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a b s t r a c t

This paper is on numerical treatment of problems that describe high contrast composite
materials with complex geometry. In particular, a heterogeneous domain decomposition
method for a class of diffusion problems with rapidly oscillating coefficients that also have
large variation of values within the domain is proposed. The method combines a FEM
discretization in one subdomain with an asymptotic representation of the Dirichlet to
Neumannmap for the other subdomain. Numerical results that demonstrate the feasibility
of the proposed approach are also provided.
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1. Introduction

High contrast problems that are characterized by the large or even infinite ratio of the largest and smallest values of
coefficients in the corresponding PDE are commonly found in many applications such as porous media flow, composite
materials, and electrical impedance tomography. Because of that, the development of efficient numerical schemes for high
contrast heterogeneous media has been an active area of research in the past couple of decades, specifically in the design of
multiscale solvers.

It was observed that convergence of iterative solvers for the linear systems associated with the high contrast PDEs
deteriorates as the contrast in problem coefficients becomes large. Such a loss of efficiency is due to existence of very
low eigenvalues in the spectrum of the matrix of the discretized system. Several methods have been proposed to obtain
robust and efficient iterative solvers for elliptic problemswith highly discontinuous coefficients, see e.g. [1–5] and references
therein. Many iterative solvers for elliptic problemswith highly heterogeneous coefficients in the domains of relatively simple
geometries developed by now demonstrate good convergence properties. In this paper, we focus on the problem with high
contrast coefficients posed on the domainwith complex geometry. In particular, we study the case of highly, or even infinitely,
conducting heterogeneities irregularly distributed in a domain of finite conductivity and located at distances that are much
smaller than their sizes between one another. This leads to significant challenges in numerical methods due to small mesh
size needed in the gaps between particles.

To handle this, we employ a domain decomposition method (DDM) in this paper. Overall, domain decomposition can be
considered as a preconditioner for the iterative solution, but it could also serve as a framework for hybridization of different
types of solvers designed for different subdomains. This latter feature is explored in the paper, and a heterogeneous domain
decomposition method (HDDM), first introduced in [6] (see also [7]), is a domain decomposition method that serves that
purpose. Namely, there are two primary reasons to employ an HDDM. The first one is when the underlying problem is of
multi-physics nature, and distinctmodels are used to account for distinct physical processes in subdomains. The other reason
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iswhen onewants to combine different types of approximations in the subdomains. The latter strategy is, in particular, useful
when there is a cheapermodel in parts of the computational domainwhere the fullmodel is not needed, and is quite common
in the design ofmultiscale FEMs, see e.g. [8].

In this paper, we propose an HDDM for a heterogeneous material that contains a cluster of a large number of densely
packed infinitely conducting particles.Densely packed (or closely spaced, or closely packed) particlesmean that they are almost
touching, and infinitely (or ideally, or perfectly) conducting means that their conductivity is infinity with the corresponding
potential/temperature on them being constant. We split our domain into nonoverlapping subdomains: a homogeneous one
and the other one that contains particles. Normally, a DDM is reduced to a linear system corresponding to the relation
enforcing the transmission boundary condition on the interface, called the Schur complement system. We observe that one
computationally expensive part of the Schur complement that corresponds to the subdomain with particles is the Dirichlet-
to-Neumann (DtN) map defined for this subdomain. In Appendix A.1 we define the DtN map and discuss its properties.
Also, the DtN map of an infinite contrast medium with particles close to touching was studied in [9]. It is shown that this
DtN map can be approximated by a discrete, matrix-valued DtN map that accounts for all the features of the corresponding
continuum system, and the asymptotic representation for DtN map was introduced in [9]. We adopt this discrete DtN map
in our DDM in the subdomain with particles instead of the direct evaluation of the matrix in the Schur complement system,
while we employ a standard finite-element discretization in the other subdomain. Proceeding this way, we actually utilize
both features of the HDDM mentioned above, namely, (1) our computational domain is split into two subdomains where
distinct physical processes occur, and (2) a computationally inexpensive procedure based on asymptotics developed in [9] is
applied in one of those subdomains. Such a hybrid approach yields an accurate approximation of the solution on the interface
between the two subdomains, which is demonstrated by our numerical experiments.

The rest of this paper is organized as follows. In Section 2, the mathematical formulation of the problem is presented,
the numerical algorithm is described, and challenges of the high contrast dense packing case are highlighted. Section 3
discusses the results on discrete approximation of the DtN map by a matrix-valued one. Numerical experiments of the
proposed scheme are given in Section 4. Conclusions are discussed in Section 5. Appendix includes the introduction to the
DtN map and provides some auxiliary facts.

2. Problem formulation and domain decomposition method

2.1. Infinite contrast problem formulation

Consider a bounded domain Ω̂ ⊂ R2 with piecewise smooth boundary ∂Ω̂ that contains N ≥ 1 subdomains Di, which
are located at distances much smaller than their sizes from one another. For simplicity, we assume that each Di is a disk of
radius R > 0. Then the distance between two neighboring inclusions Di and Dj is

δij = dist
{
Di,Dj

}
≪ R,

and denote the typical distance between particles by δ ≪ R that would be rigorously defined below. The union of Di is
denoted by D. The domain Ω̂ is occupied by the composite medium of uniform conductivity 1 with infinitely conducting
particles Di, i ∈ {1, . . . ,N}, where we consider the following problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−△u = 0, x ∈ Ω̂ \ D
u = const, x ∈ ∂Di, i ∈ {1, . . . ,N}∫

∂Di

∇u · ni ds = 0, i ∈ {1, . . . ,N}

u = g, x ∈ ∂Ω̂

(1)

where ni is the outer unit normal to the surface ∂Di, and g ∈ H1/2(∂Ω̂) is some given function. If

u ∈ V :=

{
u ∈ H1(Ω̂ \ D) : u|∂Di

= const, i ∈ {1, . . . ,N}, u|∂Ω̂ = g
}

is an electric potential then it attains constant values on the inclusion Di, i ∈ {1, . . . ,N}. These constants are not known
a priori and are unknowns of the problem (1) together with u ∈ V . Problem (1) describes the case of perfectly conducting
inclusions. With slight abuse of terminology, we refer to problem (1) as the high contrast one as it is commonly used in
literature.

