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COMPARISONS OF THREE KINDS OF PLANE WAVE METHODS FOR THE
HELMHOLTZ EQUATION AND TIME-HARMONIC MAXWELL EQUATIONS

WITH COMPLEX WAVE NUMBERS ∗

LONG YUAN † AND QIYA HU ‡

Abstract. In this paper we are concerned with some plane wave discretization methods of the Helmholtz
equation and time-harmonic Maxwell equations with complex wave numbers. We design two new variants of the
variational theory of complex rays and the ultra weak variational formulation for the discretization of these types of
equations, respectively. The well posedness of the approximate solutions generated by the two methods is derived.
Moreover, based on the PWLS-LSFE method introduced in [16], we extend these two methods ( VTCR method
and UWVF method ) combined with local spectral element to discretize nonhomogeneous Helmholtz equation and
Maxwell’s equatons. The numerical results show that the resulting approximate solution generated by the UWVF
method is clearly more accurate than that generated by the VTCR method.

Key words. Helmholtz equation, time-harmonic Maxwell’s equations, well posedness, electromagnetic wave,
plane wave basis, error estimates

AMS subject classifications. 65N30, 65N55.

1. Introduction. The plane wave method, which fall into the class of Trefftz methods
[26], was first introduced to solve the Helmholtz equation. Examples of this approach include
the Variational Theory of Complex Rays (VTCR) introduced in [22, 23], the Ultra Weak Vari-
ational Formulation (UWVF) (see [4, 5, 28]), the plane wave Lagrangian multiplier (PWLM)
method [7, 25], the plane wave discontinuous Galerkin methods (PWDG) (see [9, 12, 31]) and
the weighted plane wave least-squares (PWLS) method (see [14, 21, 29, 30, 27]). The plane
wave discretization method have been extended to discretization of time-harmonic Maxwell
equations recently (see [13, 15, 17]). The plane wave methods have an important advan-
tage over the other methods for discretization of the Helmholtz equation and time-harmonic
Maxwell equations: the resulting approximate solutions have higher accuracies, owing main-
ly to the choice of the basis functions satisfying the governing differential equation without
boundary conditions.

Recently, the UWVF method was extended to solve Maxwell’s equations in [17, 18].
The studies [17, 18] were devoted to computing the electric and magnetic fields in a non-
absorbing medium or within the PML. It was pointed out in [17] (p.733) that the permittivity
of the material in the computational domain for Maxwell’s equations is, in general, com-
plex valued (i.e., the material is an absorbing medium). Moreover, the study [17] provides
a procedure based on the UWVF method to compute the fields in absorbing media. This
procedure shows that a postprocessing step is needed in the case of an absorbing medium.
In the recently published work [15], the PWLS method was extended to discretize the time-
harmonic Maxwell equations in absorbing media, and the numerical results indicate that the
approximate solution generated by the method is much more accurate than that generated by
the UWVF method. Moreover, the VTCR method and PWDG method have not been extend-
ed to discretize the Helmholtz equation and time-harmonic Maxwell equations with complex
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wavenumbers.
In this paper, the new variants of the VTCR method and the UWVF method are proposed

to discretize the Helmholtz equation and time-harmonic Maxwell equations with complex
wavenumbers. The new UWVF method differs from the existing UWVF method (see [4, 17])
in the sense that the trial function space is different from the test function space. Moreover,
we introduce a way following [16] to discretize nonhomogeneous Helmholtz equation and
Maxwell’s equatons by these methods combined with local spectral element. For conve-
nience, we call these two methods as VTCR-LSFE and UWVF-LSFE methods, respectively.
Rates of convergence for the UWVF-LSFE method are proved and verified numerically in one
special case of real wavenumbers. Numerical experiments show that the new UWVF method
is obviously superior to the new VTCR method, and the UWVF method is comparable to the
PWLS method in the numerical accuracy.

The paper is organized as follows: In Section 2, we describe the proposed VTCR method
for the Helmholtz equation and time-harmonic Maxwell’s equations with complex wavenum-
bers. In Section 3, we describe the proposed UWVF method for the Helmholtz equation and
time-harmonic Maxwell’s equations with complex wavenumbers. In Section 4, we explain
how to discretize the resulting variational problems. In Section 5, we introduce a way to
discretize nonhomogeneous Helmholtz equation and Maxwell’s equatons by these methods
combined with local spectral element. Finally, in Section 6, we report some numerical results
to confirm the effectiveness of several methods.

2. A new variant of the VTCR method for the equations with complex wavenum-
bers. In this section we introduce a new variational formulation for the Helmholtz equation
with complex wave numbers.

The considered variational formulations are based on a triangulation of the solution do-
main. Let Ω be the underlying domain in Rn (n = 2, 3). For convenience, assume that Ω is a
bounded polygon or polyhedron. Let Ω be decomposed into the union of some subdomains
in the sense that

Ω =

N∪

k=1

Ωk, Ωl

∩
Ω j = ∅ for l , j,

where each Ωk is a polygon (for two-dimensional case) or polyhedron (for three-dimensional
case). LetTh denote the triangulation comprising the elements {Ωk}, where h is the meshwidth
of the triangulation. As usual, we assume that Th is quasi-uniform and regular. Define

Γl j = ∂Ωl

∩
∂Ω j for l , j

and

γk = Ωk

∩
∂Ω (k = 1, . . . ,N), γ =

N∪

k=1

γk.

2.1. The case of Helmholtz equation. Consider the Helmholtz equation with the mixed
boundary conditions.

(2.1)



−∆u − κ2u = 0 in Ω,
u = gd on γd,
∂u
∂n = gn on γn,

∂u
∂n + iκu = gr on γr.
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The outer normal derivative is referred to by ∂n and the wavenumber by κ. In particular, if κ
is complex valued, then the material is known as a lossy medium; otherwise the material is
called a non-lossy medium (see [19]).

Each element Ωk is subjected to excitations applied along ∂Ωk = γd
∪
γn

∪
γr

∪
γk j in

the form of a Dirichlet condition over γd, a Neumann condition over γn, a Robin condition
over γr. Moreover, gd ∈ L2(γd), gn ∈ L2(γn), gr ∈ L2(γr).

Set u|Ωk = uk (k = 1, · · · ,N). Then the reference problem to be solved consists in finding
the local acoustic pressures uk ∈ H1(Ωk) such that



−∆uk − κ2uk = 0 in Ωk,
u = gd on γd ⊂ ∂Ωk,
∂u
∂n = gn on γn ⊂ ∂Ωk,
∂u
∂n + iκu = gr on γr ⊂ ∂Ωk,

(k = 1, 2, . . . ,N),(2.2)

and
{

uk − u j = 0 over Γk j,
∂nk uk + ∂n j u j = 0 over Γk j.

(k , j; k, j = 1, 2, · · · ,N).(2.3)

The first equation of (2.2) is the homogeneous Helmholtz equation, The other equations
of (2.2) and the equations (2.3) are related to the boundary condition of the problem and the
continuity conditions at the interface between the subcavities Ωk and Ω j.

Let V(Ωk) denote the space of the functions which verify Helmholtz’s homogeneous
equation (2.1) on the cavity Ωk:

(2.4) V(Ωk) = {vk ∈ H1(Ωk); ∆vk + κ
2vk = 0}.

Define

(2.5) V(Th) =
N∏

k=1

V(Ωk).

Following the original VTCR method ([22, 23]), a new variant for the case of the complex
wavenumbers can be expressed as follows: find u ∈ V(Th) such that

Re
{∫

γd

(u − gd) · i∂nvds +
∫

γn

i(∂nu − gn) · vds

+

∫

γr

1
2

((
(∂n + iκ)u − gr

)
· −1
κ
∂nv + i

(
(∂n + iκ)u − gr

)
· v

)
ds

+
∑

j,k

1
2

∫

Γk j

(
(uk − u j) · i(∂nk vk − ∂n j v j) + i(∂nk uk + ∂n j u j) · (vk + v j)

)
ds

}
= 0,∀v ∈ V(Th),

(2.6)

where Re{⋄} designate the real part of the complex quantity ⋄.
Theorem 2.1. Let u ∈ V(Th), Im(κ) < 0. For k = 1, · · · ,N, assume that uk ∈ H1+δk (Ωk)

with δk > 1
2 such that ∂nk uk ∈ L2(∂Ωk). Then the reference problem (2.2) and (2.3) is equiva-

lent to the new variational problem (2.6).
Proof. It is clear that the solution of the problem (2.2) and (2.3) is also the solution of

the variational problem (2.6). Therefore one needs only to verify the uniqueness of solution
of the problem (2.6).
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The verification is standard. Let us consider two solutions u = (u1, · · · , uN), u′ =
(u′1, · · · , u′N) of the variational problem (2.6), and let ũ = (ũ1, · · · , ũN) denote the difference
between the two solutions. Because of (2.6), these two solutions must verify the following
equation:

Re
{∫

γd

ũ · i∂nvds +
∫

γn

i∂nũ · vds +
∫

γr

1
2

(
(∂n + iκ)ũ · −1

κ
∂nv + i(∂n + iκ)ũ · v

)
ds

+
∑

j,k

1
2

∫

Γk j

(
(ũk − ũ j) · i(∂nk vk − ∂n j v j) + i(∂nk ũk + ∂n j ũ j) · (vk + v j)

)
ds

}
= 0,∀v ∈ V(Th).

