “newer generation of mathematicians and computer scientists can really take
advantage of computer aided research supported by the modern CAS.” Among the major general
purposes CAS are certainly Mathematica and Maple, although Axiom, GAP, Maxima, Sage and
SymPy are very useful within their symbolic functionality. All of these CAS are available of the
platforms Windows, Mac OS X and Linux (with the exception of Sage which works in Windows
as “virtual machine”). All of these computational packages perform sophisticated mathematical
operations.

In this paper we present a class of iterative methods for the determination of multiple zeros
of functions when the multiplicity is not known in advance. One should say that there is a vast
literature concerned with iterative methods for finding multiple zeros were developed, see. eg., [5]–
[13]. However, in most papers one assumes that the order of multiplicity is known. Procedures for
the determination of exact value of multiplicity m and sufficiently close initial approximation x0

were very seldom discussed in the literature. The knowledge of multiplicity m and a good initial
approximation x0 are two very important tasks and should be a composite part of any root-finder.
The latter task was considered in some recent papers and books, see, for instance, [14]–[18].

Here we are concerned with generating iterative methods of higher order for solving nonlinear
equations. More precisely, we study iterative methods for finding a multiple zero of a given function
f when the order of multiplicity is unknown (Section 2). At the same time, we develop iterative
methods for approximating multiplicity and prove their cubic convergence (Sections 3 and 4). Such
approach, combined with fourth order two-point method for multiple zeros proposed in [7], provides
the construction of an efficient algorithm for finding multiple zeros of very high accuracy, which is
presented in Section 5. Throughout the text it is assumed that order of multiplicity is a positive
integer. The case of fractional order is discussed in Section 7 and demonstrated on a numerical
example.

It is worth noting that numerical experiments and the study of computational efficiency of
considered root-finding methods based on convergence order and computational costs (see [19, p.
12]) are not often sufficient to give a real estimation of the quality of these methods and, consequently,
their proper ranking. For this reason, a powerful tool for comparison and analysis of root-finding
algorithms, using basins of attraction, is presented in Section 6 for six examples. This approach
gives a much better insight into visualization in approximating function zeros, especially in regard
to areas of convergence. The mentioned tools provide considerably better understanding of iterative
processes.

Properties of the presented iterative methods are demonstrated on numerical examples in Section
7. Our main tools in developing and analyzing these methods are symbolic computation realized

2

through several programs (implemented in computer algebra system Mathematica) and dynamic
study by plotting basins of attraction for four methods and seven polynomials.

2 Generator of root-finders

Approximating zeros of a given scalar function f belongs to the most important problems appear-
ing not only in applied mathematics but also in many disciplines of physics, finance, engineering
branches, and so on. Solution of the mentioned task often requires from the user to combine numer-
ical analysis and computing science, first of all symbolic computation (assuming, of course, the use
of necessary computer hardware). During the last three centuries, many one-point methods were
stated, such as Newton’s, Halley’s, Laguerre’s, Chebyshev’s method. Particular attention is due
to the so-called the Traub-Schröder basic sequence (often called Schröder’s family of the first kind,
see [19], [20]) and the Schröder-König sequence or Schröder’s family of the second kind [20]. Both
families explicitly depend of f and its n− 1 derivatives and have the order at most n. The latter of
these families will be considered in this section.

Let f be a given function with isolated zero α in some interval. If α is a zero of multiplicitym, then
we have the representation f(x) = (x− α)mp(x), p(α) 6= 0. An iterative method for approximating
a single (simple or multiple zero) α will be written in the form xk+1 = g(xk), assuming that the
initial approximation x0 is known. The applied iterative method will produce the sequence {xk}
that converges to the zero α if x0 is reasonably close to α. Iterative methods for finding multiple
zeros usually require the knowledge of order of multiplicity m, otherwise, many of them will converge
only linearly. In this paper we mainly consider a class of methods for finding multiple zeros which
do not require the multiplicity but their order of convergence is higher than 1.

We start with the following assertion proved in [21].

Theorem 1. Let xk+1 = gn(xk) (k = 0, 1, . . .) be an iterative method of order n for finding a
simple or multiple zero α of a given function f (sufficiently many times differentiable). Then the
iterative method

xk+1 = gn+1(xk) := xk −
xk − gn(xk)

1− 1
n
g′n(xk)

(n ≥ 2; k = 0, 1, . . .) (1)

has the order of convergence n+ 1.

Remark 1. The iterative formula (1) was derived in [22] and later in [21] using a different
approach. In the latter paper some useful properties of this formula were presented.

Remark 2. The ability of the iterative formula (1) to generate root-finding methods of an
arbitrary order of convergence for both simple and multiple zeros is the main advantage of the gen-
erating formula (1). For this very useful property it will be sometimes called accelerating generator
and denoted by AG (1), the term introduced in [21].

Remark 3. The equivalence of the iterative method (1) and the Schröder-König method was
proved in [23] for simple zeros taking Newton’s method as the staring method. We recall that the
Schröder-König method is defined by

xk+1 = xk −
Rn−2(xk)
Rn−1(xk)

(n ≥ 2; k = 0, 1, . . .), (2)

where Rk is calculated from the recursive relation

R0 = 1, Rn(x) =
n∑

λ=1

(−1)λ+1Aλ(x)Rn−λ(x), where Aλ(x) =
f (λ)(x)
λ!f(x)

. (3)

3

Both iterative formulas (1) and (2) generate the same methods g3, g4, . . . for finding simple zeros
starting from the Newton method xk+1 = g2(xk) = xk − f(xk)/f ′(xk). However, Theorem 1 does
not require any assumption on the order of multiplicity of the zero α which means that the iterative
formula (1) can generate methods for finding multiple zeros too, without alternation to its structure.
It is sufficient to start with a suitably chosen initial iterative function gn(x) (n ≥ 2) assuming that
the order of multiplicity is known. Besides, AG (1) has additional advantage since it can start from
any method of order n, not necessary from the Newton method, as in the case of the Schröder-
König method (2). This is evident from the fixed structure of the recurrent relation R0 = 1, R1 =
f ′(x)/f(x) arising from (3).

The main goal of this paper is to consider some iterative formulas for finding multiple zeros of a
given differentiable function when the order of multiplicity is not known in advance, together with
efficient method for finding the order of multiplicity. The combination of these two methods leads
to a very efficient two-point iterative method for finding multiple zero of the known multiplicity.

First, we apply generating accelerator AG (1) to produce iterative methods for finding simple or
multiple zero of a function f. If α is a multiple zero of f(x), then α is obviously a simple zero of the
function u(x) = f(x)/f ′(x). Indeed, starting from the factorization f(x) = (x− α)mp(x), p(α) 6= 0,
and assuming that α has the order of multiplicity m, we obtain

f(x)
f ′(x)

=
(x− α)mp(x)

m(x− α)m−1p(x) + (x− α)mp′(x)
=

(x− α)p(x)
mp(x) + (x− α)p′(x)

= (x− α)q(x), q(α) 6= 0.