We assume that all particles Di cluster together and locate from the external boundary ∂Ω̂ at distances that are much
larger than their sizes R. Then consider a smooth closed curve Γ fully contained in Ω̂ whose interior region include D and
such that it splits Ω̂ into two subdomains Ω and Ω ′, that is, Ω̂ = Ω ∪ Γ ∪ Ω ′. Also, assume that Γ is chosen so that the
shortest distance between it and a particle Di is of order δ, hence,

δi = dist {Di,Γ } = O(δ) ≪ R.
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Fig. 1. The domain Ω̂ with highly conducting inclusions Di , i ∈ {1, . . . ,N}, that are concentrated in the subregionΩ ⊂⊂ Ω̂ .

Without loss of generality, assume also that the domainΩ is a disk of radius L ≫ R, thus,Ω ⊂⊂ Ω̂ and Γ = ∂Ω , see Fig. 1.
With that, the subdomainΩ ′

= Ω̂ \Ω is occupied by the homogeneous conducting material of constant conductivity equal
to 1.We remark that the choice for such a split of Ω̂ is motivated by the fact that a FEM discretization in the subdomainΩ ′ is
cheap while it is not so inΩ . Because of this, we propose to design a heterogeneous domain decomposition introduced in [6,7]
to bridge the domain decompositionmethodology withmathematical modeling. Indeed, our domain partition now involves
different models in different subdomains, and the asymptotic approximation for the energy in subdomainΩ that is readily
available thanks to the study [9] together with FEM discretization in the subdomain Ω ′ leads to a significant reduction of
computation complexity.

Beforewe introduce ourHDDMmethodology, in thenext sections,wedescribe the classical DDMfor (1) in Ω̂ = Ω∪Γ∪Ω ′

and comment how the DtN map, or rather its approximation, can be applied.

2.2. Classical DDM forΩ ,Ω ′ and Γ

2.2.1. Discretization of continuous problem
Consider a confirming quasi-uniform triangulation Ω̂h of domain Ω̂ with the corresponding triangulationsΩh,Ω ′

h of the
domainsΩ ,Ω ′, respectively.We require that the nodes of triangulation Ω̂h match the interfaceΓ and the external boundary
∂Ω̂ . Then the classical FEM discretization of (1) on this Ω̂h using piecewise linear finite elements results in a linear system

A u = F , (2)

with a symmetric and positive definite matrixA. From now on, the bar-quantities will indicate vectors in the corresponding
finite-dimensional space. The degrees of freedom of (2) are split into the degrees belonging toΩ , indicated by the subscript
1, those internal to Ω ′, indicated by the subscript 2, those belonging to the interface Γ , indicated by the subscript Γ , and
those belonging to the external boundary ∂Ω̂ , indicated by the subscript D. With that, the components of the linear system
(2) are as follows:⎛⎝A11 A1Γ 0

AT
1Γ AΓ Γ A2Γ

0 AT
2Γ A22

⎞⎠(u1
uΓ
u2

)
=

( 0
0

−A2DgD

)
, (3)

where the vector gD is composed of values of function g at the points of discretization on the external boundary ∂Ω̂ , and A2D

is a stiffnessmatrix assembled using nodes inΩ ′

h and on ∂Ω̂ . Entries of thematrixA and the vector u =
(
u1 uΓ u2

)T in (2)–(3)
correspond to the interior nodes of Ω̂h only, while the right-hand side vector F =

(
0 0 − A2DgD

)T captures the contribution
of nodes on ∂Ω̂ .

The stiffness matrix AΓ Γ on the interface Γ is also obtained by assembling the corresponding components contributed
by the subdomainsΩh andΩ ′

h and can be written as AΓ Γ = A(1)
Γ Γ + A(2)

Γ Γ . With that, below we will distinguish the following
blocks of the stiffness matrix A:(

A11 A1Γ

AT
1Γ A(1)

Γ Γ

)
, and

(
A(2)
Γ Γ A2Γ

AT
2Γ A22

)
,

corresponding to the two subdomainsΩh andΩ ′

h, respectively.
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2.2.2. Schur complement system
The usual first step of many iterative domain decomposition methods is the elimination of interior unknowns u1 and u2,

which reduces the system (3) to the Schur complement system for uΓ :

SuΓ = g (2)
Γ , where S = S(1) + S(2), (4)

with

S(1) = A(1)
Γ Γ − AT

1Γ A
−1
11 A1Γ , S(2) = A(2)

Γ Γ − A2Γ A−1
22 A

T
2Γ , g (2)

Γ = A2Γ A−1
22 A2DgD, (5)

see [10] for the detailed discussion of the construction. Matrix S is usually referred to as Schur complement to the unknowns
on Γ . Our matrix slightly differs from the classic case as in our notation subscript 2 does not include nodes on the external
boundary indicated by the subscript D. Observe, that once system (4) is solved, the internal components could be found from

u1 = −A−1
11 A1Γ uΓ , u2 = −A−1

22 A2DgD − A−1
22 A2Γ uΓ . (6)

Next, we derive one more auxiliary approximation that we utilize later in our method. Consider the discrete analog of
the Neumann problem inΩ , see [11],(

A11 A1Γ

AT
1Γ A(1)

Γ Γ

)(
u1

uΓ

)
=

(
0
λ1Γ

)
,

where λ1Γ is an approximation for the weak normal derivative of u1 on the interface Γ , that is,

λ1Γ = AT
1Γ u1 + A(1)

Γ Γ uΓ = S(1)uΓ , (7)

where we applied the definition of S(1) as in (5).

2.2.3. The Dirichlet–Neumann algorithm
In this paper, we utilize theDirichlet–Neumann domain decompositionmethod, see e.g. [10] and apply it to the casewhen

Ω is embedded in Ω̂ . In this algorithm, each iteration step consists of two fractional steps: Dirichlet problem in subdomain
Ω and mixed Neumann–Dirichlet problem in subdomainΩ ′ with the Neumann condition on the interface Γ as determined
by the solution inΩ of the previous step and the Dirichlet data on ∂Ω̂ . The next iteration is chosen as a linear combination of
the trace of the solution inΩ ′ and the solution on the interface Γ obtained in the previous iteration with a suitably chosen
relaxation parameter ϑ ∈ (0, ϑmax) to ensure convergence of the method. In terms of differential operators the algorithm
described above is as follows:

1. Choose an initial guess: u0
Γ ∈ H1/2(Γ ).

2. For any n ∈ N, until convergence, find un+1/2
1 ∈ H1(Ω) that solves

(D) :

{
− △ un+1/2

1 = 0 inΩ,

un+1/2
1 = un

Γ on Γ ,
(8)

where (D) indicates the problem with the Dirichlet boundary conditions on Γ .
3. Evaluate the weak normal derivative λn+1/2

1Γ = ∇un+1/2
1 · n1 on Γ , where n1 is the unit outward normal to ∂Ω = Γ .