(2.7)

Taking v = ũ, (2.7) simplifies to

Re
{ N∑

k=1

∫

∂Ωk

ũk · i∂nũkds +
∫

γr

1
2

(
− 1
κ
∂nũ · ∂nũ − κũ · ũ

)
ds

}
= 0.(2.8)

The Strokes formula applied to each subcavity Ωk yields

Re
{ N∑

k=1

(−i)
∫

Ωk

(
∇ũk · ∇ũk + ũk · △ũk

)
dx +

∫

γr

1
2

(
− 1
κ
∂nũ · ∂nũ − κũ · ũ

)
ds

}
= 0,(2.9)

which, since ũ ∈ V(Th), becomes

Re
{ N∑

k=1

(−i)
∫

Ωk

(
∇ũk · ∇ũk − k

2
ũk · ũk

)
dx +

∫

γr

1
2

(
− 1
κ
∂nũ · ∂nũ − κũ · ũ

)
ds

}
= 0.(2.10)

Set κ = κ1 + iκ2, then (2.10) simplifies trivially to

N∑

k=1

∫

Ωk

2κ1κ2ũk · ũkdx − 1
2

∫

γr

(
κ1ũ · ũ + κ1

κ21 + κ
2
2

∂nũ · ∂nũ
)
ds = 0.(2.11)

By the assumption Im(κ) < 0, we can deduce that ũk = 0 in Ωk. Thus, by the assumption
uk ∈ H1+δk (Ωk) with δk > 1

2 , we obtain the function ũ satisfies the interface continuity (2.3)
and verifies the initial Helmholtz reference problem (2.2) (note that ũ ∈ V(Th)) with the
homogeneous boundary condition. Therefore ũ vanishes on Ω, which proves the uniqueness
of solution (2.6).

2.2. The case of Maxwell’s equation. In this section we recall the first-order system of
Maxwell equations and derive the corresponding Variational Theory of Complex Rays based
on triangulation.

Suppose Ω is a bounded polyhedral domain in R3. We want to compute a numerical
approximation of the electromagnetic field (E, H) solution of the harmonic three-dimensional
(3D) homogeneous Maxwell equations written as a first-order system of equations (refer to
[17]):

(2.12)

∇ × E − iωµH = 0
∇ ×H + iωεE = 0

in Ω

with the following mixed boundary conditions

(2.13)



− E × n = gd on γd,

H × n × n = gn on γn,

− E × n + σ(H × n) × n = gr on γr.
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Here, ω > 0 is the temporal frequency of the field, and g ∈ L2
T(∂Ω). The material coefficients

µ > 0, ε and σ =
√
µ
|ε| are understood as usual (refer to [17]). In particular, if ε is complex

valued, then the material is known as an absorbing medium; otherwise the material is called
a non-absorbing medium (see [17]).

For each element Ωk, let E|Ωk = Ek,H|Ωk = Hk (k = 1, . . . ,N). As usual, we assume that
ω, µ and ε are constants on each element. Then the reference problem (2.12) to be solved
consists of finding the local electric field (Ek,Hk) such that

(2.14)

∇ × Ek − iωµHk = 0
∇ ×Hk + iωεEk = 0

in Ωk,

namely,

(2.15) ∇ × (∇ × Ek) − κ2Ek = 0 in Ωk

with the complex wavenumber κ = ω
√
µε, and the interface conditions (note that nl = −n j)

{
El × nl + E j × n j = 0
Hl × nl +H j × n j = 0 on Γl j (l < j; l, j = 1, 2, . . . ,N).(2.16)

The boundary condition becomes

(2.17)



− Ek × nk = gd on γd,k = γd ∩ ∂Ωk,

Hk × nk × nk = gn on γn,k = γn ∩ ∂Ωk,

− Ek × nk + σ(Hk × nk) × nk = gr on γr,k = γr ∩ ∂Ωk.

Define the trial space

(2.18) U(Th) =
{
u =


E
H

 ,u|Ωk = uk

∣∣∣∣∣
{ ∇ × Ek − iωµHk = 0
∇ ×H + iωεE = 0 in Ωk

}
.

Based on the above equivalence and the procedure of VTCR method for the Helmholtz e-
quation with complex wavenumbers, we define the new variational formulation: find (E,H) ∈
U(Th), such that

Re
{∫

γd

(−E × n − gd) · iξ × n × nds +
∫

γn

i(H × n × n − gn) · (−ψ × n)ds

+

∫

γr

1
2

((
− E × n + σ(H × n) × n − gr

)
· iξ × n × n

+ i
(
− E × n + σ(H × n) × n − gr

)
· 1
σ

(−ψ × n)
)
ds

+
∑

j,k

1
2

∫

Γk j

(
(−Ek × nk − E j × n j) · i

(
(ξk × nk) × nk + (ξ j × n j) × n j

)

+ i
(
(Hk × nk) × nk − (H j × n j) × n j

)
· (−ψk × nk +ψ j × n j)

)
ds

}
= 0,∀(ψ, ξ) ∈ U(Th).

(2.19)

Theorem 2.2. Let (E,H) ∈ U(Th),Re(ε) < 0. For k = 1, · · · ,N, assume that Ek ∈
H1+δk (Ωk) with δk > 1

2 such that 1
iωµ (∇ × Ek) × nk × nk = Hk × nk × nk ∈ L2(∂Ωk). Then the

reference problem (2.14)-(2.17) is equivalent to the new variational problem (2.19).
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Proof. It is clear that the solution of the problem (2.14)-(2.17) is also the solution of the
variational problem (2.19). Therefore one needs only to verify the uniqueness of solution of
the problem (2.19).

Let us consider the following two solutions of the variational problem

(2.20)


E = (E1, . . . ,EN)
H = (H1, . . . ,HN)

 and


E′ = (E′1, . . . ,E
′
N)

H′ = (H′1, . . . ,H
′
N)

 ,

and let

(2.21)


Ẽ = (Ẽ1, . . . , ẼN)

H̃ = (H̃1, . . . , H̃N)



denote the difference between the two solutions. It follows by (2.19) that the difference
satisfies

Re
{∫

γd

(−Ẽ × n) · iξ × n × nds +
∫

γn

i(H̃ × n × n) · (−ψ × n)ds

+

∫

γr

1
2

((
− Ẽ × n + σ(H̃ × n) × n

)
· iξ × n × n

+ i
(
− Ẽ × n + σ(H̃ × n) × n

)
· 1
σ

(−ψ × n)
)
ds

+
∑

j,k

1
2

∫

Γk j

(
(−Ẽk × nk − Ẽ j × n j) · i

(
(ξk × nk) × nk + (ξ j × n j) × n j

)

+ i
(
(H̃k × nk) × nk − (H̃ j × n j) × n j

)
· (−ψk × nk +ψ j × n j)

)
ds

}
= 0,∀(ψ, ξ) ∈ U(Th).

(2.22)

Taking

ψ

ξ

 =


Ẽ
H̃

, (2.22) becomes

Re
{∫

γd

(−Ẽ × n) · iH̃ × n × nds +
∫

γn

i(H̃ × n × n) · (−Ẽ × n)ds

+

∫

γr

1
2

((
− Ẽ × n + σ(H̃ × n) × n

)
· iH̃ × n × n

+ i
(
− Ẽ × n + σ(H̃ × n) × n

)
· 1
σ

(−Ẽ × n)
)
ds

+
∑

j,k

1
2

∫

Γk j

(
(−Ẽk × nk − Ẽ j × n j) · i

(
(H̃k × nk) × nk + (H̃ j × n j) × n j

)

+ i
(
(H̃k × nk) × nk − (H̃ j × n j) × n j

)
· (−Ẽk × nk + Ẽ j × n j)

)
ds

}
= 0.

(2.23)

Then, by the simple calculation, we can deduce that

Re
{ N∑

k=1

∫

∂Ωk

(−Ẽ × n) · iH̃ × n × n ds

+
−i
2

∫

γr

(
σ|H̃ × n × n|2 + 1

σ
| − Ẽ × n|2) ds

}
= 0.

(2.24)
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This, together with (2.12) and simple calculation, leads to

Re
{ N∑

k=1

(−i)
∫

∂Ωk

n × (
1

iωµ
∇ × Ẽ) · Ẽ ds

+
−i
2

∫

γr

(
σ|H̃ × n × n|2 + 1

σ
| − Ẽ × n|2) ds

}
= 0.

(2.25)

Integrating by parts equation (2.25), we have

Re
{ N∑

k=1

(−i)
∫

Ωk

(
∇ × (

1
iωµ
∇ × Ẽ) · Ẽ − (

1
iωµ
∇ × Ẽ) · ∇ × Ẽ

)
dx

+
−i
2

∫

γr

(
σ|H̃ × n × n|2 + 1

σ
| − Ẽ × n|2) ds

}
= 0.