Applying Newton’s method N(x) = x − ϕ(x)/ϕ′(x) to the function ϕ(x) = u(x), we obtain the
iterative method

g2(x) = x− f(x)f ′(x)
f ′(x)2 − f(x)f ′′(x)

= x− u(x)
1− 2A2(x)u(x)

, (4)

where Ar is defined in (3). The iterative method (4) has the order of convergence two and it was
derived for the first time by Schröder in his paper [20].

The construction of methods of higher order is very hard and tedious work since handling with
very complicated expressions is needed. For this reason we will use symbolic computation for their
construction, as presented by a program written in CAS Mathematica, developed by Wolfram Re-
search company [24]. For simplicity, we omit argument x in u(x) and Ak(x).

PROGRAM 1: METHODS FOR MULTIPLE ZEROS WITH UNKNOWN MULTIPLICITY

Clear["Global‘*"];
r=5; t[0]=f[x];

Do[t[k]=D[t[k-1],x],{k,1,r}];
s[2]=t[0]*t[1]/(t[1]^2-t[0]*t[2]); g2[2]=x-s[2];

Do[s[k]=Simplify[(x-g[k-1])/(1-D[g[k-1],x]/(k-1))]; g[k]=x-s[k],{k,3,r}];
f[x]=u*t[1]; Do[t[k]=k!*A[k]*t[1],{k,2,r}];
Do[w[n]=FullSimplify[s[n]/.Table[Derivative[k][f][x]->t[k],{k,2,n}]],{n,2,r}];
Do[g[n]=x-w[n];Print["g(",n ",g[n]],{n,2,r}]

4

g(2) = x− u

1− 2uA[2]

g(3) = x− u− 2A[2]u2

1− 3A[2]u + 3A[3]u2
(5)

g(4) = x− u(1− 3u(A[2] − uA[3]))
1− 4A[2]u + 2(A[2]2 + 2A[3])u2 − 4A[4]u3

(6)

g(5) = x− u− 4A[2]u2 + 2u3(A[2]2 + 2A[3]) − 4A[4]u4

1− 5A[2]u + 5(A[2]2 +A[3])u2 − 5(A[2]A[3] +A[4])u3 + 5A[5]u4
(7)

Remark 4. The iterative function g3(x) can be obtained by applying Halley’s method

H(x) = x− ϕ(x)

ϕ′(x)− ϕ(x)ϕ′′(x)
2ϕ′(x)

to the function u(x) = f(x)/f ′(x). We refer to (5) as Halley-like method. This method was derived
in [21] but it is possible that the iteration function g3(x) had been stated earlier; the authors have
not found a reliable source.

PROGRAM 1 can generate new sequences g6(x), g7(x), . . . but we finished with g5(x) since
the next formulas obtained by AG (1) are too cumbersome and inefficient in practice. From the
computational cost of view, even the method (7) is expensive. We emphasize that the derivation of
the formulas (6) and (7) by classical “pencil-and-paper” method is laborious since very complicated
expressions appear.

It was proved in many references that the order of convergence of Schröder’s iterative methods
(4) is two. According to Theorem 1 it follows that the order of (5), (6) and (7) is three, four and
five, respectively.

3 Iterative methods for finding order of multiplicity

Let us introduce the error εk = xk − α of the approximation xk to the zero α of f. Later we will
need the following well-known assertion:

Theorem 2. (Traub [19, Theorem 2.2]) Let

xk+1 = ϕ(xk) (k = 0, 1, . . .) (8)

be an iterative method such that ϕ(n) is continuous in the neighborhood of the zero α of a given
function f. Then ϕ is of order n if and only if

ϕ(α) = α, ϕ′(α) = · · · = ϕ(n−1)(α) = 0, ϕ(n)(α) 6= 0. (9)

Furthermore,
εk+1

εnk
→ ϕ(n)(α)

n!
. (10)

The limit

C(ϕ) =
ϕ(n)(α)
n!

= lim
k→∞

ϕ(xk+1)− α

(ϕ(xk)− α)n

5

in (10) is called the asymptotic error constant (shorter AEC) in Traub’s sense for the method ϕ,
see [25]. We need the asymptotic error constant of the method (5) and we will find it by symbolic
computation using Theorem 2.

The motivation for the construction of iterative formulas for finding the order of multiplicity of
α arises from the formula

S1(x) = x−m
f(x)
f ′(x)

(11)

for approximating a multiple zero of the known multiplicity m and the formula (4), which can be
written in the form

S2(x) = x− f(x)
f ′(x)

· f ′(x)2

f ′(x)2 − f(x)f ′′(x)
= x− f(x)

f ′(x)
· µ2(x). (12)

Obviously,

µ2(x) =
f ′(x)2

f ′(x)2 − f(x)f ′′(x)
=

1
u′(x)

. (13)

The letter S in (11) and (12) stands for Schröder who derived both formulas in his pioneering paper
[20] in 1870. Comparing (11) and (12) we assume that the factor µ2(x) could present a formula
for approximating the order of multiplicity m. Actually, this is true since µ2(x), defined by (13),
is the known Lagouanelle’s formula [26] for approximating order of multiplicity. Indeed, setting
f(x) = (x− α)mp(x) (p(α) 6= 0), we find

µ2(x) =
1

u′(x)
=

(mp(x) + (x− α)p′(x))2

mp(x)2 + (x− α)2p′(x)2 − (x− α)2p(x)p′′(x)

and, hence,

µ2(x) =
1

u′(x)
→ m when x→ α.

We wish to show that such approach is valid for the iterative formulas arising from higher-order
methods generated by AG (1).

We need the following assertion given in [19, Theorem 2-5].

Theorem 3. Let φ(x) be an iterative function of order n, for some set of multiplicities m. Then
for these values of m there exists a function ω(x) such that

φ(x) = x− u(x)ω(x), ω(α) 6= 0.

Theorem 3 gives an idea for developing suitable formulas for the approximation of order of
multiplicity. In this paper we will concentrate to the formula of the form

gn(x) = x− u(x)µn(x), (14)

where gn(x) (= φ(x)) defines the iterative method of order n generated by AG (1) starting from
Newton-like method g2 given by (4). Obviously,

µn(x) = ω(x) =
x− gn(x)
u(x)

.

Theorem 4. µn(x) → m when x→ α.