4. Find the function un+1
2 ∈ H1(Ω ′) by solving

(D + N) :

⎧⎨⎩
− △ un+1

2 = 0 inΩ ′,

∇un+1
2 · n2 = −λ

n+1/2
1Γ on Γ ,

un+1
2 = g on ∂Ω̂,

(9)

where (D + N) indicates the problem with Neumann boundary conditions on Γ and Dirichlet conditions on ∂Ω̂ , and
n2 = −n1.

5. Update un+1
Γ = ϑun+1

2 + (1 − ϑ)un
Γ on Γ for some ϑ ∈ (0, ϑmax).

6. Repeat until convergence.

With use of the approximations given above, the corresponding iteration for the discrete problem is as follows. LetM > 0
be the number of degrees of freedom on the interface Γ . Then:

1. Choose an initial vector u0
Γ ∈ RM (below, in our numerical experiments we initialize it with zero vector).

2. For any n ∈ N, until convergence, find an approximation un+1/2
1 of un+1/2

1 that solves the discrete analog of (8):

(D) : A11u
n+1/2
1 + A1Γ un

Γ = 0.
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3. Compute the vector λ
n+1/2
1Γ ∈ RM , which is the discrete analog of the weak normal derivative λn+1/2

1Γ via

λ
n+1/2
1Γ = AT

1Γ u
n+1/2
1 + A(1)

Γ Γ u
n
Γ . (10)

Now eliminate un+1/2
1 from (D), hence, un+1/2

1 = −A−1
11 A1Γ un

Γ and substitute this in (10) to obtain

λ
n+1/2
1Γ = −AT

1Γ A
−1
11 A1Γ un

Γ + A(1)
Γ Γ u

n
Γ = S(1)un

Γ . (11)

4. Find an approximation un+1
2 of the function un+1

2 in the domainΩ ′ that solves the discrete analog of (9):

(D + N) :

(
A(2)
Γ Γ A2Γ

AT
2Γ A22

)(
un+1
2Γ

un+1
2

)
=

(
−λ

n+1/2
1Γ

−A2DgD

)
, (12)

where un+1
2Γ is an approximation of the trace of u2 of (9). The nonhomogeneous Dirichlet boundary condition on ∂Ω̂ is

already accounted by the system (12), similarly to (3), and the problem (12) is formulated for the interior nodes only.
5. Update un+1

Γ = ϑun+1
2Γ + (1 − ϑ)un

Γ for some ϑ ∈ (0, ϑmax).
6. Finally, eliminating un+1

2 in (12) and applying relation (11) yields the following equation:

S(2)
(
un+1
Γ − un

Γ

)
= ϑ

(
g (2)
Γ − Sun

Γ

)
. (13)

We observe that (13) is a preconditioned Richardson iteration for the Schur complement system (4) with the
preconditioner S(2) and the relaxation parameter ϑ .

2.3. Challenges of the problem with a densely packed subdomainΩ

Typically, nonoverlapping DDM algorithms involve solving a Schur complement system (4) using a suitable interface
preconditioner, and (13) illustrates that this preconditioner is S(2). Since matrix S(2) is associated with the domain Ω ′ of
uniform conductivity, we assume that S(2) is feasible to compute. On the other hand, solving for S(1) that corresponds to the
domainΩ that contains closely spaced particles of infinite conductivity by direct methods can be expensive. This is because
of complex geometry of fine-scale features inΩ that, in particular, causes a large size of the matrix A11 in (3). Therefore, it is
desirable to seek for a cheaper approximation of S(1), which we will study in some detail in the rest of the paper. Below, we
propose an approximation of S(1) that could be used to make the algorithm described in Section 2.2.3 applicable in practice.
It is based on the observation that the relation (7) between the weak Neumann derivative approximation λ1Γ of u1 on the
interface Γ and the Schur complement S(1) corresponding to the domainΩ actually defines a FEM approximation of the DtN
mapΛDtN associated with the domainΩ . Hence, we suggest to find an approximationΛ of the DtNmapΛDtN that would be
cheaper than direct evaluation of S(1). For this, we propose to utilize a discrete,matrix-valuedDtNmapΛ as introduced in the
next section. It is given by an asymptotic representation derived in [9] in the regime when the typical interparticle distance
δ is much smaller than the sizes R of particles and the diameter L of Ω: δ ≪ R ≪ L. In particular, this approach allows us
to bypass computationally expensive numerical evaluation of the solution u1 in the domainΩ that contains closely spaced
perfectly conducting particles. Meanwhile, one can obtain an approximate solution to u1 in the domainΩ ′ using a standard
FEM discretization. With this, we will derive an approach that combines an asymptotic method defined in the domain Ω
with a finite-element one inΩ ′ within the framework of the domain decomposition methods and leads to a heterogeneous
DDM, as announced above.

3. Construction of the discrete DtN map Λ

3.1. Asymptotic approximation of the DtN mapΛDtN

In this section, we review results obtained in [9]. This paper discusses the continuous DtN map of a diffusion PDE of
the type (1) defined in a domain Ω with a piece-wise smooth boundary Γ . A Dirichlet-to-Neumann (DtN) map ΛDtN for
this problem takes an arbitrary boundary voltage u on the boundary Γ = ∂Ω to the associated current flux on Γ via (33),
where the coefficient σ (x) has infinite contrast and varies rapidly within the domain (see detailed discussion on DtNmap in
Appendix A.1). It is shown in [9] that thisΛDtN can be approximated by thematrix-valued DtN map Λ as given in Theorem 1
below.

Recall that the domainΩ is a disk of radius L packed with N perfectly conducting inclusionsDi, which are identical disks
of radius R ≪ L. It is also assumed that a typical distance between inclusions δ is much smaller than their sizes, that is,
δ ≪ R. The interparticle distance parameter δ is defined through the notion of neighboring inclusions, which is as follows.
Let Vi be the Voronoi cell, see e.g. [12], constructed for inclusion Di, i ∈ {1, . . . ,N}, via

Vi =
{
x ∈ Ω such that |x − xi| ≤ |x − xj|, for all j ∈ {1, . . . ,N}, j ̸= i

}
.
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The inclusions Di and Dj are said to be neighbors if their Voronoi cells Vi and Vj share an edge. For each inclusion Di denote
a set of indices of the neighboring inclusions

Ni =
{
j ∈ {1, . . . ,N} , Dj is a neighbor to Di

}
.

Recall that the typical distance between two neighboring inclusions is defined as δij ≪ R, where i ∈ {1, . . . ,N} and j ∈ Ni.
Also, suppose that there are NΓ inclusions that neighbor the boundary, that is, Vi ∩ Γ ̸= ∅, i ∈ {1, . . . ,NΓ }. Then define the
typical distance between such an inclusion and the boundary Γ as

δi = dist {Di,Γ } , δi ≪ R.