(2.26)

Using (2.12) again, we further get

Re
{ N∑

k=1

(−i)
∫

Ωk

(
−iωεẼ · Ẽ − (

1
iωµ
∇ × Ẽ) · ∇ × Ẽ

)
dx

+
−i
2

∫

γr

(
σ|H̃ × n × n|2 + 1

σ
| − Ẽ × n|2) ds

}
= 0.

(2.27)

By the simple calculation, we have

Re
{ N∑

k=1

∫

Ωk

(
ωε|Ẽ|2 − 1

ωµ
|∇ × Ẽ|2

)
dx

+
−i
2

∫

γr

(
σ|H̃ × n × n|2 + 1

σ
| − Ẽ × n|2) ds

}
= 0.

(2.28)

Set ε = ε1 + iε2, then (2.28) simplifies trivially to

N∑

k=1

∫

Ωk

(
ωε1|Ẽ|2 − 1

ωµ
|∇ × Ẽ|2

)
dx = 0.(2.29)

By the assumption Re(ε) < 0, we can deduce that


Ẽ
H̃

 =


0
0

 in Ωk. Thus, by the as-

sumption Ek ∈ H1+δk (Ωk) with δk > 1
2 , we obtain the function


Ẽ
H̃

 satisfies the interface

continuity (2.16) and verifies the initial Maxwell reference problem (2.14) with the homoge-

neous boundary condition (2.17). Therefore


Ẽ
H̃

 vanishes onΩ, which proves the uniqueness

of solution (2.19).
Remark 2.1. We denote the inner part of Re{} in (2.19) by the symbol Υ(E,H,ψ, ξ), then

it can be verified that ∀(ψ, ξ) ∈ U(Th),

(2.30) Re{Υ(E,H,ψ, ξ)} = 0 is equivalent to that Im{Υ(E,H,ψ, ξ)} = 0.

By the (2.28), we can deduce that when Im(ε) > 0, the Theorem 2.2 also holds.
Remark 2.2. Note that for the case of real wavenumbers, the involved integrals on the

Robin-type boundary condition of the original method and the new method are the same.
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Thus, there is no change between the two methods when dealing with real wavenumbers. For
the case of complex wavenumbers, there are some differences between the two methods on
the following.

(i) The original VTCR method can only be used to solve the Helmholtz equation with real
wavenumbers. However, the permittivity of the material in the computational domain for the
Helmholtz and Maxwell equations is, in general, complex valued. By selecting the involved
integral defined on the Robin-type boundary condition, the new method is proposed to solve
the Helmholtz equation and Maxwell equations with complex wavenumbers.

(ii) The variational formulation of the new method is unified when dealing with real
wavenumbers and complex wavenumbers.

3. A new variant of the UWVF method for the equations with complex wavenum-
bers. In this section we introduce a new variant of the UWVF method for the Helmholtz
equation and Maxwell equations with complex wave numbers.

3.1. The case of Helmholtz equation. The purpose of this section is to recall the basic
principles of the UWVF modeling methodology for the resolution of the Helmholtz equation.
At first, the original UWVF method is recalled. Then the new variant is presented in details.

3.1.1. The original UWVF method. The following Helmholtz equation is considered.

(3.1)



−∆u − κ2u = 0 in Ω,
∂u
∂n + iκu = t(− ∂u

∂n + iκu) + g on γ,
|t| < 1, t ∈ C.

Similar to the VTCR method, the reference problem (3.1) is equivalent to the problem
{ −∆uk − κ2uk = 0 in Ωk,
∂u
∂n + iκu = t(− ∂u

∂n + iκu) + g on γ
∩
∂Ωk,

(k = 1, 2, . . . ,N),(3.2)

and the interface conditions (2.3).
Let us recall the original UWVF method (see, for example, [4]). Let V denote the space

of the functions of the UWVF formulation as

(3.3) V =
N∏

k=1

L2(∂Ωk).

The value of the unknown x of the UWVF formulation will be defined from u solution of
(3.1) as being

(3.4) x|∂Ωk = (−∂nk + iκ)uk,

assuming the regularity hypothesis x ∈ V . Then the variational problem for the case of real
wavenumbers can be expressed as follows: find x ∈ V defined by x|∂Ωk = xk with (3.4) such
that

(∑

k

∫

∂Ωk

xk(−∂nk + iκ)ek ds
)

−
(∑

k, j

∫

Γk j

x j(∂nk + iκ)ek ds +
∑

k

∫

γk

txk(∂nk + iκ)ek ds
)

=
∑

k

∫

γk

g (∂nk + iκ)ek ds

(3.5)
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for any

(3.6) e ∈ H, e|Ωk = ek,H =
N∏

k=1

Hk

with

Hk =

{
vk ∈ H1(Ωk) satisfying

{
(−∆ − κ2)vk = 0 in Ωk

(−∂nk + iκ)vk ∈ L2(∂Ωk)

}
.(3.7)

Conversely, if x is solution of (3.5), then the function u defined by



u|Ωk = uk,
(−∆ − κ2)uk = 0
(−∂nk + iκ)uk = xk,

(3.8)

where uk ∈ H1(Ωk) is the unique solution of (3.1).
Note that the original UWVF method was obtained only for the case of real wavenum-

bers, so how to generalize the UWVF method to the equations with complex wavenumbers
is an interesting problem. In the next subsection, we propose a new variant of the UWVF
method.

3.1.2. A new variant of the UWVF method. Our main idea is to use the different trial
space and test space, in which the functions satisfy the original equation and adjoint equa-
tion, respectively. Thus, the new variant of the UWVF method is essentially a discontinuous
Petrov-Galerkin method.

Let W(Th) denote the test space, satisfying W(Th) =
∏N

k=1 Wk(Ωk) with

Wk(Ωk) =
{
ek ∈ H1(Ωk) satisfying

{
(−∆ − κ2)ek = 0 in Ωk

(−∂nk + i κ )ek ∈ L2(∂Ωk)

}
.(3.9)

Then we get the following theorem.
Theorem 3.1. Let u ∈ V(Th) (see (2.5)) satisfy the regularity assumption ∂nk u ∈ L2(∂Ωk), k =

1, · · · ,N and be a solution of the original equation (3.1). Then the reference problem (3.1) is
equivalent to the following new variational problem (3.10).

(∑

k

∫

∂Ωk

(−∂nk + iκ)uk (−∂nk + i κ )ek ds
)

−
(∑

k, j

∫

Γk j

(−∂n j + iκ)u j (∂nk + i κ )ek ds +
∑

k

∫

γk

t(−∂nk + iκ)uk (∂nk + i κ )ek ds
)

=
∑

k

∫

γk

g (∂nk + i κ )ek ds, ∀e ∈ W(Th).

(3.10)

Proof. Since u ∈ H1(Ω) and ∂nk u ∈ L2(∂Ωk), we get
∫

∂Ωk

(−∂nk + iκ)u (−∂nk + i κ )ek ds

=

∫

∂Ωk

(∂nk + iκ)u (∂nk + i κ )ek ds + 2iκ
∫

∂Ωk

(∂nk u ek − u ∂nk ek ) ds.
(3.11)
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Using (3.1) and (3.9), and by integrations by parts, we can deduce that


∫
Ωk
∇u ∇ek − κ2u ek =

∫
∂Ωk

u ∂nk ek,∫
Ωk
∇u ∇ek − κ2u ek =

∫
∂Ωk
∂nk u ek.

(3.12)

From (3.11) and (3.12), we have
∫

∂Ωk

(−∂nk + iκ)u (−∂nk + i κ )ek ds

−
∫

∂Ωk

(∂nk + iκ)u (∂nk + i κ )ek ds = 0.
(3.13)

This, together with the continuity of u on Γk j and the boundary condition
{

(∂nk + iκ)u|Γk j = (−∂n j + iκ)u|Γ jk

(∂nk + iκ)u|γk = t(−∂nk + iκ)u|γk + g,(3.14)

and summing for all elements k, leads to the desired equation (3.10).
Conversely, let u be solution of (3.10). By assumptions on u and e, we obtain (3.13).

Summing on all the elements, we have
∑

k

∫

∂Ωk

(−∂nk + iκ)u (−∂nk + i κ )ek ds

−
∑

k

∫

∂Ωk

(∂nk + iκ)u (∂nk + i κ )ek ds = 0.
(3.15)

Since u satisfies (3.10) and combining with (3.15), we have


∀e ∈ W(Th),∑
k, j

∫
Γk j

(∂nk + iκ)u (∂nk + i κ )ek ds +
∑
k

∫
γk

(∂nk + iκ)u (∂nk + i κ )ek ds

=
∑
k, j

∫
Γk j

x j (∂nk + i κ )ek ds +
∑
k

∫
γk

(txk + g) (∂nk + i κ )ek ds.
(3.16)

This yields (3.14). It is clear that a function whose restrictions are H1(Ωk) solutions of the
elemental homogeneous Helmholtz equation and that satisfies the continuity conditions and
outer boundary conditions (3.14) is the unique solution of the Helmholtz problem (3.1).