6

Proof. From (14) we have

g′n(x) = 1− u′(x)µn(x)− u(x)µ′n(x), x− gn(x) = u(x)µn(x). (15)

According to (15) AG (1) can be written in the form

gn+1(x) = x− u(x)µn(x)

1− 1− u′(x)µn(x)− u(x)µ′n(x)
n

, (16)

or, in the spirit of (14), as
gn+1(x) = x− u(x)µn+1(x),

where
µn+1(x) =

µn(x)

1− 1− u′(x)µn(x)− u(x)µ′n(x)
n

. (17)

Now we use the induction and assume that µn → m when x → α for some n ≥ 2. Let x → α.
Then

u(x) =
f(x)
f ′(x)

=
(x− α)p(x)

mp(x) + (x− a)p′(x)
→ 0.

Previously we have proved that 1/u′(x) → m (Lagouanelle’s formula (13)) so that u′(x)µn(x) → 1
when x→ α. Having in mind these facts we have that

g′n(x) = 1− u′(x)µn(x)− u(x)µ′n(x) → 0 as x→ α

and from (17) we find that µn+1 → m when x→ α. Since the inductive assumption is valid for n = 2
(Lagouanelle’s formula (13)) we conclude that µn → m for arbitrary n ≥ 2. 2

According to the iterative formulas (4), (5) and (6) we obtain the following formulas for the
approximation of order of multiplicity:

µ2(x) =
1

1− 2A2(x)u(x)
(Lagouanelle’s formula), (18)

µ3(x) =
1− 2A2(x)u(x)

1− 3A2(x)u(x) + 3A3(x)u(x)2
, (19)

µ4(x) =
1− 3A2(x)u(x) + 3A3(x)u(x)2

1− 4A2(x)u(x) + 2
[
2A3(x) +A2(x)2

]
u(x)2 − 4A4(x)u(x)3

. (20)

In this paper we are concentrating to the iterative formula (5) of Halley-like type for finding zero
approximations and the formulas (18) and (19) as parts of coupled algorithms for finding multiple
zeros. Obviously, the formula (20) is not convenient since additional calculation of f (4) is required
and we will restrict ourselves to the formulas (18) and (19).

Our root-finder consists from two parts (I) and (II). Part (I) deals with a couple of sequences
for finding (i) approximations to the multiple zeros (5) and (ii) approximations to the multiplicity
defined by (18) or (19) (in this order). After the determination of both approximations to the zero
approximation xk and the order of multiplicity m with sufficiently high precision, the process of
refinement continues with Part (II) consisting of an efficient two-point method dealing with the
known multiplicity to improve additionally the accuracy of the zero approximation.

Before establishing the described algorithms we need the asymptotical error constant of the
Halley-like iterative method (5). We will use the following development of a function f about the
zero α of multiplicity m

f(x) =
f (m)(α)
m!

(
1 +C1ε+C2ε

2 + C3ε
3 + · · ·

)
, Ck =

m!
(m+ k)!

f (m+k)(α)
f (m)(α)

(k = 1, 2, . . .),

7

with ε = x− α.

Theorem 5. Let x0 be sufficiently close to a simple or multiple zero of a function f. Then the
iterative method g3(xk) defined by (5) converges cubically and

g3(xk)− α

(xk − α)3
→ 2C2 − C2

1

m
. (21)

Proof. We use symbolic computation in the program Mathematica since expressions appearing
in the convergence analysis are pretty cumbersome and lengthy.

Let ϕ(x) is the iteration function defined in Theorem 2 and let ψ(x) = ϕ(x) − α. Then the
condition (9) reduces to

ψ(α) = 0, ψ′(α) = 0, ψ′′(α) = 0, . . . , ψ(n−1)(α) = 0, ψ(n)(α) 6= 0.

We introduce the notation fx= f(x), fx1= f ′(x), e = ε = x − α; fma = f (m)(α); e1 = ε̂ =
ψ(x) = g3(x)− α and let

e1 = ψ(x) = H0 +H1ε+H2ε
2 +H3ε

3 + · · ·

be Taylor’s series of e1 about the point 0. Now we use the following program.

PROGRAM 2: CONVERGENCE RATE AND AEC OF HALLEY-LIKE METHOD

Clear["Global‘*"];
fx = fma/m!e^m (1 + C1e + C2e^2 + C3e^3);

f1x = D[fx, e] // Simplify;

u = Simplify[Series[fx/f1x, {e, 0, 4}], Assumptions -> Element[m, Integers]];

u1 = D[u, e]; u2 = D[u1, e];

e1 = Series[e - u/(u1 - (u u2)/(2 u1)), {e, 0, 4}];
H0 = Coefficient[e1, e, 0] // Simplify

Out[H0]= 0
H1 = Simplify[Coefficient[e1, e, 1], Assumptions -> Element[m, Integers]]

Out[H1]= 0
H2 = Simplify[Coefficient[e1, e, 2], Assumptions -> Element[m, Integers]]

Out[H2]= 0
H3 = Simplify[Coefficient[e1, e, 3], Assumptions -> Element[m, Integers]]

Print["H3=",H3]

H3 =
2C2− C12

m

According to the outcomes given above we conclude that

g3(x)− α = ε̂ = H3ε
3 +O(ε4), H3 =

2C2 −C2
1

m
.

and, introducing the iteration index k,

lim
k→∞

g3(xk)− α

(xk − α)3
= H3 =

2C2 − C2
1

m
. (22)

8

From (22) there follows that the Halley-like method xk+1 = g3(xk), given by (5), is of third order.
Besides, the asymptotic error constant is

H3 =
2C2 − C2

1

m
=

1
m(m+ 1)

(
2

m+ 2
f (m+2)(α)
f (m)(α)

− 1
m+ 1

(f (m+1)(α)
f (m)(α)

)2
)
. 2 (23)

Note that from the last relation we have

εk+1 = xk+1 − α = g3(xk)− α = H3ε
3
k +O(ε4k). (24)

Using slight modifications of PROGRAM 2 it is easy to prove that the order of convergence of
the iterative methods (6) and (7) is four and five, respectively.

4 Coupled algorithms for multiple zeros

Now we state two algorithms that are constituted by two sequences.