The inclusions are numbered startingwith those that are adjacent to the boundaryΓ and counted clockwise. Hence, inclusion
Di neighbors the boundary if i ∈ {1, . . . ,NΓ }, and Di is an interior inclusion if i ∈ {NΓ + 1, . . . ,N}. Then the interparticle
distance parameter δ is defined by

δ = max
{
{δij : i ∈ {1, . . .,N} , j ∈ Ni}, {δi : i ∈ {1, . . .,NΓ }}

}
.

Since Γ is a circle, we parametrize it by angle θ ∈ [0, 2π ), and present a boundary potential ψ ∈ H1/2
† (Γ ) with H1/2

† (Γ )
defined in (35), as a truncated Fourier series

ψ(θ ) =

K∑
k=1

[ak cos kθ + bk sin kθ ] =:

K∑
k=1

ψk(θ ), (14)

for a sufficiently large K ≫ 1, which is chosen depending on the precision of the discretization of ψ on Γ . For the discreti-
zation of the boundary Γ , we choose M ≫ 1 points θi in such a way that NΓ points of this discretization will be the closest
to the inclusions Di, i ∈ {1, . . . ,NΓ } adjacent to Γ than any other points. Denote the set of indices of such points on Γ by
JΓ ⊂ {1, . . . ,M}with |JΓ | = NΓ . Note that due to the decomposition chosen in (14), we need to truncate the Fourier series
at K = M/2. Because of that, we discretize the boundary Γ with an even numberM of points θi.

The DtN mapΛDtN
: H1/2(Γ ) → H−1/2(Γ ) on the interface Γ corresponding to u defined by (1) is given by

⟨ψ,ΛDtNψ⟩ =

∫
Ω\D

|∇u|2 dx =

∫
Γ

ψ ΛDtNψ ds, (15)

with u|Γ = ψ (see Appendix A.1 for the detailed discussion on the DtN map). Then, the asymptotic representation for the
DtN map ΛDtN in the regime of scale separation between the small interparticle distance δ, the particles’ radius R, and the
size L of the domainΩ is given in the following theorem formulated and proven in [9].

Theorem 1. For a potential ψ of the form (14), the asymptotic representation for ΛDtN is

⟨ψ,ΛDtNψ⟩ = 2
[
Enet

[Ψ (ψ)] +
1
2
⟨ψ,Λ0ψ⟩ + R[ψ]

]
[1 + o(1)] , for δ ≪ R ≪ L. (16)

The first term of (16) is the discrete energy Enet
[Ψ (ψ)] of the resistor network given by

Enet
[Ψ (ψ)] = min

U∈RN

{ NΓ∑
m=1

σm

2
(Um − Ψm)

2
+

1
2

N∑
m=1

∑
n∈Nm

σmn

2
(Um − Un)2

}
, (17)

with vector Ψ (ψ) = (Ψ1, . . . ,ΨNΓ )
T of boundary potentials defined by

Ψm =

K∑
k=1

ψk(θκm )e
−

k
√
2Rδm
L , m ∈ {1, . . . ,NΓ }, κm ∈ JΓ , (18)

where θκm ∈ Γ , κm ∈ JΓ , is the point on Γ closest to the inclusion Dm, m ∈ {1, . . . ,NΓ }, and ψk is introduced in (14). The local
conductivities σmn and σm in (17) are defined by

σmn = π

√
R
δmn

if m ∈ {1, . . . ,N}, n ∈ Nm, σm = π

√
2R
δm

if m ∈ {1, . . . ,NΓ }, (19)

where δmn is the shortest distance between two neighboring particles Dm and Dn, and δm is the distance between Dm and
boundary Γ .

The second term in (16) is the quadratic form of the DtN map Λ0 of the reference medium, which is a homogeneous one with
uniform conductivity σ = 1, that is, without inclusions.

The last term R[ψ] of (16) is given by

R[ψ] =

NΓ∑
m=1

K∑
i,j=1

e−|i−j|
√
2Rδm
L Rm,i∧j

{
(aiaj + bibj) cos[(i − j)θm]

+ (biaj − aibj) sin[(i − j)θm]
}
,

(20)
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where i ∧ j = min{i, j}, ak, bk are Fourier coefficients of ψ from (14), and Rm,k is defined by

Rm,k =
σm

4

[√
2kδm
πL

Li1/2
(
e−

2kδm
L

)
− e−

2k
√
2Rδm
L

]
, k ∈ {1, . . . , K }, m ∈ {1, . . . ,NΓ }, (21)

in terms of the polylogarithm function Li1/2, see e.g. [13], and local conductivity σi of (19).

3.2. Construction of the discrete DtN map Λ

We rewrite (16) as

⟨ψ,ΛDtNψ⟩ = (ψ,Λψ) [1 + o(1)] with (ψ,Λψ) = 2Enet
[Ψ (ψ)] + ⟨ψ,Λ0ψ⟩ + 2R[ψ],

where ψ ∈ RM is the vector that corresponds to the FEM approximation of ψ ∈ H1/2(Γ ),Λ ∈ RM×M is a matrix-valued DtN
map approximation, hereafter referred to as a discrete DtN map, and (·, ·) is the standard dot-product in RM . In this section
we use the result of Theorem 1 to construct Λ. We discretize the boundary Γ with points θi, i ∈ {1, . . . ,M} as announced
above. Then the discrete DtN map Λ ∈ RM×M is a symmetric positive semi-definite matrix, whose rank is M − 1 and the
kernel spans the vector 1M ∈ RM of units. To find the entriesΛij of Λ, we use the approximation to quadratic form (16) and
the discrete analog of polarization identity (36) via the system of equations

ΨTΛΨ = Υ, (22)

where the columns of the matrix Ψ = [ψ1, . . . , ψM−1] ∈ RM×(M−1) form a basis in RM−1. These columns of the matrix Ψ

correspond to a set ofM−1 linearly independent functionsΞ := {ψ1, . . . , ψM−1} that are chosen as the firstM−1 functions
from the set

{
cos kθ
√
π
, sin kθ

√
π

}∞

k=1
of L2-basis, that is,

Ξ =

{
cos θ
√
π
, . . . ,

cos M
2 θ

√
π

,
sin θ
√
π
, . . . ,

sin(M2 − 1)θ
√
π

}
. (23)

Then the entries of the matrix Ψ = [Ψij] are given by

Ψij = ψj(θi), i ∈ {1, . . . ,M}, j ∈ {1, . . . ,M − 1}, θi ∈ Γ , ψj ∈ Ξ , (24)

hence,

Ψ =
1

√
π

⎛⎜⎜⎜⎜⎝
cos θ1 . . . cos

M
2
θ1 sin θ1 . . . sin(

M
2

− 1)θ1
...