3.2. The case of Maxwell’s equations. In this section we generalize the UWVF method
to the following Maxwell equations.

(3.17)



∇ × E − iωµH = 0 in Ω,

∇ ×H + iωεE = 0 in Ω,

− E × n − σ(H × n) × n = Q(−E × n + σ(H × n) × n) + g on γ = ∂Ω.

Our main idea is also to construct the correct spaces for the different trial space and test
space. The trial space U(Th) is defined by (2.18).

Let ξ and ψ denote piecewise smooth test vector functions in the mesh. Using the inte-
gration by parts identity we obtain



∫
Ωk

( − iωεE · ξk −H · ∇ × ξk
)

dx =
∫
∂Ωk

nk ×H · ξk ds,∫
Ωk

( − iωµH ·ψk + E · ∇ ×ψk
)

dx = −
∫
∂Ωk

nk × E ·ψk ds.
(3.18)
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Adding the two equations we get

(3.19)
∫

Ωk

(
E · iωεξk + ∇ ×ψk+H · iωµψk − ∇ × ξk

)
dx =

∫

∂Ωk

(
nk×H ·ξk−nk×E ·ψk

)
ds.

We define the test space as follows.

(3.20) V(Th) =
{
v =


ξ

ψ

 , v|Ωk = vk

∣∣∣∣∣
{

iωεξk + ∇ ×ψk = 0
iωµψk − ∇ × ξk = 0 in Ωk

}
.

With the definition of the test space, (3.19) reduces to

(3.21)
∫

∂Ωk

(
nk ×H · ξk − nk × E ·ψk

)
ds = 0.

We further get

(3.22)
∫

∂Ωk

Dkuk · vk ds = 0,

where the matrixes Dk and Zk are the same as in [17]. Define the matrixes L+k and L−k as
follows.

L+k =
1√
2σ

(−Zk, σ(Zk)2) and L−k =
1√
2σ

(−Zk,−σ(Zk)2)

Define D±k = ±(L±k )T (L±k ). Then a simple calculation shows that Dk = D+k + D−k . Using the
splitting of Dk and the factorization of each term in the splitting we may rewrite (3.22) as

(3.23)
∫

∂Ωk

(L+k uk) · (L+k vk) − (L−k uk) · (L−k vk) ds = 0.

Note that Zka = −nk × a for any vector a and Zk = −(Zk)T . Then we have on the interface Γk j

(3.24) L−k =
1√
2σ

(−Zk,−σ(Zk)2) = − 1√
2σ

(−Z j, σ(Z j)2) = −L+j .

Using (3.24) and the boundary condition of (3.17), we obtain

(3.25)


L−k uk = −L+j u j on Γk j

L−k uk = QL+k uk + ĝ on ∂Ωk ∩ γ,
where ĝ = g√

2σ
. Substituting this into (3.23), and summing on all the elements, we get the

desired variational formulation: to find u ∈ U(Th), such that
∑

k

∫

∂Ωk

(L+k uk) · (L+k vk) ds +
∑

k, j

∫

Γk j

(L+j u j) · (L−k vk) ds

−
∑

k

∫

γk

Q(L+k uk) · (L−k vk) ds =
∑

k

∫

γk

ĝ · (L−k vk) ds, ∀v ∈ V(Th).
(3.26)

We can derive the following result as in the proof of Theorem 3.1.
Theorem 3.2. Let E,H ∈ H(curl;Ω), assume that ZkE,Z2

k H ∈ (L2(∂Ωk))3, k = 1, · · · ,N.
Then the reference problem (3.17) is equivalent to the new variational problem (3.26).
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4. Discretization of the variational problems. In this section we introduce discretiza-
tions of the variational problems described in the last two sections. The discretization for
Helmholtz equations is based on a finite-dimensional trial space Vp(Th) ⊂ V(Th) and a
finite-dimensional test space Wp(Th) ⊂ W(Th). The discretization for Maxwell’s equations is
based on a finite-dimensional trial space Up(Th) ⊂ U(Th) and a finite-dimensional test space
Vp(Th) ⊂ V(Th). We construct the precise definitions of such spaces with which to discretize
the VTCR method and the UWVF method.

4.1. The case of Helmholtz equation. In each element Ωk, we introduce a finite num-
ber of functions ykl (l = 1, 2, · · · , p) supported in Ωk and that are independent solutions
of the homogeneous Helmholtz equation (without boundary condition) in the element Ωk

(k = 1, 2, · · · ,N).
For simplification, we consider some constant number p of basis functions for every

elements Ωk. Particularly, in this paper we will choose ykl as the wave shape functions on Ωk,
which satisfy



ykl(x) = eiκ(x·αl), x ∈ Ωk,
αl · αl = 1,
l , s→ αl , αs,

(4.1)

where αl (l = 1, · · · , p) are unit wave propagation directions to be specified later.
The basis functions of Vp(Th) can be defined as

ϕkl(x) =
{

ykl(x), x ∈ Ωk,
0, x ∈ Ω j satisfying j , k (k, j = 1, · · · ,N; l = 1, · · · , p).(4.2)

Thus the space V(Th) is discretized by the subspace

(4.3) Vp(Th) = span
{
ϕkl : k = 1, · · · ,N; l = 1, · · · , p

}
.

During numerical simulations, the directions of the wave vectors of these wave functions,
for two-dimensional problems, are uniformly distributed as follows:

αl =

(
(cos(2π(l − 1)/p)
sin(2π(l − 1)/p))

)
(l = 1, · · · , p).

For three-dimensional problems, we use the optimal spherical codes from [24] to gener-
ate the wave propagation derections αl (l = 1, · · · , p).

The discrete test space Wp(Th) ⊂ W(Th) for the UWVF method is constructed as follows.
First, we choose ỹkl as the wave shape functions on Ωk, which satisfy

(4.4) ỹkl(x) = eiκ(x·αl), x ∈ Ωk,

then the basis functions of Wp(Th) can be defined as

ξkl(x) =
{

ỹkl(x), x ∈ Ωk,
0, x ∈ Ω j satisfying j , k (k, j = 1, · · · ,N; l = 1, · · · , p).(4.5)
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4.2. The case of Maxwell’s equations. In practice, following [3], a suitable family of
plane waves, which are solutions of the constant-coefficient Maxwell equations, are generated
onΩk by choosing p unit propagation directions dl, l = 1, · · · , p (we use the optimal spherical
codes from [24]), and defining a real unit polarization vector Gl orthogonal to dl. By using
such propagation directions and polarization vectors, we can define the complex polarization
vectors Fl and Fl+p as

Fl = Gl + iGl × dl, Fl+p = Gl − iGl × dl (l = 1, · · · , p).

Notice that the complex polarization vectors are the same as in [5, 17], but differ slightly from

those in [13]. We then define the complex functions


El

Hl

:

{
El =

√
µ Fl exp(iκdl · x)

Hl = i
√
ε Fl exp(iκdl · x) and

{
El+p =

√
µ Gl exp(iκdl · x)

Hl+p = −i
√
ε Gl exp(iκdl · x),(4.6)

where κ = ω
√
εµ, l = 1, · · · , p. It is easy to verify that every functions


El

Hl

 (l = 1, · · · , 2p)

satisfy the homogeneous Maxwell’s system (2.14).

Let Q2p denote the space spanned by the 2p plane wave functions


El

Hl

 (l = 1, · · · , 2p).

Define the discrete trial plane wave space

(4.7) Up(Th) =
{
v ∈ L2(Ω) : v|K ∈ Q2p for any K ∈ Th

}
.

The discrete test space Vp(Th) ⊂ V(Th) for the UWVF method is constructed by choos-

ing

ξl

ψl

 (l = 1, · · · , 2p) as the wave shape basis functions on Ωk, which satisfy

{
ξl =

√
µ Fl exp(iκdl · x)

ψl = i
√
ε Fl exp(iκdl · x)

and
{
ξl+p =

√
µ Gl exp(iκdl · x)

ψl+p = −i
√
ε Gl exp(iκdl · x).

(4.8)

5. Nonhomogeneous Helmholtz and Maxwell’s equations. The VTCR method in
Section 2 and the UWVF method in Section 3 were described only for the homogeneous
Helmholtz equation and Maxwell equations. Recently, a PWLS method (see [15]) and a
PWLS-LSFE method (see [16]) were proposed for discretization of nonhomogeneous har-
monic Helmholtz and Maxwell’s equations. As pointed out in [16], for the PWLS-LSFE
method, a plane wave method combined with local spectral elements for discretization of
the nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations was intro-
duced and error estimates of the resulting approximate solutions were derived. The error
estimates show that the approximate solutions generated by the PWLS-LSFE method pos-
sess high accuracy and the numerical results indicate that the approximation generated by
the PWLS-LSFE method is much more accurate than that generated by the original method
proposed in [15]. In this section, combined with the local spectral elements (see [16]), we
propose another way to discretize the nonhomogeneous Helmholtz and Maxwell equations
that involves using the VTCR method and UWVF method, respectively.