Algorithm 1:




xk+1 = g3(xk) = xk −
u(xk)

[
1− 2A2(xk)u(xk)

]

1− 3A2(xk)u(xk) + 3A3(xk)u(xk)2

µ2(xk+1) =
1

1− 2u(xk+1)A2(xk+1)

(25)

Algorithm 2:




xk+1 = g3(xk) = xk −
u(xk)

[
1− 2A2(xk)u(xk)

]

1− 3A2(xk)u(xk) + 3A3(xk)u(xk)2

µ3(xk+1) =
1− 2A2(xk+1)u(xk+1)

1− 3A2(xk+1)u(xk+1) + 3A3(xk+1)u(xk+1)2

(26)

Remark 5. The second step in both Algorithm 1 and Algorithm 2 serves for finding the order
of multiplicity using improved approximations calculated in the first step. At the first sight, it seems
that the second step could work with functions f, f ′, f ′′ (for Algorithms 1) and f, f ′, f ′′, f (4)

(for Algorithm 2), already evaluated in the first step at the point xk. However, note that the values
calculated at xk+1 (as in (25) and (26)) are reused in the next iteration for the first step in Algorithms
1 and 2. The exception is the last iteration when the stopping criterion concerning the first step
is satisfied, which eliminates the need for the second step (see the criterion (2) in the flow chart
in Figure 1). A number of numerical examples have shown that the values of the function f and
its derivatives at the point xk do not provide sufficiently accurate approximation to mk (see the
condition (1) in the flow chart in Figure 1), which requires additional iteration(s). In other words,
the increased computational cost due to the mentioned unutilized values in the last iteration is the
price that has to be paid in order to decrease the total number of iterations in PART (I) of the
algorithm presented in Figure 1.

One of the main goals of this paper is to determine the convergence speed of sequences µ2(xk),
µ3(xk) and µ4(xk) defined by (18), (19) and (20), respectively. Since the argument of these sequences
is xk+1, we deal in PROGRAM 3 with e1= xk+1 − α. Also, we use the notation a = α; e = x− α;
mi4 = µ4(x). We give the program for µ4(x), the remaining two sequences µ2(xk) and µ3(xk) can
be analyzed by small modifications of PROGRAM 3.

9

PROGRAM 3: CONVERGENCE RATE OF METHODS FOR FINDING ORDER OF MULTIPLICITY

Clear["Global’*"]

f[e1] = fma/m!*e1^m(1 + C1*e1 + C2*e1^2 + C3*e1^3);

g = f[e1]; g1 = D[g, e1]; g2 = D[g1, e1]; g3 = D[g2, e1]; g4 = D[g3, e1];

u = g/g1 // Simplify; A2 = g2/(2g1) // Simplify;

A3 = g3/(6g1) // Simplify; A4 = g4/(24g1) // Simplify;

mi4 = Series[Simplify[1 - 3 A2*u + 3 A3*u^2], {e, 0, 3}]*Series[1/Simplify
[1 - 4 A2*u + 2 u^2 (A2^2 + 2 A3) - 4 A4*u^3], {e, 0, 3}] // Simplify;

r4 = mi4 - m; Print["r4=",r4]

r4 = C1e1 + (2C2− C12)e12 +O(e13).

From the expression given by r4 and (24) we observe that

η
(4)
k+1 := µ4(xk+1)−m = C1H3ε

3
k +O(ε6k) = Kε3k +O(ε6k), K = C1H3, (27)

where H3 is given by (23). Now we will prove that the iterative sequence {µ4(xk)} of approximations
to the order of multiplicity m, defined by (19), is also cubically convergent as the root-finding method
(5) that appears in the first step of Algorithms 1 and 2.

In view of (24) we have εk = O(e3k−1), and taking into account (27) we obtain

M(µ4) : = lim
k→∞

µ4(xk+1)−m

(µ4(xk)−m)3
= lim

k→∞
Kε3k +O(e6k)(

Kε3k−1 +O(e6k−1)
)3

= lim
k→∞

K
(
Kε3k−1

)3
+O(e12k−1)

(
Kε3k−1

)3
+O(e12k−1)

) = K.

According to the last expressions and (21) and (23), the asymptotic error constant of the sequence
{µ4(xk)} is equal to

AEC(µ4) = M(µ4) = K = C1H3 =
C1(2C2 − C2

1)
m

=
1

m(m+ 1)2
f (m+1)(α)
f (m)(α)

(
2

m+ 2
f (m+2)(α)
f (m)(α)

− 1
m+ 1

(f (m+1)(α)
f (m)(α)

)2
)
.

In the same way, using a small modification of PROGRAM 3, we find

η
(3)
k+1 := µ3(xk+1)−m = C1εk+1 + (2C2 − C2

1)ε2k+1 +O(ε3k+1) = C1H3ε
3
k +O(ε6k). (28)

In a similar way as above we obtain

M(µ3) = lim
k→∞

µ3(xk+1)−m

(µ3(xk)−m)3
= C1H3

and

AEC(µ3) = M(µ3) = C1H3 =
C1(2C2 − C2

1)
m

= AEC(µ4).

10

Using the same procedure and simplified PROGRAM 3 we find

η
(2)
k+1 := µ2(xk+1)−m = 2C1εk+1 +O(ε3k+1) = 2C1H3ε

3
k +O(ε9k). (29)

Hence
M(µ2) = lim

k→∞
µ2(xk+1)−m

(µ2(xk)−m)3
= 2C1H3

and

AEC(µ2) = M(µ2) = 2C1H3 =
2C1(2C2 − C2

1)
m

= 2AEC(µ4).

According to the last results we conclude that the sequences {µ2(xk)} and {µ3(xk)} of approx-
imations to the order of multiplicity m, defined by (18) and (19), respectively, have also the order
three.

Summarizing the above consideration we can state the following assertion:

Theorem 6. Let {xk} be the sequence of approximations to the zero α of multiplicity m, pro-
duced by the Halley-like method (5). Then the iterative sequences {µ2(xk)} (18), {µ3(xk)} (19) and
{µ4(xk)} (20) of approximations to the order of multiplicity m of the multiple zero α of a given
function f are cubically convergent.

Remark 6. The order of convergence of the sequences {µ3(xk)}, {µ4(xk)} etc. does not increase
since all errors |µk(xk) −m| (k ≥ 2) are of the order of |xk − α| = |εk|. More general, the order of
convergence of the sequence {µk(xk)} (k ≥ 2) is equal to the order of iterative method that produces
approximations xk, used in the next step for the calculation of multiplicity. For example, using
the iterative function g2(xk) of the second order we obtain than all sequences {µ2(xk)}, {µ3(xk)}
etc. are of second order. In fact, the use of higher derivatives in {µλ(xk)} gives approximations
to the order of multiplicity with the main part which is very close to the exact multiplicity m plus
additional “parasite terms” of order O(εν) (ν > 1), which are negligible. A simple analysis of the
proof given in Appendix also leads to the same conclusion.