. . .
...

...
. . .

. . .

cos θM . . . cos
M
2
θM sin θM . . . sin(

M
2

− 1)θM

⎞⎟⎟⎟⎟⎠ . (25)

Entries of the right hand sideΥ ∈ R(M−1)×(M−1) of (22) are computed by the asymptotic procedure described by Theorem1
and the discrete polarization identity:

Υi,j =
1
4

{(
ψ i + ψ j,Λ(ψ i + ψ j)

)
−
(
ψ i − ψ j,Λ(ψ i − ψ j)

)}
.

More specifically, the matrix Υ is given by

Υi,j =
1
2

{
Enet

[Ψ (ψi + ψj)] +
1
2
⟨ψi + ψj,Λ0(ψi + ψj)⟩ + R[ψi + ψj]

}
−

1
2

{
Enet

[Ψ (ψi − ψj)] +
1
2
⟨ψi − ψj,Λ0(ψi − ψj)⟩ + R[ψi − ψj]

}
, ψi, ψj ∈ Ξ .

We split Υi,j into a sum of three terms to treat them separately

Υ
(1)
i,j =

1
2

{
Enet

[Ψ (ψi + ψj)] − Enet
[Ψ (ψi − ψj)]

}
, ψi, ψj ∈ Ξ ,

Υ
(2)
i,j =

1
4

{⟨
ψi + ψj,Λ0(ψi + ψj)

⟩
−
⟨
ψi − ψj,Λ0(ψi − ψj)

⟩}
, ψi, ψj ∈ Ξ ,

Υ
(3)
i,j =

1
2

{
R[ψi + ψj] − R[ψi − ψj]

}
ψi, ψj ∈ Ξ .

(26)

Later, we show how much influence each term Υ
(ℓ)
i,j , ℓ ∈ {1, 2, 3}, has on Λ depending on k for the boundary function ψ

given by a single mode k ∈ {1, . . . , K }, see Table 1.
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Table 1
Energy terms for ψ = cos kθ .

k Enet
[Ψ(ψ)] ⟨ψ,Λ0ψ⟩ Rk[ψ]

1 17.72 3.14 0.23
10 9.51 31.42 32
50 0.6 157.08 57.39

100 0.02 314.16 44.14
200 1.88 · 10−5 628.32 25.42
500 1.8 · 10−14 1570.8 5.28

Once matrix Υ is constructed using (26), we recover the discrete DtN map Λ from (22). A detailed description in the
following subsections shows how to compute entries Υ (1)

i,j ,Υ
(2)
i,j and Υ (3)

i,j .

3.2.1. Evaluation of entries Υ (1)
i,j

In order to construct the Υ (1)
i,j by (26), which corresponds to the contribution of the resistor network, we need to consider

boundary potential vectorsΨ (ψi), Ψ (ψj) ∈ RNΓ . To specify entries ofΨ (ψi) = (Ψ i
1, . . . ,Ψ

i
NΓ

), we suppose that the boundary
potential is given by a single Fourier mode ψ = ψi ∈ Ξ , i ∈ {1, . . . ,M − 1}. Let ki ∈ {1, . . . , K } be the Fourier frequency
mode of ψi ∈ Ξ , that is,

ki =

{
i, if i ≤ M/2
i − M/2, if i > M/2 (27)

and θκm ∈ Γ , κm ∈ JΓ , be the point of discretization of Γ that is adjacent to the neighboring particle Dm, m ∈ {1, . . . .NΓ }.
With this, entries of Ψ (ψi) are given by

Ψ i
m = ψi(θκm )e

−
ki

√
2Rδm
L , κm ∈ JΓ , m ∈ {1, . . . ,NΓ }, i ∈ {1, . . . ,M − 1},

where δm is the distance betweenDm and Γ , R is the radius of the particle, and L is the radius ofΩ . We also recall that vector
Ψ (ψi) forms the ith column of the matrix Ψ.

With two boundary potential vectors Ψ (ψi), Ψ (ψj) ∈ RNΓ chosen this way, one can find minimizers U i
, U j

∈ RN of the
discrete energy (17), respectively, corresponding to these boundary potentials. Finally, applying the results of lemmas stated
and proved in Appendix A.2 for the discrete energy (17), we conclude that

Υ
(1)
i,j =

1
2

{ NΓ∑
m=1

σm

2

[
(U i

m + U j
m) − (Ψ i

m + Ψ j
m)
]2

+
1
2

N∑
m=1

∑
n∈Nm

σmn

2

[
(U i

m + U j
m) − (U i

n + U j
n)
]2

−

NΓ∑
m=1

σm

2

[
(U i

m − U j
m) − (Ψ i

m − Ψ j
m)
]2

−
1
2

N∑
m=1

∑
n∈Nm

σmn

2

[
(U i

m − U j
m) − (U i

n − U j
n)
]2 }

,

where U i
m is the mth entry of the vector U i

∈ RN .

3.2.2. Evaluation of entries Υ (2)
i,j

Consider two functionsψi, ψj ∈ Ξ , i, j ∈ {1, . . . ,M−1}, and recall thatΛ0 is the DtNmap of the referencemediumwith
uniform conductivity σ = 1. We are going to compute ⟨ψi,Λ0ψj⟩ via ⟨ψi ±ψj,Λ0(ψi ±ψj)⟩ using the polarization identity
(36), where the quadratic form associated withΛ0 is defined by

⟨ψi,Λ0ψi⟩ =

∫
Ω

|∇u(x)|2 dx, (28)

with the function u ∈ H1(Ω) being a solution to{
−∇ · [∇u(x)] = 0, x ∈ Ω,

u = ψi x ∈ Γ ,

where ψi ∈ Ξ . The solution to this problem in the diskΩ could be found explicitly using the Poisson formula, that yields

Υ
(2)
i,j =

{
kiL2ki , if i = j
0, if i ̸= j

where ki is the frequency mode of ψi ∈ Ξ defined by (27), and L is the radius of the diskΩ .
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Fig. 2. The domainΩ with highly conducting inclusions Di , i ∈ {1, . . . ,N}.