5.1. The VTCR method combined with local spectral element. In this subsection, we
design the VTCR method combined with local spectral element for solving Nonhomogeneous
Helmholtz and Maxwell’s equations. For convenience, we call the method as VTCR-LSFE
method.
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5.1.1. The case of nonhomogeneous Helmholtz equation. Consider the nonhomoge-
neous Helmholtz equation

(5.1)



−∆u − κ2u = f in Ω,
u = gd on γd,
∂u
∂n = gn on γn,

∂u
∂n + iκu = gr on γr,

where f ∈ L2(Ω).
As in [16], the basic idea is to decompose the solution u of (5.1) into

(5.2) u = u(1) + u(2),

where u(1) is a particular solution of (5.1) without the primal boundary condition, and u(2)

satisfies a locally homogeneous Helmholtz equation. Without loss of generality, we assume
that the function f is well defined in a slightly large domain containing Ω as its subdomain
(otherwise, we can build a stable extension of f ).

For each element Ωk, let Ω∗k be a fictitious domain that has almost the same size with Ωk

and containsΩk as its subdomain. Let u(1) ∈ L2(Ω) be defined as u(1) |Ωk= u(1)
k |Ωk for eachΩk,

where u(1)
k ∈ H1(Ω∗k) satisfies the local nonhomogeneous Helmholtz equation on the fictitious

domain Ω∗k:

{ −∆u(1)
k − κ2u(1)

k = f in Ω∗k
(∂nk + iκ)u(1)

k = 0 on ∂Ω∗k
(k = 1, 2, . . . ,N).(5.3)

The variational problem of (5.3) is to find u(1)
k ∈ H1(Ω∗k) such that

(5.4)



∫

Ω∗k

(∇u(1)
k · ∇v̄k − κ2u(1)

k v̄k)dx +
∫

∂Ω∗k

iκu(1)
k v̄kdx =

∫

Ω∗k

f v̄kdx,

∀vk ∈ H1(Ω∗k) (k = 1, 2, . . . ,N).

Let q be a positive integer and D be a bounded and connected domain in Rn. Let S q(D)
denote the set of polynomials defined on D, whose orders are less or equal to q. Set Sq(D) =
(S q(D))3. Define the approximate solutions uh as follows:

(5.5) uh = u(1)
h + u(2)

h

where u(1)
h ∈

∏N
k=1 S q(Ω∗k) and u(2)

h ∈ Vp(Th).
The discrete variational problems of (5.4) are: to find u(1)

k,h = u(1)
h |Ω∗k ∈ S q(Ω∗k) such that

(5.6)



∫

Ω∗k

(∇u(1)
k,h · ∇v̄k − κ2u(1)

k,hv̄k) dx +
∫

∂Ω∗k

iκu(1)
k,hv̄k ds =

∫

Ω∗k

f v̄k dx,

∀vk ∈ S q(Ω∗k) (k = 1, 2, . . . ,N).

In this paper we choose the fictitious domain Ω∗k to be the disc (for the two-dimensional
case) or the sphere (for the three-dimensional case) described in [16, Sec. 3].

It is easy to see that u(2) = u−u(1) is uniquely determined by the following homogeneous
Helmholtz equations of u(2)

k = u(2) |Ωk :

(5.7) −∆u(2)
k − κ2u(2)

k = 0 in Ωk (k = 1, 2, . . . ,N),
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with the following boundary condition on γ and the interface conditions on Γk j:


u(2)
k = gd − u(1)

k over γd,

∂nu(2)
k = gn − ∂nu(1)

k over γn,

(∂n + iκ)u(2)
k = g − (∂n + iκ)u(1)

k over γr,

u(2)
k − u(2)

j = −(u(1)
k − u(1)

j ) over Γk j,

∂nk u
(2)
k + ∂n j u

(2)
j = −(∂nk u

(1)
k + ∂n j u

(1)
j ) over Γk j

(k , j; k, j = 1, 2, · · · ,N).(5.8)

According to the idea of the VTCR method described in Section 2, the variational prob-
lem of (5.7)-(5.8) is: to find u(2) ∈ V(Th) such that

Re
{∫

γd

u(2)
k · i∂nv ds +

∫

γn

i∂nu(2)
k · v ds

+

∫

γr

1
2

(
(∂n + iκ)u(2)

k ·
−1
κ
∂nv + i

(
(∂n + iκ)u(2)

k

)
· v

)
ds

+
∑

j,k

1
2

∫

Γk j

(
(u(2)

k − u(2)
j ) · i(∂nk vk − ∂n j v j) + i(∂nk u

(2)
k + ∂n j u

(2)
j ) · (vk + v j)

)
ds

}

= Re
{∫

γd

(gd − u(1)
k ) · i∂nv ds +

∫

γn

i(gn − ∂nu(1)
k ) · v ds

+

∫

γr

1
2

((
gr − (∂n + iκ)u(1)

k

)
· −1
κ
∂nv + i

(
gr − (∂n + iκ)u(1)

k

)
· v

)
ds −

∑

j,k

1
2

∫

Γk j

(
(u(1)

k − u(1)
j ) · i(∂nk vk − ∂n j v j) + i(∂nk u

(1)
k + ∂n j u

(1)
j ) · (vk + v j)

)
ds

}
,∀v ∈ V(Th).

(5.9)

In this case, the discrete variational problem associated with (5.9) can be described as
follows: to find u(2)

h ∈ Vp(Th) such that u(2)
h satisfy (5.9) for ∀vh ∈ Vp(Th).

5.1.2. The case of nonhomogeneous Maxwell’s equations. Consider the nonhomoge-
neous Maxwell equations

(5.10)

∇ × E − iωµH = 0
∇ ×H + iωεE = J

in Ω

with the boundary condition (2.13). We need to transform nonhomogeneous problems into
homogeneous problems to use the VTCR method introduced in Section 2.

Similar to the case of Helmholtz equation, we assume that J is well defined in a suf-
ficiently large domain containing Ω as its subdomain and decompose the solution E of the
problem (2.12) into E = E(1) + E(2), where E(1) is a particular solution of (2.12) without the
primal boundary condition, and E(2) locally satisfies homogeneous Maxwell’s equations.

For each element Ωk, let Ω∗k be the fictitious domain described in the last subsection.
The particular solution E(1) ∈ (L2(Ω))3 is defined as E(1) |Ωk= E(1)

k |Ωk for each Ωk, where
E(1)

k ∈ H(curl;Ω∗k) satisfies the nonhomogeneous local Maxwell equations on the fictitious
domain Ω∗k:

(5.11) ∇ × (
1

iωµ
∇ × E(1)

k ) + iωεE(1)
k = J in Ω∗k (k = 1, 2, . . . ,N)
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with the homogeneous boundary condition

(5.12) −E(1)
k × n +

σ

iωµ
(∇ × E(1)

k ) × n × n = 0 on ∂Ω∗k.

The variational problem of (5.11) − (5.12) is to find E(1)
k ∈ H(curl,Ω∗k) such that

(5.13)



∫

Ω∗k

(
1

iωµ
∇ × E(1)

k · ∇ × F̄k + iωεE(1)
k · F̄k) dx +

∫

∂Ω∗k

1
σ

(E(1)
k × n) × n · F̄k ds

=

∫

Ω∗k

J · F̄k dx, ∀Fk ∈ H(curl,Ω∗k) (k = 1, 2, . . . ,N).

When J satisfies J ∈ (L2(Ω∗k))3, the variational problem (5.13) possesses a unique solution
E(1)

k ∈ H(curl,Ω∗k) (see [20, Chap 4]).

Set the corresponding particular solution H(1) ∈ (L2(Ω))3 which is defined as H(1) |Ωk=

H(1)
k |Ωk for each Ωk, where H(1)

k =
1

iωµ∇ × E(1)
k ∈ H(curl;Ω∗k).