5 Algorithm for finding multiple zeros of great accuracy

Now we state an efficient composite algorithm for finding multiple zero. For simplicity, we will write
mk instead of µλ(xk) (λ ≥ 2) in what follows. The flow chart of this algorithm is shown in Figure 1
and it is consisted from the parts (I) and (II):

F i g u r e 1

Figure 1: Flow chart of Algorithm 2

(I): Starting from a sufficiently good initial approximation x0 to the zero α of a given function
f, Algorithm 1 or 2 (defined by the couple of iterative sequences (25) and (26)) is applied
iteratively until the termination criterion given by the inequality δ := |f(xk)|1/m < τ is met,
where the multiplicity m is rounded to the nearest integer by the command ROUND(mk) in
the flow chart on Fig. 1. In fact, having in mind that |xk − α| = O

(
|f(xk)|1/m

)
, by the

termination constant δ we control the wanted accuracy of the approximation xk in the first
part of algorithm putting in practice, say 10−5. The improvement of this accuracy is carried
out by the two-step method (30) presented in PART (II) of the algorithm. The flow chart in
Figure 1 is the same for both Algorithm 1 and Algorithm 2; the approximation of order of

11

multiplicity mk is calculated by (18) or (19). Note that two IF criteria provides both the exact
value of the multiplicity m (condition IF(1)) and sufficient accuracy of the approximation xk

(condition IF(2)).

(II): In this part we use sufficiently good approximation xk to the zero α and the knowledge of
the multiplicity m found in PART (I). To improve this approximation to a great accuracy, we
apply recently stated two-point method for finding a multiple zero given by Li et al. [7]:





yk = xk − 2m
m+2 · u(xk),

xk+1 = xk −
m(m−2)

2

(
m+2

m

)m
zk − m2

2

1−
(

m+2
m

)m
zk

· u(xk), u(xk) =
f(xk)
f ′(xk)

, zk =
f ′(yk)
f ′(xk)

.
(30)

For more details on multipoint root-finders see the monograph [8].
Although the first two-point fourth order method for simple zeros, consuming only three function

evaluations, was derived in 1960 by Ostrowski [27], a half of century was needed until the construction
of two-point methods of fourth order for multiple zeros, see [6], [7], [10], [11] and other related papers.
The only reason for this delay was the lack of symbolic computation; its application has provided
that very complicated expressions can be handled. Note that the method (30) was generalized in [6]
and [11].

As mentioned, the two-point method (30) possesses great computational efficiency since it has
the order four requiring only three function evaluations: f(xk), f ′(xk), f ′(yk). Due to its very fast
convergence, it is sufficient to apply only one iteration for solving most practical problems. If we
wish a very accurate approximation (rarely required in practice), we can apply the method (30)
iteratively, usually two or three iterations, which is emphasized by dash lines in Figure 1. The
numerical examples presented in Section 7 have been executed with only one iteration of the method
(30).

6 Basins of attraction of the presented methods

The improvement of computer graphics have provided a new methodology for visual study of conver-
gence behavior of root-finding methods as a function of the various starting points. This approach
is based on the notion of basins of attraction. Let α1, α2, . . . , αr ∈ S be simple or multiple zeros
of a given sufficiently many times differentiable function f in some complex domain S ⊆ C. If an
iterative method is defined by xk+1 = g(xk), then the basin of attraction of the zero αi is the set

Bf,g(αi) = {ζ ∈ S | the iteration xk+1 = g(xk) with x0 = ζ converges to αi}.

The basin of attraction is used to compare methods (4)–(7) by taking a square containing all
the zeros and using many points (usually equally distributed) as initial points to see which zero
the method converges to. In the simple case of two zeros at ±1, one would like to have the square
divided by a straight vertical line through the origin with all points to the left converge to the zero
at −1 and all the point to the right converge to +1.

In our work we have taken 7 examples with various number of zeros and a variety of multiplicities.
We will show how each of the four methods performs in each case by plotting the basins of attraction
and collecting data about the number of function evaluations per point on average used by each
method for each example. We also collect the CPU time in seconds required to run each method on
the 360 000 equally spaces points in the 6 by 6 square centered at the origin. We allow a maximum
of 40 iterations from every initial point. If the method did not converge we paint the point black.

12

Each basin will have a different color and the shading is darker when the number of iterations is
higher.

Example 1. In the first example we have taken the polynomial

p1(z) = (z2 − 1)2

with roots at ±1 each with multiplicity 2. The basins of attraction are given in Figure 2 where the
leftmost is for method g2 and the rightmost is for g5. It is clear that all performed very well and the
boundary of the basins is a vertical straight line. This is, by the way, is not always true. There are
method for multiple zeros that require the knowledge of multiplicity and will not have straight line
as boundary, for example, one of Dong’s methods [29]. To have a more quantitative comparison,
we have collected the data in Table 1. Method g3 uses the least number of function evaluations per
point on average (15.50) and g2 uses the most number (17.48). Based on CPU time, we have the
same conclusion.

Example 2. The second example is different from the first in the fact that the multiplicity is 3,

p2(z) = (z2 − 1)3.

We will not show the basins, but the conclusions are the same.

Example 3. Here we increased the multiplicity to 4,

p3(z) = (z2 − 1)4.

Again the conclusions are independent of the multiplicity.

Example 4. The next example is a polynomial with the three roots of unity each with multi-
plicity 3, i.e.,

p4(z) = (z3 − 1)3.

The basins are displayed in Figure 3. Now the boundary of the three basins is no longer a straight
line. There is only one method, known to the authors, for which the boundaries are straight lines
and it is Euler-Cauchy. This method requires the knowledge of the multiplicity.

The basins for each root are divided into two disjoint areas. The best method is g5 which shows
the largest basin for each root. The number of function evaluation per point is the lowest for g3 and
the highest for g2. The fastest method is g3 and the slowest is g5. Both of these two methods have
only one black point.

Example 5. The polynomial has four root at ±1 and ±i, each with multiplicity 4, that is,

p5(z) = (z4 − 1)4.

The basins are displayed in Figure 4. Again the basin for each root is made up of several disjointed
areas. The best method is again g5. In terms of the number of function evaluations per point, we
have g4 as best and g2 as worst. The fastest method is g3 followed closely by g4 and the slowest is
g2. The number of black point is the smallest for g3 and g4 (1201) and the largest for g2. Based on
the data we can say that g3 is best, even though the largest contiguous basins are for g5.

Example 6. Here we have roots of multiplicity 4 at 0 and ±1, i.e.,

p6(z) = (z3 − z)4.

13

The basins are displayed in Figure 5. This is a very hard problem for these methods. The only one
without black points is g5. The worst is g2. In terms of CPU time g4 is faster than g5 but it uses
more function evaluations than g5.

Example 7. The last example is

p7(z) = (z5 − 1)5.

The basins are displayed in Figure 6. The conclusions are similar: the method g5 has the largest
contiguous basin for each root. The method g4 is faster than g5 but slower than g3. The number of
black points is the smallest for g5 followed by g4. The largest number of black points is 8562 for g2.
This method is also the slowest and uses the highest number of function evaluations.