3.2.3. Evaluation of entries Υ (3)
i,j

Lastly, we find values Υ (3)
i,j . First, we consider the case of i, j ≤ M/2, that is, when ψi =

1
√
π
cos iθ , ψj =

1
√
π
cos jθ , and

apply (26), (20) to obtain

Υ
(3)
i,j =

2
π

NΓ∑
m=1

e−|i−j|
√
2Rδm
L Rm,i∧j cos(i − j)θm, (29)

for i, j ≤ M/2, where Rm,k is defined by (21). Formula (29) also defines entries Υ (3)
i+M/2,j+M/2, i, j < M/2, that is, when ψi =

1
√
π
sin iθ , ψj =

1
√
π
sin jθ . Finally, we treat cases of Υ (3)

i,j+M/2, i ≤ M/2, j < M/2, when ψi =
1

√
π
cos iθ , ψj+M/2 =

1
√
π
sin jθ ,

and Υ (3)
i+M/2,j, i < M/2, j ≤ M/2, when ψi+M/2 =

1
√
π
sin iθ , ψj =

1
√
π
cos jθ to have

Υ
(3)
i,j+M/2 = Υ

(3)
i+M/2,j = −

2
π

NΓ∑
m=1

e−|i−j|
√
2Rδm
L Rm,i∧j sin(i − j)θm,

using (20), (26) as well.

3.3. Modification of the Schur complement system (4)

WithmatrixΛ constructed via procedure discussed in previous sections, one obtainsΛuΓ , which is an approximation for
normal derivative on the interface Γ . Then denote byΠΛuΓ an approximation for the weak normal derivative on Γ , where
Π is the matrix corresponding to the integral over the interface. Hence,

ΠΛuΓ = λ
⋆

1Γ , (30)

where λ
⋆

1Γ is an approximation of weak normal derivative on Γ . Note that the FEM approximation for the weak normal
derivative λ1Γ of (7) differs from the newly introduced one λ

⋆

1Γ of (30). However, we expect them to be close, which drives
our choice for an approximation for thematrix S(1), namely byΠΛ. Sowemodify the Schur complement system (4) to obtain
the following linear system

(ΠΛ + S(2))uΓ = g (2)
Γ . (31)

Similarly to the discussion of Section 2.2.3, it can be solved using the PCG with the preconditioner S(2).

4. Numerical experiments

4.1. Setup

In this section we demonstrate the efficiency of our heterogeneous domain decomposition approach. Let the domainΩ
be a unit disk of radius L = 1 with N = 19 inclusions inside. All inclusions are identical disks of radii R = 0.198, and they
are evenly distributed inside Ω , see Fig. 2. The smallest distance between neighboring inclusions Di and Dj is δij = 0.004,
while the distance between inclusions and the boundary ∂Ω = Γ is δi = 0.002.

Suppose that the disk Ω is embedded in a disk Ω̂ of radius L̂ = 3, see Fig. 3. Our domain decomposition method is
applied to the problem (1) defined in this Ω̂ using the procedure described in Section 2.2.3. In particular, we solve (31) for
the approximation uΓ of the solution on the interface Γ .
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Fig. 3. The domain Ω̂ partitioned into subdomainsΩ andΩ ′ .

We discretize the interface Γ with M = 912 points selected in a prescribed way. First, the closest points on Γ to the
boundary neighboring inclusions are required to be in a discretization set of the points. Second,we select points equidistantly
over Γ , that is, θi =

2π
M (i − 1), i ∈ {1, . . . ,M}. Following the procedure described in Section 3.2 we obtain the matrix

Λ ∈ RM×M , which is symmetric and positive semi-definite.

4.2. Numerical results

First, we examine the three asymptotic regimes of parameters R, δ and k that have been distinguished in [9]. In particular,
the observations of [9] are follows.When the boundary potentialψ has lowoscillations, the resistor network gets excited and
Enet of (17) determines the leading order of the energy. If the boundary potentialψ is highly oscillatory (k ≫ 1), the network
plays no role, because it is not excited. In this case, the energy is approximately equal to that in the reference medium of
conductivity 1, described byΛ0 of (28). The ‘resonant term’R[ψ] of (20)–(21) plays an important role in the approximation
of energy when k gets intermediate values. Table 1 shows numerical illustration on how much influence each term has for
the boundary potential ψ given by a single Fourier mode, that is, ψ = cos kθ .

Second, we perform our domain decompositionmethod for the setup described above. For this, the standard pcg function
of MATLAB R⃝ with the preconditioner S(2) is used to solve (31) with the initial guess u0

Γ is zero vector, and the stopping
criteria

∥(ΠΛ + S(2))un
Γ − g (2)

Γ ∥2

∥g (2)
Γ ∥2

≤ tol = 10−6,

and the relaxation parameter ϑ = 1/2.
Because the analytical solution of (1) is not available, we compare the solution uDD

Γ obtained by the domain decomposition
method described above to the solution uPL

Γ , produced by the technique from [5], where PL stands for the preconditioned
Lancsoz. We run experiments for different boundary potentials g , see Figs. 4–6. Table 2 displays the relative error between
solutions of our domain decomposition (DD) and benchmarked preconditioned Lancsoz (PL) methods and the CPU times for
both algorithms, that we discuss below.

From Table 2 we conclude that all solutions of our HDDM have demonstrated the relative error that is less than 7%, which
is in agreement with the analysis of [9]. To the best of our knowledge, this is a very reasonable result for the hybrid method
whose one essential component is of asymptotic nature. The discrepancies between our solution and the references one,
which are clearly seen on the provided figures, correspond to the regions of the computational domain which were ignored
in the asymptotic procedure construction, see [9] for the details. More specifically, a perfect match between the reference
and proposed solutions is demonstrated, for example, at the points of the localmaxima of both graphs for e.g. θ ∈ (−2,−1) in
Fig. 4. These points of Γ lie within the computational domain where the asymptotic representation of Theorem 1 was done.
However, the graph of the reference solution is slightly lower than one of the proposed HDD solution at two points of their
local minima θ ∈ (−2,−1) in Fig. 4. These points lie in the domain that was completely ignored in the asymptotic procedure
of [9] and is not taken into account in the asymptotic representation of Theorem 1. Similar discrepancies are observed at the
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Table 2
Relative error between uDD

Γ and uPL
Γ , and CPU time in seconds for the domain

decomposition (DD) method of this paper and preconditioned Lancsoz (PL)
method of [5].

g ∥uDDΓ −uPLΓ ∥2

∥uPLΓ ∥2
CPU (DD) CPU (PL)

y3 6.82% 0.96 s 3959.47 s
x 6.78% 0.99 s 3898.81 s
3x + y5 6.86% 0.94 s 3847.92 s

Fig. 4. Solutions uDD
Γ and uPL

Γ for g = y3 .

other points of local (max)minima of two graphs that cumulatively lead to a 7% error reported above, due to fact that these
points lie in the domain which is disregarded by the asymptotic procedure of Theorem 1 used in our construction.

