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Abstract

We examine certain analytic and numerical aspects of optimal control problems for a Ladyzhenskaya model for
stationary, incompressible, viscous flows. The control considered is of the distributed type; the functionals minimized are
the L2-distance of candidate flow to some desired flow and the viscous drag on bounding surfaces. We show the existence
of optimal solutions and justify the use of Lagrange multiplier techniques to derive a system of partial differential
equations from which optimal solutions may be deduced. We study the regularity of solutions of this system. Then, we
consider approximations, by finite element methods, of solutions of the optimality system and examine their convergence
properties.

Keywords: Optimal control; Ladyzhenskaya equations; Finite element methods

1. Introduction

The optimization problem we study is to seek a state pair (#,p) and a control g such that
a functional of # and g is minimized subject to the constraint that the equations corresponding to
a Ladyzhenskaya model of viscous, incompressible flow [9] are satisfied. Specifically, the state and
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control are required to satisfy

—<v0+v,J |gradu|2dQ)Au+u-gradu+gradp=f+g in Q, (1.1)
Q

divu =0 in Q, (1.2)
and

u=0 onT, (1.3)

where Q denotes a C!*! or convex bounded domain in R%, d = 2 or 3, with a boundary I', and v,, v,
are positive constants. (When finite element approximations are considered, we will assume that
Q is a convex polyhedral domain.) If v, =0, then (1.1)-(1.3) reduce to the well-known
Navier—Stokes equations; in this case, if the variables in (1.1)—(1.3) are nondimensionalized, then v,
is simply the inverse of the Reynolds number Re. In (1.1)—(1.3), # and p denote the velocity and
pressure fields, respectively, fa given body force, and g a distributed control. The constant density
p has been absorbed into p, £, and g.

The model (1.1)-(1.3) is one of a class of models having nonlinear constitutive relations that were
introduced by Ladyzhenskaya [9] as possible alternatives to the Navier—Stokes model. These
models have been recently attracting considerable attention; see, e.g., [3,5,8,10]. Among the
reasons for this interest is the realization that the Ladyzhenskaya models may be interpreted as
algebraic turbulence models; see, e.g., [5].

The two functionals that we consider are given by

1 1
Fug)=5| lu—ul’d2 +5 | |g|*dQ (1.4)
2 Jo 2 J)o

and

Ji”(u,g)=l 2v0+v1j (grad u|? dQ j lgradui?dQ — | (f+g)-udQ +i (g|*dQ,
4 Q Q Q 26 Q
(1.5)

where § > 0 is a constant. The first of these effectively measures the difference between the velocity
field # and a prescribed field u,, while the second measures the drag due to viscosity. For
a discussion of the relation between (1.5) and the viscous drag, one may mimic the derivation given
in [11] for the analogous expression in the case of the classical Navier—Stokes equations. The
appearance of the control g in (1.4) and (1.5) is necessary since we will not impose any a priori
constraints on the size of the control.

The plan of the paper is as follows. In the remainder of this section, we introduce the notation
that will be used throughout the paper. Then, in Section 2, we give a precise statement of the
optimization problem for the functional (1.4) and discuss the main results we have obtained
concerning this problem. In Section 3, we define finite element algorithms for the approximation of
solutions of the optimization problem; we also discuss the main results we have obtained
concerning the existence and convergence of these approximations. In Section 4, we collect the
proofs of the results given in Sections 2 and 3. Finally, in Section 5, we consider the drag functional
(1.5).
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Throughout, C will denote a positive constant whose meaning and value changes with context.
H'(2), r € R, denotes the standard Sobolev space of order r with respect to the set 2, where 2 is
either the flow domain @ or its boundary I'; note that H°(2) = L?(2). Norms of functions
belonging to H'(2) and H'(I') are denoted by |‘|, and ||- ||, r, respectively. Corresponding
Sobolev spaces of vector-valued functions will be denoted by H'(2), e.g., H (Q) = [H*(Q)]".
Norms for spaces of vector-valued functions will be denoted the by same notation as that used for
their scalar counterparts. For example,

d d
o)z = z ol and ”””% = z | Uj“%,
j=1 ji=1
where vj, j = 1,...,d, denotes the components of v. We define, for (pg) and (u-v) e L'(Q),
(p.9) =j pqdQ and (u,v) =J. u-vdQ
Q Q

and, for (pq) and (u-v) e L'(I),

(p’q)l' = f pqdr and (u,v)r 2‘[ u-vdrl.
r r

Thus, the inner products in L2(R2) and L?(£) are both be denoted by (-,*) and those in L*(I’') and
L*(I') by (-,")r. If X denotes a Banach space, X* will denote its dual. Also, since in our context
L*(Q) or L*(I') will play the role of a pivot space between X and X*,(-,-) or (-,),(as the case may
be) also denotes the duality pairing of X and X*. For details concerning these matters, see [1,2
or 6].