T a b l e 1

Table 1: CPU time, average numbers of iterations and number of function evaluations

Concluding remarks on basins of attraction: In order to decide on potentially best method
overall, we have averaged the data across 7 examples. The method g3 is the fastest (611.33 seconds)
followed by g4 (621.74 seconds) and g5 (700.94 seconds). Method g5 has the lowest number of black
points and the largest contiguous basins. In terms of the number of function evaluations per point,
g4 is best with 18.26 followed by g5 with 18.78. It is assumed that the above conclusions hold for the
tested polynomials p1−p7; in general, it is hard to rank iterative methods regarding their quality, even
when they possess the same order of convergence and approximately same computational efficiency.

F i g u r e 2

Figure 2: g2 (left), g3 (second from left), g4 (third from left) and g5 (right)
for the zeros of the polynomial (z2 − 1)2.

F i g u r e 3

Figure 3: g2 (left), g3 (second from left), g4 (third from left) and g5 (right)
for the zeros of the polynomial (z3 − 1)3.

F i g u r e 4

Figure 4: g2 (left), g3 (second from left), g4 (third from left) and g5 (right)
for the zeros of the polynomial (z4 − 1)4.

F i g u r e 5

Figure 5: g2 (left), g3 (second from left), g4 (third from left) and g5 (right)
for the zeros of the polynomial (z3 − z)4.

F i g u r e 6

Figure 6: g2 (left), g3 (second from left), g4 (third from left) and g5 (right)
for the zeros of the polynomial (z5 − 1)5.

14

7 Numerical examples

In this section we present results obtained by the combination of Algorithm 1/Algorithm 2 and
the two-point method (30) to six examples. All computation were performed by CAS Mathematica
using multi-precision arithmetic. We choose the termination constant δ = 10−5; it turned out that
three iterations were sufficient to meet the termination criterion for all six examples. The outcome
approximation xk and the exact order of multiplicity m serve as the initial values for one iteration
of the two-point method (30) in order to improve the accuracy of the wanted multiple zero. We used
the six test functions, including f2(x) taken from [5] and f4 from [28].

f(x) m x0 α

f1(x) =
(
ex2+6x−16 − 1

)2(
(x− 1)3 − 1

)2
4 1.7 2

f2(x) =
(
xex2 − sin2 x + 3 cos x + 5

)4
4 −0.7 −1.207647827130918927009 . . .

f3(x) =
(
x sin x− 2 sin2(x/

√
2)
)(

x8 + x4 + 100
)

6∗ −1.2 0∗

f4(x) = x10 − 20x9 + 175x8 − 882x7 + 2835x6 − 6072x5

+8777x4 − 8458x3 + 5204x2 − 1848x + 288 3∗ −40 2∗

f5(x) =
(
−177147 + 649539x − 1082565x2 + 1082565x3

−721710x4 + 336798x5 − 112266x6 + 26730x7

−4455x8 + 495x9 − 33x10 + x11
)1/4

×(x + 1)4(x2 + 2x + 2)2 11/4∗ 2 3∗

f6(x) =
(
ex2+4x+8 − 1

)3(
sinh(2 + 2i + ix)

)2
5 −1.6 + 1.7i −2 + 2i

List of tested functions

T a b l e 2

Table 2: Errors of approximation for f1(x)

T a b l e 3

Table 3: Errors of approximation for f2(x)

T a b l e 4

Table 4: Errors of approximation for f3(x)

T a b l e 5

Table 5: Errors of approximation for f4(x)

T a b l e 6

Table 6: Errors of approximation for f5(x)

15

T a b l e 7

Table 7: Errors of approximation for f6(x)

Tables 2–7 show the errors |g3(xk) − α|, |µ2(xk) − m| and |µ3(xk) − m| for k = 1, 2, 3 while
|x4 − α| is the error of approximation obtained by the method (30). The notation A(−τ) means
A × 10−τ . The meaning of ∗ is explained in Remark 7. The multiplicity of the sought zero of the
function f5 is a fraction so that we have slightly modified the program using Mathematica statement
Rationalize[z,10^(-4)] (instead of Round[z]) that provides the representation of a real number z
in the form of a fraction a/b (a, b ∈ N). We assume that such fraction exists, otherwise, the program
does not work. Fortunately, order of multiplicity unrepresentable as a fraction appears in artificially
constructed functions, not in practical problems. The methods works for complex zeros too, as the
example for f6 shows. In this case we assume that the multiplicity is a positive integer and use the
command Re[µλ(x)] (λ = 2, 3) to eliminate imaginary part since the calculation of µλ is performed
with complex approximations to the complex zero.

Remark 7. From the expressions for the functions f1, f2 and f6 it is clear that the multiplicity
is m = 4, 4, 5, respectively. However, it is hard to assume that f3 has a zero (α = 0) of multiplicity
6. Besides, for the polynomial f4(x) given above in the expanded form, it is not possible to detect
zeros and their multiplicities without a checking procedure. In fact, the factorized form of f4 reads

f4(x) = (x− 1)4(x− 2)3(x− 3)2(x− 4),

whence we can observe the values of zeros and multiplicities. Furthermore, since the initial approx-
imation x0 = −40 (taken from [30]) is rather far from actual zeros, the determination of the zero
and its multiplicity was left to Algorithm 1/Algorithm 2, which have perfectly done this job. The
same story is valid for the zero of f5 whose multiplicity is a fraction. With regard to the described
facts Tables 3–5 were formed a posteriori, which is marked with ∗ in the list of test functions.

From Tables 2–7 we observe that the presented algorithms (25) and (26) successfully detect the
order of multiplicity, which is the necessary condition for the application of very fast method (30)
working with known multiplicity of the zero. The application of simpler formula µ2(xk) (Algorithm
1) gives satisfactory results, which is clear having in mind that µ2(xk) and µ3(xk) are both cubically
convergent. For less computational cost it is recommendable to apply Algorithm 1.

8 Conclusions

The main goal of this paper is to present the application of symbolic computation in solving mathe-
matical problems which belong to the group of problems unsolvable by hand derivation and manip-
ulation due to very lengthy and complicated expressions. In particular, we have demonstrated the
use of symbolic computation (i) for generating higher order iterative methods for finding multiple
zeros of nonlinear equations with unknown multiplicity of zeros and (ii) for constructing coupled
algorithms that calculate simultaneously approximations to the sought zero and the exact order
of multiplicity during the iterative process. In our concrete case symbolic computation was used
basically for automatic differentiation and simplification of very complicated expressions, but also
for other manipulations with mathematical objects such as expanding out products, finding limit
values and collecting together terms involving the same powers of objects matching some variables.
These operations with mathematical symbols are not possible by classical methods, which points
out that symbolic computation is a powerful modern tool that enables developing new methods and
ideas, their testing, checking derived results and analysis. Its application is supported by computer
algebra systems, in our case by Wolfram’s Mathematica.