Although the both algorithms – the reference and the proposed ones – converge to a solution with the desired tolerance
in a couple of dozens iterations, each iteration of our HDDM is significantly cheaper. To demonstrate this, we compare the
CPU times of both numerical schemes performed on the same server, where the reported time corresponds to an iterative
procedure itself, and does not include preprocessing steps. We remark that the main advantage of the method proposed
above is that for a given geometry of the computational domain the evaluation of Λ is done offline, that is, once and for all
boundary potentials.

We finally remark about the convergence of the employed method. Recall that in our construction we have utilized the
Dirichlet–Neumann algorithm whose comprehensive convergence analysis can be found in [10]. In particular, the chosen
iterative method is optimal as its rate of convergence is independent of the discretization size h.

Once solutions on the interface are found one can retrieve internal components of the solution. Solution uDD
2 is defined

by (6). Solution inside domainΩ and outside of a boundary layer (see [9] for the rigorous definition of the boundary layer)
can be found as a linear interpolation of constant potentials on the inclusions U i for i ∈ {1, . . . ,N}. Inside the boundary layer
within Ω , one can adopt an approximation of the solution given by formulas (4.54), (4.56), (4.57) in [9]. Since uDD

Γ and uPL
Γ

are close and the matrix of system (2) is positive definite, internal solutions uDD
l and uPL

l , l ∈ {1, 2}, in the corresponding
subdomainsΩ andΩ ′ are close.

However, when the typical distance δ between particles is small compared their sizes as in our case, it is unpractical to
evaluate u1 by direct application of the formula (6) for any number N of particles, due to extremely fine meshes in the tiny
gaps between particles, hence, computationally expensive inversion of the matrix S(1). For the similar reasons, the approach
developed in this paper can be useful in the construction of the multiscale methods, in which the precise solution inside the
fine grid cell is not sought but rather an averaged response on the boundary.

5. Conclusions

This paper focuses on a construction of the efficient numerical scheme that can be used to solve high contrast PDEs
(1) with rapidly oscillating coefficients. In particular, a high contrast composite medium that consists of the homogeneous
part and a cluster of highly conducting particles close to one another was considered. A HDDM method that combines
asymptotics by [9] in one subdomain with a FEM approximation in the other subdomain was proposed. The choice for the
HDDM methodology was motivated by the fact that a FEM discretization in the high contrast subdomain is not feasible or
computationally expensive.

Weworkwith a two-dimensional domain sincewewere applying the results that were readily available by [9] developed
for two dimensions. As an extension of asymptotics of [9] is possible for three dimensions, so is for our HDDM. All other
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Fig. 5. Solutions uDD
Γ and uPL

Γ for g = x.

Fig. 6. Solutions uDD
Γ and uPL

Γ for g = 3x + y5 .

assumptions such as shapes of the domain Ω and particles Di also inessential as the asymptotic formulas of [9] were
dependent on curvatures of the boundaries at the points of the closest contact.

Numerical experiments of Section 4 demonstrate good qualitative results that provides hope that the proposed method-
ologymight be applicable in designingmultiscale strategies where the fine-scale features of the problem parameters cannot
be resolved by the coarse solvers.
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Appendix

A.1. Dirichlet-to-Neumann mapΛDtN

In this paper, we consider the electrostatics PDE

− ∇ · [σ (x)∇u(x)] = 0, x ∈ Ω, (32)

with a high contrast and rapidly varying nonnegative coefficientσ (x) in a bounded, simply connected domainΩ ⊂ Rd, d ≥ 2,
that has smooth boundary. ‘Rapidly varying’means that σ fluctuates on a length scale that ismuch smaller than the diameter
ofΩ , and ‘high contrast’ means that the ratio of the largest and smallest value of σ inΩ is very large, even infinite. Eq. (32)
relates the voltage u and the associated electric field ∇u to the resulting current σ (x)∇u, where electrical conductivity σ (x)
is a positive symmetric matrix-valued function inΩ . This equation also determines a DtN mapΛDtN that takes an arbitrary
boundary voltage u on the boundary Γ = ∂Ω to the associated current flux on Γ :

ΛDtN
: u(x) → σ (x)∇u(x) · n(x), x ∈ Γ , (33)
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where n(x) is the outward unit normal to Γ . The DtN mapΛDtN is ultimately connected with the spectral properties of the
corresponding differential operator in (32), and has attracted a lot of attention in the last decade, see e.g. [14] and references
therein. Consider the solution u ∈ H1(Ω) of (32) satisfying the Dirichlet data:

u(x) = ψ(x), x ∈ Γ , where ψ ∈ H1/2(Γ ) is some given function. (34)

Recall that ifψ is constant then the solution u of (32), (34) is also constant, so it is natural to restrict attention to the subspace

H1/2
† (Γ ) = H1/2(Γ ) ∩

{
u ∈ L2(Γ ) :

∫
Γ

u ds = 0
}
. (35)

Then the solution u ∈ H1(Ω) of (32), (34) with ψ ∈ H1/2
† (Γ ) also solves the variational problem

Eψ := min
u|Γ =ψ

∫
Ω

σ (x)∇u(x) · ∇u(x) dx,

and the minimal energy Eψ is determined byΛDtN since∫
Ω

σ (x)∇u · ∇u dx =

∫
Γ

ψ ΛDtNψ ds =: ⟨ψ,ΛDtNψ⟩.

The converse is also true, namely, the minimum energy Eψ for all Dirichlet data ψ determines the boundary map ΛDtN

through the polarization identity:

For all ψ, ϕ ∈ H1/2
† (Γ ) : 4

∫
Γ

ψ ΛDtNϕ ds = ⟨(ψ + ϕ),ΛDtN(ψ + ϕ)⟩ − ⟨(ψ − ϕ),ΛDtN(ψ − ϕ)⟩. (36)

With all the above, the map ΛDtN
: H1/2

† (Γ ) → H−1/2
† (Γ ) with H−1/2

† (Γ ) = H−1/2(Γ ) ∩
{∫
Γ
u ds = 0

}
, is positive and

symmetric with respect to the L2-inner product, and invertible. Hence, it defines a positive-definite quadratic form

⟨ψ,ΛDtNϕ⟩ =

∫
Γ

ψ ΛDtNϕ ds =

∫
Ω

σ (x)∇u(x) · ∇v(x) dx

on H1/2
† (Γ ), where u, v solve (32) with Dirichlet boundary conditions ψ , ϕ on Γ , respectively.