We will use the forms

a(u,v) = J (gradw):(gradv)dQ Vu,ve H'(Q),
Q

b(v,q)=—quivde Vve H'(Q) and VqeL*(9Q),

and
c(u,v,w) =f u-grado-wdQ VYuv,weH'(Q),
Q
where, for u = (uy,u,,...,us) and v = (vy,v,,...,04), we have
_ 4 Qu; dv;
(gradw):(gradv) = ) . 9x,”

iLh,j=1

These forms are continuous in the sense that there exist constants C; > 0, C, > 0,and C5 > O such
that

Cyllulyllvlly, VuveH (Q), (1.6)

la(u,v)| <
<Calvlillglle VveHY(Q) and qeL*(Q), (L.7)

|
1b(v, q)
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and

le@,v,w)| < Cs llully ol Iwlly Vuo,we HY(Q). (1.8)
Moreover, there exist constants o > 0 and § > 0 such that

aw,v) = a|v|? VveHLRQ) (1.9)

and
b(v, q)
0 # veHMQ) ol

where H}(Q) = {ve H*(2): v =0 on I'} and L3(Q) = {q € L*(Q): {oqdQ = 0}. For details con-
cerning these forms and inequalities (1.6)—(1.10), one may consult [6,7 or 9].

= Bllgllo VgeL3(Q), (1.10)

2. The optimization problem and the optimality system

We begin by giving a precise statement of the first optimization problem we consider. Let
g € L*(Q) denote the distributed control and let u e V:= {v € H}(Q): divv = 0} denote the state,
i.e., the velocity field. The state and control variables are constrained to satisfy the Ladyzhenskaya
equations in the weak form (see, e.g., [5,9])

[vo + via(u,u)]a(u,v) + c(u,u,v) =(f+g,v) Vvel, (2.1)

where fe L*(Q) is a given function.
The functional (1.4), using the notation introduced in Section 1, is given by

Flu,g)=3lu—uold+3lgls, 22
where u, € L2(Q) is a given function. The admissibility set U,q is defined by

Uaa = {(u,g) € Vx L*(Q): (2.1) is satisfied}. (2.3)
Then, (&, §) € U.q is called an optimal solution if there exists ¢ > 0 such that

F@,g) < Fu,g) V(u,g)e U, satistying |lu —a|, + lg — gllo <. 24

Hence, optimal solutions are defined as local minima. The first main result that we obtain is (see
Theorem 4.6):

there exists a (#,§) € U .4 such that (2.2) is minimized in the sense of (2.4).

Due to the definition (2.3) for % .4, we see that the problem of finding (&, §) € %,4 satisfying (2.4) is
a constrained optimization problem. We wish to use the Lagrange multiplier rule to turn this
constrained optimization problem into an unconstrained one. Proceeding formally, we introduce
the Lagrange multipliers £ € H(2) and ¢ € L3(R2) and define the product space

21 = Ho(Q2)x L§(Q) x L*(Q) x Hg (2) x L3 ()
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and the Lagrangian
Mu,p,g,8,0) = Fug)— {[vo + viam,w]a@,&) + c(u,u,&) + b(&,p)
+ b(u’ 0) - (f+ 9, é)} V(u, D-9, ga U) €X- (25)

We now seek stationary points of .#(u, p, g, &, a) over y.