16

Another methodology used in this paper is dynamic study of iterative methods based on basins
of attraction. Namely, in many situations numerical experiments and the study of computational
efficiency of considered iterative methods do not give sufficiently good measures/data for a real
estimation of the quality of these methods and their ranking. To overcome this flaw to a certain
extent, basins of attraction are considered in Section 6 in order to offer additional quantitative
iteration data as well as a visual convergence behavior of iterative methods depending on areas
of starting points. This approach provide considerably better understanding of iterative processes
although numerous open questions leave to be answered, see the book [32].

Appendix

Although two iterative sequences in (25) and (26) are independent, we can consider them as a couple of sequences

{ε(k)
i } and {η(k)

i } and determine their convergence order using the following very useful assertion [31]:

Theorem A. Given the error-recursion

v
(k+1)
i ≤ ai

q∏

j=1

(
v
(k)
j

)tij , (i ∈ Iq := {1, . . . , q}; k ≥ 0), (A.1)

where tij ≥ 0, ai > 0, 1 ≤ i, j ≤ q, and v
(k)
i are some convergent sequences. Denote the matrix of exponents appearing

in (A.1) with Tq, that is Tq = [tij]q×q. If the non-negative matrix Tq has the spectral radius ρ(Tq) > 1 and the

corresponding eigenvector xρ > 0, then all sequences {v(k)
i } (i ∈ Iq) have the R-order at least ρ(Tq).

Let OR(IM) denote the R-order of convergence of an iterative method IM, and let

v
(k)
1 = εk = xk − α, v

(k)
2 = ηk = mk −m, where mk = µλ(xk) (λ = 2, 3, 4).

According to Theorem 4 (see relation (21)) we can write for the method (5)

εk+1 ∼ ε3
k, (A.2)

where the notation a ∼ b means a = O(b). Further, from (27), (28) and (29) we have

η
(λ)
k+1 ∼ ε3

k, (λ = 2, 3, 4). (A.3)

According to the relations (A.2) and (A.3) we form the matrix T2 = [tij] that appears in Theorem A:

T2 =

[
3 0
3 0

]
.

The spectral radius of T2 is ρ(T2) = 3 and the corresponding eigenvector is xρ = (1, 1) > 0. Hence, according to

Theorem A, we obtain the lower bound of the R-order of the coupled sequences (εk, η
(λ)
k)

OR(g3, µλ) ≥ ρ (T2) = 3.

Since the limits

|H3| = lim
k→∞

|g3(xk)− α|
|xk − α|3 and |M(µλ)| = lim

k→∞
|mk+1 − α|
|mk − α|3

exist, 0 < |H3| < ∞ and 0 < |M(µλ)| < ∞, according to Ortega and Rheinboldt [25, E 9.3-4] it follows that the R-order

and Traub’s C-order are equal. Therefore, the methods defined by iteration functions g3(x) and µλ(x) (λ = 2, 3, 4)

have cubic convergence.

Acknowledgement. The authors wish to thank anonymous reviewers for careful reading and
valuable comments which improved the quality of the paper. This work is supported by the Serbian
Ministry of Education and Science.

17

References

[1] J. Borwein, D. Bailey, Mathematics by Experiments, A K Peters, Ltd., Wellesley, MA, 2008

[2] S.M. Watt, Making Computer algebra more symbolic, Proc. Transgressive Computing 2006, pp. 43–49.

[3] J.S. Cohen, Computer Algebra and Symbolic Computation: Mathematical Methods, AK Peters Ltd., 2003.

[4] D.H. Beiley, J.M. Borwein, N.J. Calkin, R. Girgensohn, D.R. Luke, V.H. Moll, Experimental Mathematics in
Action, A K Peters, Ltd., Wellesley, MA, 2007.

[5] C. Chun, B. Neta, A third-order modification of Newton’s method for multiple roots, Appl. Math. Comput. 211
(2009) 474-479.

[6] S. Li, L. Cheng, B. Neta, Some fourth-order nonlinear solvers with closed formulae for multiple roots, Comp.
Math. Appls 59 (2010) 126–135.

[7] S. Li, X. Liao, L. Cheng, A new fourth-order iterative method for finding multiple roots of nonlinear equations,
Appl. Math. Comput. 215 (2009) 1288–1292.

[8] M.S. Petković, B. Neta, L.D. Petković, J. Džunić, Multipoint Methods for Solving Nonlinear Equations, Elsevier,
2013.

[9] B. Neta, A.N. Johnson, High-order nonlinear solver for multiple roots, Comp. Math. Appls 55 (2008) 2012–2017.

[10] J.R. Sharma, R. Sharma, Modified Jarratt method for computing multiple roots, Appl. Math. Comut. 217 (2010)
878–881.

[11] X. Zhou, X. Chen, Y. Song, Construction of higher order methods for multiple roots of nonlinear equations, J.
Comput. Appl. Math. 235 (2011) 4199–4206.

[12] P. Kravanja, M. Van Barel, Computing the Zeros of Analytic Functions, Lecture Notes in Mathematics 1727,
Springer, Berlin, 2000.

[13] C. Chun, H.J. Bae, B. Neta, New families of nonlinear third-order solvers for finding multiple roots, Comput.
Math. Appls 57 (2009) 1574–1582.

[14] B.I. Yun, A non-iterative method for solving nonlinear equations, Appl. Math. Comput. 198 (2008) 691–699.

[15] B.I. Yun, Transformation methods for finding multiple roots of nonlinear equations, Appl. Math. Comput. 217
(2010) 599–606.

[16] G. Collins, Continued fraction real root isolation using the Hong root bound, J. Symb. Comput. 72 (2016).

[17] A. Herman, H. Hong, Quality of positive root bounds, J. Symb. Comput. 74 (2016) 592–602.

[18] A. Iliev, N. Kyurkchiev, Nontrivial Methods in Numerical Analysis: Selected Topics in Numerical Analysis, LAP
LAMBERT Academic Publishing, Saarbrücken, 2010.

[19] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, New York, 1964.

[20] E. Schröder, Über unendlich viele Algorithmen zur Auflösung der Gleichungen, Math. Ann. 2 (1870) 317–365.

[21] M.S. Petković, L.D. Petković, J. Džunić, Accelerating generators of iterative methods for finding multiple roots
of nonlinear equations, Comput. Math. Appls 59 (2010) 2784–2793.

[22] B. Jovanović, A method for obtaining iterative formulas of higher order, Mat. Vesnik 9(24) (1972) 365–369.