It is easy to see that


E(2)

H(2)

 =


E − E(1)

H −H(1)

 is uniquely determined by the following homo-

geneous Maxwell equations of


E(2)

k

H(2)
k

 =


E(2) |Ωk

H(2) |Ωk

:

(5.14)


∇ × E(2)

k − iωµH(2)
k = 0

∇ ×H(2)
k + iωεE(2)

k = 0
in Ωk (k = 1, 2, . . . ,N),

with the following boundary condition on γ and the interface conditions on Γk j (k < j; k, j =
1, . . . ,N):
(5.15)

− E(2)
k × nk = gd − (−E(1)

k × nk) on γd,k = γd ∩ ∂Ωk,

H(2)
k × nk × nk = gn −H(1)

k × nk × nk on γn,k = γn ∩ ∂Ωk,

− E(2)
k × nk + σ(H(2)

k × nk) × nk = gr − (−E(1)
k × nk + σ(H(1)

k × nk) × nk) on γr,k = γr ∩ ∂Ωk,

E(2)
k × n(2)

k + E j × n j = −(E(1)
k × nk + E(1)

j × n j) over Γk j,

H(2)
k × nk +H(2)

j × n j = −(H(1)
k × nk +H(1)

j × n j) over Γk j,

(k < j; k, j = 1, 2, . . . ,N).
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The variational problem of (5.14)-(5.15) is: to find


E(2)

H(2)

 such that

Re
{ N∑

k=1

∫

γd,k

(−E(2)
k × n) · iξ × n × n ds +

N∑

k=1

∫

γn,k

i(H(2)
k × n × n) · (−ψ × n) ds

+

N∑

k=1

∫

γr,k

1
2

((
− E(2)

k × n + σ(H(2)
k × n) × n

)
· iξ × n × n

+ i
(
− E(2)

k × n + σ(H(2)
k × n) × n

)
· 1
σ

(−ψ × n)
)

ds

+
∑

j,k

1
2

∫

Γk j

(
(−E(2)

k × nk − E(2)
j × n j) · i

(
(ξk × nk) × nk + (ξ j × n j) × n j

)

+ i
(
(H (2)

k × nk) × nk − (H (2)
j × n j) × n j

)
· (−ψk × nk +ψ j × n j)

)
ds

}

(5.16)

= Re
{ N∑

k=1

∫

γd,k

(gd + E(1)
k × n) · iξ × n × nds +

N∑

k=1

∫

γn,k

i(gn −H(1)
k × n × n) · (−ψ × n) ds

+

N∑

k=1

∫

γr,k

1
2

((
gr − (−E(1)

k × n + σ(H(1)
k × n) × n)

)
· iξ × n × n

+ i
(
gr − (−E(1)

k × n + σ(H(1)
k × n) × n)

)
· 1
σ

(−ψ × n)
)

ds

+
∑

j,k

1
2

∫

Γk j

(
(−E(1)

k × nk − E(1)
j × n j) · i

(
(ξk × nk) × nk + (ξ j × n j) × n j

)

+ i
(
(H (1)

k × nk) × nk − (H (1)
j × n j) × n j

)
· (−ψk × nk +ψ j × n j)

)
ds

}
,∀(ψ, ξ) ∈ V(Th).

The cost of the solution of the above problem is same as that of the homogeneous Maxwell’s
equations.

5.2. The UWVF method. In this subsection, we design the UWVF method combined
with local spectral element for solving Nonhomogeneous Helmholtz and Maxwell’s equa-
tions. For convenience, we call the method as UWVF-LSFE method.

5.2.1. The case of nonhomogeneous Helmholtz equation. Consider the nonhomoge-
neous Helmholtz equation

(5.17)
{ −∆u − κ2u = f in Ω,

∂u
∂n + iκu = g on γ.

As described in subsubsection 5.1.1, the basic idea is to decompose the solution u of
(5.1) into

(5.18) u = u(1) + u(2),

where u(1) is the solution of (5.4), and u(2) satisfies a locally homogeneous Helmholtz equation
(5.7) with the following boundary condition on γ and the interface conditions on Γk j:
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{
(∂nk + iκ)u(2)|Γk j = (−∂n j + iκ)u(2)|Γ jk + (−∂n j + iκ)u(1)|Γ jk − (∂nk + iκ)u(1)|Γk j ,
(∂nk + iκ)u(2)|γk = −(∂nk + iκ)u(1)|γk + g.(5.19)

According to the idea of the UWVF method described in Section 3, the variational prob-
lem of (5.7) and (5.19) is: to find u(2) ∈ V(Th) defined by such that

∑

k

∫

∂Ωk

(−∂nk + iκ)u(2)
k (−∂nk + i κ )ek ds −

∑

k, j

∫

Γk j

(−∂n j + iκ)u(2)
j (∂nk + i κ )ek ds

=
∑

k

∫

γk

g (∂nk + i κ )ek ds +
∑

k, j

∫

Γk j

(−∂n j + iκ)u(1)
j (∂nk + i κ )ek ds −

(∑

k, j

∫

Γk j

(∂nk + iκ)u(1)
k (∂nk + i κ )ek ds +

∑

k

∫

γk

(∂nk + iκ)u(1)
k (∂nk + i κ )ek ds

)
, ∀e ∈ W(Th).

(5.20)

Similar to the subsection 5.1.1, the numerical approximate solutions uh can be decom-
posed into

(5.21) uh = u(1)
h + u(2)

h ,

where u(1)
h ∈

∏N
k=1 S q(Ω∗k) satisfy (5.6) and u(2)

h ∈ Vp(Th) satisfy (5.20) for ∀eh ∈ Wp(Th).

5.2.2. Error estimates of the approximation solutions. Since the trial function space
is different from the test function space for the case of complex wavenumbers κ, the new
variant of the UWVF method is essentially a discontinuous Petrov-Galerkin method. It is dif-
ficult to prove that the bilinear form meets the inf-sup condition, thus in this subsubsection we
derive error estimates of the approximate solutions uh defined in the last section for the partic-
ular case of real wavenumbers κ only, where the UWVF method is a standard discontinuous
Galerkin mehtod.

Let s and m be given positive integers satisfying m ≥ 2s + 1. Let the number p of plane
wave propagation directions be chosen as p = (2m + 1) in 2D and p = (m + 1)2 in 3D,
respectively. Since each element Ωk is convex, it is star-shaped with respect to a ball.

As in [19], for a bounded and connected domain D ⊂ Ω, let || · ||s,κ,D be the κ−weighted
Sobolev norm defined by

||v||s,κ,D =
s∑

j=0

κ2(s− j)|v|2j,D.

It turns out that the UWVF can be recast as a special plane wave discontinuous galerkin
method as pointed out in [9]. Let || · ||Fh and || · ||F +h be the energy norm defined in (3.1) and
(3.2) from [12] for the case of α = β = δ = 1

2 , respectively.
The following lemma is a direct consequence of Theorem 4.3 in [16].
Lemma 5.1. Let q ≥ 2 and 2 ≤ s ≤ q + 1. Assume that c0 ≤ κh ≤ C0 and f ∈ Hs−2(Ωδ).

Then the following error estimates hold

(5.22) (
N∑

k=1

||u(1) − u(1)
h ||2j,Ωk

)
1
2 ≤ C(

h
q

)s− j
s−2∑

l=0

κs−l−2|| f ||Hl(Ωδ) ( j = 0, 1, 2)
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and

(5.23) ||u(1) − u(1)
h ||Fh ≤ C(1 +

κ2h2

q2 )
1
2 (

h
q

)s− 3
2

s−2∑

l=0

κs−l− 5
2 || f ||Hl(Ωδ),

whereΩδ defined in [16, Sec.4.1.1] is the union ofΩ and the boundary layer with the thickness
δ, and c0,C0 are the constants.

The following approximation can be viewed as a version of Theorem 4.5 in [16].
Lemma 5.2. Let q ≥ 2, 2 < s ≤ min{m+1

2 , q+1} and κh = O(1). Assume that f ∈ Hs−2(Ωδ)
and u ∈ Hs(Ω). Then

(5.24) ||u(2)−u(2)
h ||Fh ≤ Cκ−

1
2 hs− 3

2 max{m−λ(s−1−ε)+ δλ2 , q−(s− 3
2 )}

||u||s,κ,Ω +
s−2∑

l=0

κs−l−2|| f ||Hl(Ωδ)

 ,

where λ > 0 is a constant depending only on the shape of the elements (in particular, λ = 1 for
the case of two dimensions), δλ = max{2λ − 1, 1}, and ε = ε(m) ∈ (0, 1) satisfies ε(m) → 0+

when m→ +∞.
Proof. Define

(5.25) A(w, v) =
∑

k

∫

∂Ωk

(−∂nk + iκ)wk (−∂nk + i κ )vk ds,

(5.26) B(w, v) =
∑

k, j

∫

Γk j

(−∂n j + iκ)w j (∂nk + i κ )vk ds,

(5.27) l(v) =
∑

k

∫

γk

g (∂nk + i κ )vk ds,

and

(5.28) C(u, v) =
∑

k

∫

∂Ωk

(∂nk + iκ)wk (∂nk + i κ )vk ds.

Then we get

(5.29) A(u(2), v(2)) − B(u(2), v(2)) = l(v(2)) + B(u(1), v(2)) −C(u(1), v(2))

and

(5.30) A(u(2)
h , v

(2)
h ) − B(u(2)

h , v
(2)
h ) = l(v(2)

h ) + B(u(1)
h , v

(2)
h ) −C(u(1)

h , v
(2)
h ).

From (5.29) and (5.30), we have

(5.31) A(u(2) − u(2)
h , v

(2)
h ) − B(u(2) − u(2)

h , v
(2)
h ) = B(u(1) − u(1)

h , v
(2)
h ) −C(u(1) − u(1)

h , v
(2)
h ).