The simplest special case of (32), when σ (x) ≡ 1 with the solution u ∈ H1(Ω) being harmonic, is extensively studied.
Another well-understood case where a lot is known about the energy that defines the associated DtN map, is when σ (x) is
uniform except for a constant conductivity σ (x) = σo in some part of the domain D ⊂ Ω . The least studied and challenging
case is when σo → ∞ onD that describes the so-called high contrast problem (see [15] for the relation between the DtNmap
of high contrast problem and the limiting case of σo = ∞ sometimes referred to as an infinite contrast case). In this paper,
we study this latter case, whose mathematical formulation is given in (1), that is, we seek for an approximation of the DtN
map of two phase composites with perfectly conducting (σ = ∞) inclusions in a medium of the unit conductivity (σ = 1).
The relation between solutions of high but finite contrast case and infinite contrast one has been investigated in [16].

A.2. Auxiliary facts

In this section, we will prove some auxiliary facts used above.

Lemma 1. Consider the local conductances σij, i ∈ {1, . . . ,N}, j ∈ Ni, and σi, i ∈ {1, . . . ,NΓ } given by (19) and the vector of
boundary potentialΨ [ψ] ∈ RNΓ by (18). Then a vector U ∈ RN is the minimizer of (17) if and only if U is the solution of equation
MU = P , where the entries of the matrix M ∈ RN×N are defined by

Mij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σi +
∑
l∈Ni

σil, if i ∈ {1, . . . ,NΓ }, i = j∑
l∈Ni

σil, if i ∈ {NΓ + 1, . . . ,N}, i = j

−σij, if i ∈ {1, . . . ,N}, j ∈ Ni
0, if i ∈ {1, . . . ,N}, j ̸∈ Ni

(37)

and entries of the vector P ∈ RN are by

Pi =

{
σiΨi, if i ∈ {1, . . . ,NΓ },

0, if i ∈ {NΓ + 1, . . . ,N}.
(38)
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Proof (⇒). To minimize (17) we compute the partial derivatives of Enet for all i ∈ {1, . . . ,N} and set them equal to zero:

0 =
∂Enet

∂Ui
=

⎧⎪⎪⎨⎪⎪⎩
σi(Ui − Ψi) +

∑
j∈Ni

σij(Ui − Uj), if i ∈ {1, . . . ,NΓ },∑
j∈Ni

σij(Ui − Uj), if i ∈ {NΓ + 1, . . . ,N},

that gives rise to the following equations with respect to the entries Ui of the vector U:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝σi +∑
j∈Ni

σij

⎞⎠Ui −
∑
j∈Ni

σijUj = σiΨi, if i ∈ {1, . . . ,NΓ },

∑
j∈Ni

σijUi −
∑
j∈Ni

σijUj = 0, if i ∈ {NΓ + 1, . . . ,N}.

These equations yield (37) and (38).
(⇐) To establish the sufficient condition, we have to prove that thematrixR = [Rij] of second derivativesRij =

∂2Enet

∂Ui∂Uj
whose

entries are

Rij =

⎧⎪⎨⎪⎩σi +
N∑

m=1

σim, if i = j,

−σij, if i ̸= j

is positive-definite. All inclusions are assumed to be adjacent to the boundary and each other (if not, some σi and σij would
be zero that does not affect positive-definiteness of the matrix).

We show that this matrix is positive-definite by induction over the number of inclusions and proceed by induction. Then
for the case of two inclusions, that is, for α ∈ R, we consider the quadratic form(

1 α
) (σ1 + σ11 + σ12 −σ12

−σ12 σ2 + σ12 + σ22

)(
1
α

)
= σ1 + σ11 + σ12 − 2ασ12 + α2(σ2 + σ12 + σ22).

The minimizer of this quadratic form is

αmin =
σ12

σ2 + σ12 + σ22
,

and the minimum of quadratic form is
σ1σ2 + σ1σ12 + σ1σ22 + σ11σ2 + σ11σ12 + σ11σ22 + σ12σ2 + σ12σ22

σ2 + σ12 + σ22
> 0.

So quadratic form is positive-definite for any α ∈ R in the case of two inclusions. Assume that matrix is positive definite
for l inclusions, that is, for all α ∈ Rl or

l∑
i=1

l∑
j=1

αiRijαj > 0. (39)

Now we proceed by induction argument and consider the quadratic form corresponding to l + 1 inclusions:

(
αT 1

)⎛⎜⎝ R
∗

−β

−βT σl+1 +

l+1∑
i=1

σi l+1

⎞⎟⎠(α1
)
, (40)

where β = (σ1 l+1, . . . , σl l+1) ∈ Rl and

R
∗

ij =

{
Rij, if i ̸= j,
Rij + σi l+1, if i = j.

Expanding (40), we have
l∑

j=1

αj

l∑
i=1

αiR
∗

ij − 2
l∑

i=1

αiβi + σl+1 +

l+1∑
i=1

σi l+1

=

l∑
j=1

αj

(
l∑

i=1

αiRij + αjσj l+1

)
− 2

l∑
i=1

αiσi l+1 + σl+1 +

l+1∑
i=1

σi l+1
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=

l∑
j=1

αj

∑
i=1

αiRij +

l∑
i=1

α2
i σi l+1 − 2

l∑
i=1

αiσi l+1 + σl+1 + σl+1 l+1 +

l∑
i=1

σi l+1

=

l∑
j=1

αj

l∑
i=1

αiRij + σl+1σl+1 l+1 +

l∑
i=1

σi l+1(α2
i − 2αi + 1).

Since α2
i − 2αi + 1 ≥ 0 and by the inductive step (39), we obtain that the quadratic form (40) is positive for all α ∈ Rl. Thus,

matrix R is positive definite for any number of inclusions and U is indeed the minimizer of (17). □

Lemma 2. If the boundary potential Ψ in (17) is a sum of two terms Ψ = Ψ
(1)

+Ψ
(2)

then the minimizer of (17) is a sum of two
terms U = U (1)

+ U (2), where U (i) is a minimizer of (17) with boundary potential Ψ
(i)
, i ∈ {1, 2}.

Proof. By Lemma 1 minimizers of (17) with boundary potentials Ψ
(1)

and Ψ
(2)

satisfy MU (1)
= P (1) and MU (2)

= P (2),
respectively. So MU (1)

+ MU (2)
= P (1)

+ P (2). Hence, by the same lemma, U (1)
+ U (2) is a minimizer of (17) corresponding

to the boundary potential Ψ
(1)

+ Ψ
(2)
. □
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