[23] M. Petković, D. Herceg, On rediscovered iteration methods for solving equations, J. Comp. Appl. Math. 107
(1999) 275–284.

[24] Wolfram Research, Inc., Mathematica, Version 9.0, Champaign, IL, 2012.

[25] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in several Variables, Academic Press,
New York, 1970.

[26] J.L. Lagouanelle, Sur une métode de calcul de l’ordre de multiplicité des zéros d’un polynôme, C. R. Acad. Sci.
Paris Sér. A 262 (1966) 626–627.

[27] A.M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York, 1960.

[28] M.R. Farmer, G. Loizou, An algorithm for the total, or partial, factorization of a polynomial, Math. Proc.
Cambridge Philos. Soc. 82 (1977) 427–437.

[29] C. Dong, A family of multipoint iterative functions for finding multiple roots of equations, Int. J. Comput. Math.
21 (1987) 363–367.

[30] N. Osada, Chebyshev-Halley methods for analytic functions, J. Comp. Appl. Math. 216 (2008) 585–599.

[31] J. Herzberger, L. Metzner, On the Q-order and R-order of convergence for coupled sequences arising in iterative
numerical processes. In: Numerical Methods and Error Bounds (eds G. Alefeld, J. Herzberger), Akademie Verlag,
Berlin, 1996.

[32] B. Kalantari, Polynomial Root-Finding and Polynomiography, World Scientific, New Jersey, 2009.

18

Figure 1: Flow chart of Algorithm 2

19

Examples Methods A B C D E
g2 251.83 5.83 3 17.48 601

Example 1 g3 247.85 3.88 4 15.50 601
p1(z) = (z2 − 1)2 g4 285.42 3.20 5 15.98 601

g5 347.55 2.84 6 17.04 601
g2 321.5 5.83 3 17.48 601

Example 2 g3 329.91 3.88 4 15.50 601
p2(z) = (z2 − 1)3 g4 335.22 3.20 5 15.98 601

g5 387.04 2.84 6 17.04 601
g2 345.95 5.83 3 17.48 601

Example 3 g3 356.45 3.88 4 15.50 601
p3(z) = (z2 − 1)4 g4 433.42 3.20 5 15.98 601

g5 470.9 2.84 6 17.04 601
g2 581.37 8.24 3 24.72 25

Example 4 g3 484.43 4.20 4 16.81 1
p4(z) = (z3 − 1)3 g4 529.12 3.42 5 17.12 64

g5 588.62 3.00 6 18.02 1
g2 1030.5 11.82 3 35.46 2545

Example 5 g3 708.4 4.88 4 19.53 1201
p5(z) = (z4 − 1)4 g4 769.38 3.82 5 19.11 1201

g5 915.27 3.50 6 20.99 1329
g2 1097.73 15.08 3 45.24 88546

Example 6 g3 1142.18 7.51 4 30.04 23008
p6(z) = (z3 − z)4 g4 953.63 4.64 5 23.22 3856

g5 1648.18 16.19 3 48.56 8562
g2 1648.18 16.19 3 48.56 8562

Example 7 g3 1010.11 5.80 4 23.18 9
p7(z) = (z5 − 1)5 g4 1045.97 4.09 5 20.46 1

g5 1187.59 3.42 6 20.54 2
g2 753.87 9.83 3 29.49 14497.29

Average over g3 611.33 4.86 4 19.44 3717.43
all examples g4 621.74 3.65 5 18.26 989.29

g5 700.94 3.13 6 18.76 477.86

A – CPU time in second; B – Average number iterations per point; C – Number of function evaluations per

step; D – Average number of function evaluations per point; E – Number of points required 40 iterations

Table 1: Iteration data for the methods g2 − g5 and Examples 1–7

20

Figure 2: g2 (left), g3 second from left), g4 (third from left) and g5 (right) for the roots of the polynomial
(z2 − 1)2.

Figure 3: g2 (left), g3 second from left), g4 (third from left) and g5 (right) for the roots of the
polynomial (z3 − 1)3.

Figure 4: g2 (left), g3 second from left), g4 (third from left) and g5 (right) for the roots of the
polynomial (z4 − 1)4.

21

Figure 5: g2 (left), g3 second from left), g4 (third from left) and g5 (right) for the roots of the
polynomial (z3 − z)4.

Figure 6: g2 (left), g3 second from left), g4 (third from left) and g5 (right) for the roots of the
polynomial (z5 − 1)5.

k = 1 k = 2 k = 3
|g3(xk)− α| 4.84(−2) 4.79(−4) 4.93(−10)
|µ2(xk)−m| 0.992 1.17(−2) 1.20(−8)
|µ3(xk)−m| 0.583 5.84(−3) 6.02(−9)
(30) |x4 − α| 1.94(−36)

Table 2: Errors of approximation for f1(x)

k = 1 k = 2 k = 3
|g3(xk)− α| 3.85(−2) 9.22(−5) 1.37(−12)
|µ2(xk)−m| 0.421 1.11(−3) 1.65(−11)
|µ3(xk)−m| 0.23 5.54(−4) 8.24(−12)
(30) |x4 − α| 1.05(−47)

Table 3: Errors of approximation for f2(x)

k = 1 k = 2 k = 3
|g3(xk)− α| 0.798 4.56(−2) 2.25(−6)
|µ2(xk)−m| 0.78(−2) 8.91(−4) 2.17(−12)
|µ3(xk)−m| 0.402 8.49(−7) 5.05(−24)
(30) |x4 − α| 1.33(−31)

Table 4: Errors of approximation for f3(x)

22

k = 1 k = 2 k = 3
|g3(xk)− α| 6.94(−2) 7.62(−4) 9.21(−10)
|µ2(xk)−m| 0.293 2.27(−3) 2.76(−9)
|µ3(xk)−m| 0.103 1.14(−3) 1.16(−9)
(30) |x4 − α| 9.07(−37)

Table 5: Errors of approximation for f4(x)

k = 1 k = 2 k = 3
|g3(xk)− α| 0.389 7.57(−3) 7.26(−8)
|µ2(xk)−m| 1.47 2.94(−2) 2.82(−7)
|µ3(xk)−m| 0.759 1.47(−2) 1.41(−8)
(30) |x4 − α| 1.69(−29)

Table 6: Errors of approximation for f5(x)

k = 1 k = 2 k = 3
|g3(xk)− α| 0.0982 1.92(−4) 2.08(−12)
|µ2(xk)−m| 0.809 2.29(−4) 7.37(−12)
|µ3(xk)−m| 0.391 1.15(−4) 3.69(−12)
(30) |x4 − α| 3.07(−47)

Table 7: Errors of approximation for f6(x)

23