Let Qh be the operator defined in Lemma 4.4 from [16]. It follows by (5.31) that

A(u(2) − u(2)
h ,Qhu(2) − u(2)

h ) − B(u(2) − u(2)
h ,Qhu(2) − u(2)

h ) =

B(u(1) − u(1)
h ,Qhu(2) − u(2)

h ) −C(u(1) − u(1)
h ,Qhu(2) − u(2)

h ).
(5.32)
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By the bilinear formAh(·, ·) defined in [9, 12], we can deduce that

(5.33) A(w, v) − B(w, v) = −Ah(w, v).

Then, by the direct manipulation, we can deduce that

||u(2) − u(2)
h ||2Fh

= ImAh(u(2) − u(2)
h , u

(2) − u(2)
h ) =

Im
{
− A(u(2) − u(2)

h , u
(2) − u(2)

h ) + B(u(2) − u(2)
h , u

(2) − u(2)
h )

}

= Im
{
− A(u(2) − u(2)

h , u
(2) − Qhu(2)) + B(u(2) − u(2)

h , u
(2) − Qhu(2))

− B(u(1) − u(1)
h ,Qhu(2) − u(2)

h ) +C(u(1) − u(1)
h ,Qhu(2) − u(2)

h )
}

= Im
{
Ah(u(2) − u(2)

h , u
(2) − Qhu(2)) − B(u(1) − u(1)

h ,Qhu(2) − u(2)
h )+

C(u(1) − u(1)
h ,Qhu(2) − u(2)

h )
}
.

(5.34)

By the proposition 3.5 in [12] and the definition of || · ||F +h , we have

||u(2) − u(2)
h ||2Fh

≤ ||u(2) − u(2)
h ||Fh · ||u(2) − Qhu(2)||F +h

+ ||u(1) − u(1)
h ||Fh ·

(||u(2) − Qhu(2)||F +h + ||u(2) − u(2)
h ||F +h

)
.

(5.35)

It can be verified directly by (5.35) that

(5.36) ||u(2) − u(2)
h ||Fh ≤ Cmax {||u(1) − u(1)

h ||Fh , ||u(2) − Qhu(2)||F +h }.
As in the proof of Theorem 4.5 in [16], we can obtain (5.24).

From Lemma 5.1 and 5.2, we obtain the final results as in the proof of Theorem 4.6 in
[16].

Theorem 5.3. Under the assumptions in Lemma 5.2, we have

||u − uh||Fh ≤ Cκ−
1
2 hs− 3

2 max{m−λ(s−1−ε)+ δλ2 , q−(s− 3
2 )}

||u||s,κ,Ω +
s−2∑

l=0

κs−l−2|| f ||Hl(Ωδ)

 ,

||u − uh||0,Ω ≤ C(1 + (hκ)−1)hs−1 max{m−λ(s−1−ε)+ δλ2 , q−(s− 3
2 )}

||u||Hs(Ω) +

s−2∑

l=0

κs−l−2|| f ||Hl(Ωδ)

 .

(5.37)

5.2.3. The case of nonhomogeneous Maxwell’s equations. Consider nonhomogeneous
Maxwell’s equations

(5.38)



∇ × E − iωµH = 0 in Ω

∇ ×H + iωεE = J in Ω

− E × n − σ(H × n) × n = Q(−E × n + σ(H × n) × n) + g on γ = ∂Ω,

As described in subsubsection 5.1.2, the solution u =


E
H

 of the problem (5.38) is

decomposed into u =


E = E(1) + E(2)

H = H(1) +H(2)

 = u(1)+u(2), where E(1) is the solution of (5.13), and

H(1)|Ωk = H(1)
k =

1
iωµ∇ × E(1)

k .
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It is easy to see that u(2) =


E(2)

H(2)

 =


E − E(1)

H −H(1)

 is uniquely determined by the following

homogeneous Maxwell equations of


E(2) |Ωk

H(2) |Ωk

 =


E(2)
k

H(2)
k

 = u(2)
k :

(5.39)


∇ × E(2)

k − iωµH(2)
k = 0

∇ ×H(2)
k + iωεE(2)

k = 0
in Ωk (k = 1, 2, . . . ,N),

with the following boundary condition on γ and the interface conditions on Γk j (k < j; k, j =
1, . . . ,N):

(5.40)


L−k (u(1)

k + u(2)
k ) = −L+j (u(1)

j + u(2)
j ) on Γk j

L−k (u(1)
k + u(2)

k ) = QL+k (u(1)
k + u(2)

k ) + ĝ on ∂Ωk ∩ γ.

The variational problem of (5.39)-(5.40) is: to find u(2) =


E(2)

H(2)

 such that

∑

k

∫

∂Ωk

(L+k u(2)
k ) · (L+k vk) ds +

∑

k, j

∫

Γk j

(L+j u(2)
j ) · (L−k vk) ds

−
∑

k

∫

γk

Q(L+k u(2)
k ) · (L−k vk) ds

=
∑

k

∫

γk

ĝ · (L−k vk) ds −
∑

k, j

∫

Γk j

(
(L+j u(1)

j ) · (L−k vk) + (L−k u(1)
k ) · (L−k vk)

)
ds

+
∑

k

∫

γk

(
Q(L+k u(1)

k ) · (L−k vk) ds − (L−k u(1)
k ) · (L−k vk)

)
ds, ∀v ∈ V(Th).

(5.41)

6. Numerical experiments. In this section we apply the VTCR method and UWVF
method to solve several homogeneous and nonhomogeneous Helmholtz and time-harmonic
Maxwell equations with complex wavenumbers, and we report some numerical results to
compare the accuracy of the approximate solutions generated by the VTCR method, the
UWVF method and the PWLS introduced in [16].

For the examples discussed in this section, we adopt a uniform triangulation Th for the
domainΩ as follows: Ω is divided into small cubes of equal meshwidth, where h is the length
of the longest edge of the elements. As described in section 3, we choose the number p of
basis functions to be p = (m + 1)2 for all elements Ωk, where m is a variable positive integer.

To measure the accuracy of the numerical solution uh and Eh, we introduce the relative
L2 error

err. =
||uex − uh||L2(Ω)

||uex||L2(Ω)
, or err. =

||Eex − Eh||L2(Ω)

||Eex||L2(Ω)

for analytic solution uex ∈ L2(Ω), or Eex ∈ (L2(Ω))3, and

err. =

√√∑Num
j |uex, j − uh, j|2
∑Num

j |uex, j|2
, or err. =

√√∑Num
j |Eex, j − Eh, j|2
∑Num

j |Eex, j|2
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for the exact solution uex < L2(Ω), or Eex < (L2(Ω))3, where uex, j,Eex, j and uh, j,Eh, j are the
exact solution and numerical approximation, respectively, of the problem at vertices referred
to by the subscript j.

For the examples discussed in this section, we assume that µ = 1. We perform all
computations on a Dell Precision T5500 graphics workstation ( 2*Intel Xeon X5650 and
6*12GECC ) using MATLAB implementations.

6.1. A point source smooth problem. The first model problem consists of a point
source and associated boundary conditions for homogeneous Helmholtz equation:

u(r, r0) =
1

4π
eiω|r−r0 |

|r − r0| in Ω,

∂u
∂n
+ iκu = g on γ,

in a cubic computational domain Ω = [0, 1] × [0, 1] × [0, 1]. r = (x, y, z) is an observing
point. To keep the exact solution smooth in Ω, the location of the source is off-centered at
r0 = (2, 2, 2) outside the region. In addition, we also consider the singular case in section 6.5.

Tables 1-3 show the L2 relative errors of the approximations generated by the VTCR
method, UWVF method and PWLS method.

Table 1
Errors of approximations with respect to p.

p 9 16 25 36

ω = 4π − 1i
VTCR 9.27e−2 8.97e−3 1.52e−3 1.08e−4
UWVF 5.28e−2 5.40e−3 4.99e−4 4.63e−5

h = 1
8 PWLS 2.19e−1 1.83e−2 5.48e−4 4.80e−5

ω = 8π − 2i
VTCR 1.03e−1 8.49e−3 1.40e−3 9.95e−5
UWVF 7.54e−2 5.88e−3 4.95e−4 4.81e−5

h = 1
16 PWLS 3.41e−1 3.93e−2 7.12e−4 4.96e−5

Table 2
Errors of approximations with respect to h for the case of ω = 4π − 1i.

h 1
4

1
8

1
16

p = 16
VTCR 1.43e−1 8.97e−3 6.24e−4
UWVF 7.75e-2 5.40e−3 3.40e−4
PWLS 1.72e-1 1.83e−2 1.31e−3

p = 25
VTCR 2.71e-2 1.52e−3 1.06e−4
UWVF 1.41e−2 4.99e−4 1.50e−5
PWLS 2.09e-2 5.48e−4 2.24e−5

Table 3
Errors of approximations with respect to h for the case of ω = 8π − 2i.

h 1
12

1
14

1
16

p = 16
VTCR 4.18e−2 1.65e−2 8.49e−3
UWVF 2.02e-2 1.04e-2 5.88e−3
PWLS 1.03e-1 6.23e-2 3.93e−2

p = 25
VTCR 9.37e−3 4.13e−3 2.10e−3
UWVF 2.16e−3 9.82e-4 4.95e−4
PWLS 3.52e-3 1.47e-3 7.12e−4
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The results listed in Tables 1-3 indicate that the approximation generated by the UWVF
method is much more accurate than that generated by the VTCR method and the PWLS
method.

6.2. A nonhomogeneous Helmholtz equation in three dimensions. The exact solu-
tion of the second model problem is defined in the closed form

uex = z ln(1 + ωxy), (x, y, z) ∈ Ω,

where Ω = [0, 1] × [0, 1] × [0, 1].
We set ω = 2π and choose the number p of the plane wave basis functions as p =

25. Table 4 shows the relative L2 errors of the resulting approximations generated by three
methods.

Table 4
Errors of approximations with respect to h and q (ω = 2π, p = 25).

h 1
4

1
5

1
6

1
7

1
8

q = 2
VTCR 1.01e-1 6.29e-2 4.28e-2 3.09e-2 2.34e-2
UWVF 1.01e-1 6.29e-2 4.28e-2 3.09e-2 2.34e-2
PWLS 1.01e-1 6.30e-2 4.28e-2 3.09e-2 2.34e-2

q = 3
VTCR 4.74e-2 2.88e-2 1.94e-2 1.40e-2 1.02e-2
UWVF 4.74e-2 2.88e-2 1.94e-2 1.40e-2 1.02e-2
PWLS 4.74e-2 2.88e-2 1.95e-2 1.41e-2 1.03e-2

The results listed in Table 4 indicate that the approximations generated by three meth-
ods with the local space consisting of third order polynomials is much more accurate than
that generated by the corresponding method with the local space consisting of second or-
der polynomials. Moreover, the approximations generated by the VTCR-LSFE method, the
UWVF-LSFE method and the PWLS-LSFE method almost have the same accuracy.
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Fig. 1. (Left): Err. vs 1
h . (Right): −log(Err.) vs −log(h).

Figure 1 (left) and Figure 1 (right) show the plot of Err. with respect to 1
h and −log(Err.)

with respect to −log(h), respectively. It displays a linear plot which verifies the validity of the
theoretical results in Theorem 5.3.

6.3. Electric dipole in free space for a smooth case. We compute the electric field due
to an electric dipole source at the point x0 = (0.6, 0.6, 0.6). The dipole point source can be
defined as the solution of a homogeneous Maxwell system (3.17). We set µ = 1 and ε = 1+ i
in (2.12) (σ is determined by µ and ε according to the known formula). The exact solution of
the problems is

(6.1) Eex = −iωIϕ(x, x0)a +
I

iωε
∇(∇ϕ · a)
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where

ϕ(x, x0) =
exp(iω

√
ε|x − x0|)

4π|x − x0| ,

the amplitude I = 1, the vector a = ( 1.0√
3
, 1.0√

3
, 1.0√

3
) and Ω = [−0.5, 0.5]3. To keep the ex-

act solution smooth in Ω, we move the singularity x0 from (0.2, 0.2, 0.2) (see [17]) in the
computational domain to (0.6, 0.6, 0.6) outside the region.

Tables 5-6 show the L2 relative errors of the approximations generated by the VTCR
method, the UWVF method and the PWLS method.

Table 5
Errors of approximations with respect to p.

p 16 25 36 49 64

ω = 2π
VTCR 3.52 6.79e−1 1.63e-1 6.60e−1 4.61e-2
UWVF 3.28e−1 1.67e−1 9.30e−2 4.84e−2 2.55e-2

h = 1
4 PWLS 2.71e−1 1.36e−1 7.48e−2 4.04e−2 2.21e−2

ω = 4π
VTCR 7.90 2.33 3.74e−1 1.41 9.22e-2
UWVF 1.72e−1 5.82e−2 1.91e−2 7.06e−3 2.61e−3

h = 1
8 PWLS 1.43e−1 4.56e−2 1.55e−2 5.64e−3 2.01e−3

Table 6

h 1
4

1
8

1
12

p = 25, ω = 2π
VTCR 6.79e−1 2.91e-1 1.72e-1
UWVF 1.67e−1 3.15e-2 1.14e-2
PWLS 1.36e−1 2.88e-2 1.11e-2

p = 36, ω = 4π
VTCR 9.07e−1 3.74e−1 2.11e−1
UWVF 1.67e−1 1.91e−2 5.42e−3
PWLS 1.31e−1 1.55e−2 4.34e−3

The results listed in Tables 5-6 indicate that the approximation generated by the PWL-
S method is much more accurate than that generated by the VTCR method and possesses
slightly higher accuracy than that generated by the UWVF method.

6.4. A nonhomogeneous Maxwell’s equations in three dimensions. To illustrate the
effectiveness of the proposed approach for nonhomogeneous Maxwell’s equations (2.12), we
consider the following analytical solution

(6.2) Eex = εω(xz cosy,−z siny, xy)t,

where µ and ε are the same as that defined in last subsection. In this example, the source term
J determined by the above solution does not vanish over the entire computational domain
[0, 1]3. The discretization of the underlying equations is the same as that of the equations
described in Section 5.1.2 and 5.2.3.

We set ω = 2π and choose the number p of the plane wave basis functions as p = 25.
We report the results of the PWLS-LSFE methd when h decreases and q increases. Table 7
shows the relative L2 errors of the resulting approximations generated by three methods.

Table 7
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Errors of approximations with respect to h and q (ω = 2π, p = 25).

h 1
5

1
6

1
7

1
8

1
9

q = 2
VTCR 1.60e-1 1.26e-1 6.72e-2 5.11e-2 4.01e-2
UWVF 7.91e-2 5.17e-2 3.62e-2 2.65e-2 2.01e-2
PWLS 1.80e-2 1.21e-2 8.50e-3 6.41e-3 5.00e-3

q = 3
VTCR 3.60e-2 2.24e-2 9.80e-3 6.40e-3 4.40e-3
UWVF 1.78e-2 9.20e-3 5.30e-3 3.30e-3 2.20e-3
PWLS 4.70e-3 2.32e-3 1.30e-3 7.47e-4 4.58e-4

The results listed in Table 7 indicate that L2-norm accuracy of the approximation gener-
ated by the PWLS-LSFE method is much more accurate than that generated by the UWVF-
LSFE method, which possesses slightly higher accuracy than that generated by the VTCR-
LSFE method. Moreover, the approximations associated with three order polynomials in
local spectral spaces is much more accurate than that associated with two order polynomials
in local spectral spaces.
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Fig. 2. −log(Err.) vs −log(h).

Figure 2 show the plot of −log(Err.) with respect to −log(h). It displays a linear plot for
the PWLS-LSFE and the UWVF-LSFE method.

6.5. A point source singular problem. In this section we compute the acoustic pressure
due to a point source at r0 = (0.7, 0.7, 0.7). The point source defines the nonhomogeneous
Helmholtz equation (5.17) or (5.1). The exact solution of the Helmholtz equation is

u(r, r0) =
1

4π
eiω|r−r0 |

|r − r0| in Ω,(6.3)

The Helmholtz equation satisfied by u(r, r0) is an exceptional nonhomogeneous equation
whose source term f is just a scalar Dirac function δ(r − r0). The right-hand side of each
subproblem defined by (6.3) is analytically computed in the following way:

∫

Ωk

f vk dr = vk(r0).

The mesh for the case of ω = 4π − 1i consists of 512 elements and 12 800 degrees of
freedom (DOFs).

Fig. 3 shows the solutions for the free-space dipole at ω = 4π − 1i, where the solutions
are computed by (6.3), the PWLS-LSFE method, the UWVF-LSFE method and the VTCR-
LSFE method, respectively. The top row shows the real part and the full amplitude of the exact
solution, the second row shows the real part of the numerical solutions generated by the three
methods, the third row shows the full amplitude of of the numerical solutions. The bottom row
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presents the distribution of the errors of the approximate solutions generated by the PWLS-
LSFE method, the UWVF-LSFE method and the VTCR-LSFE method, respectively.

Fig. 3. Comparision of solutions for the free-space dipole at ω = 4π − 1i and λ/h ≈ 4.

Fig. 3 shows that the approximation generated by the PWLS-LSFE method is much more
accurate than that generated by the UWVF-LSFE method, which possesses higher accuracy
than that generated by the VTCR-LSFE method.

7. Conclusion. In this paper two variants of the variational theory of complex rays
and the ultra weak variational formulation have been introduced for the discretization of the
Helmholtz equation and time-harmonic Maxwell equations with complex wave numbers, and
have been generalized to discretize the nonhomogeneous Helmholtz equation and Maxwell
equatons. The well posedness of the approximate solutions generated by the two methods is
derived. The numerical results show that the resulting approximate solution generated by the
UWVF method is clearly more accurate than that generated by the VTCR method, and the
UWVF method is comparable to the PWLS method in the numerical accuracy.
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paper.
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[22] H. Riou, P. Ladevèze, B. Sourcis, The multiscale VTCR approach applied to acoustics problems, J. Comput.

Acous., 16(2008), pp. 487-505.
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