Again, proceeding in a formal manner, using standard techniques of the calculus of variations,
one may derive the Euler—Lagrange equations that correspond to the minimization of (2.5). This
process yields the optimality system

[vo + via(@,a)]a(@,v) + c(@,i,v) + b(v,p) = (f+ §,v) Vve Hy(Q), (2.6)
b(a,q) =0 VgelL3(Q), 2.7
[vo + via(a,a)]a(é, w) + 2via(&, a)a(a, w) + c(w,i,E) + c(@, o, &) + b(w, o)
=t —uy,w) VoeH}Q) (2.8)
b&y)=0 VyelLiQ), (2.9)
and
(3.5) + (5.6) =0 VseL*Q). (2.10)

Variations in the Lagrange multipliers € and ¢ recover the constraints (2.6) and (2.7). Variations in
the state variables # and p yield the co-state equations (2.8) and (2.9) and variations in the control
g yield (2.10). Thus, the optimal solution necessarily satisfies the optimality system (2.6)—(2.10).

Our second main result (see Theorem 4.8) is to make the above formal process of obtaining the
optimality system through the use of the Lagrange multiplier rule a rigorous one:

let (@, p,9) € H}(2) x L5(R2) x L3(Q2) denote an optimal solution in the sense of (2.4); then, there
exists a nonzero multiplier (§,0) € H}(Q) x L3(Q) satisfying the optimality system (2.6)—(2.10).

Note that (2.10) enables us to eliminate the optimal control g from (2.6), resulting in
[(vo + via(@,@)]a(@,v) + c(@,a,0) + b(v,p) = (f— &v) VveH(Q) (2.11)

Then, the optimality system in terms of the optimal state (&, p) and co-state (&,0) is given by
(2.7)-(2.9) and (2.11). Once the state variables # and p and the Lagrange multipliers £ and o are
determined, the optimal control may be easily deduced from the optimality condition (2.10), i.e., we
essentially have that § = —¢&.

Remark. A strong form of the optimality system may be obtained by the usual application of
integration by parts. Indeed, one sees that (2.6)—(2.10) constitutes a weak formulation of the
problem

—[vo + via(, )] dat + aa-grad it + gradp=f+¢ in Q, 2.12)
divia =0 in Q, (2.13)
a=0 onT, (2.14)
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—[vo + via(ie, a)]AE — 2via(@, &) da + E-(grad )T — a-grad & + grad o

=@ —u, in@Q, (2.15)
divé=0 in Q, (2.16)
E=0 onT, (2.17)

and
j=—-¢ inQ (2.18)

Note that in (2.15)

&

d d o g
(@-grad€) = Y ;=2 and (¢-(grad@)T)i= ¥ &or  fori=1,...,d.
The optimality system (2.12)—(2.18) includes of the Navier—Stokes system (2.12)~(2.14) and the
system (2.15)—(2.17) whose left-hand side is the adjoint of the Navier—Stokes operator linearized

about (&, p).

Remark. An equivalent weak formulation of the optimality system (2.7)-(2.9) and (2.11) that we
use later is given by

Lvo + viala,a)]a(@,v) + c(a,a,v) = (f— &v) VeveV (2.19)
and
[vo + via(@, #)]a(é, o) + 2via(, d)a(u, ) + c(w, i, &) + cla,0,&) = (it —uy,0) VoeV.
(2.20)

Once & and & are determined, one can recover p and ¢ from (2.11) and (2.8).

Remark. Our notion of an optimal solution is a local one; see (2.4). Moreover, there is no reason to
believe that, in general, optimal solutions are unique. This is to be expected since even the
uncontrolled stationary Navier—Stokes equations are known to have multiple solutions for
sufficiently large values of the Reynolds number. However, just as in the Navier—Stokes case (see,
e.g., [6,7,12 or 13]), for sufficiently small values of the Reynolds number, i.e., for “small enough”
data or “large enough” viscosity, one can guarantee that optimal solutions are unique.

In order to determine the rate of convergence of finite element approximations to the solutions of
the optimality system, one must have knowledge about the smoothness of these solutions. Thus,
our next main result concerns the regularity of solutions of the optimality system. The precise result
is given in Theorem 4.9 (see also the remark that follows that theorem); here, we merely note that

the regularity of solutions of the optimality system (2.6)—(2.10) is the same as that present for
solutions of the analogous problem for the Navier—Stokes equations.

Thus, & and € are as smooth as the velocity field and p and ¢ are as smooth as the pressure field
obtained from the Navier—Stokes equations posed over the same domain © and having the same
data f as the optimality system (2.6)—(2.10).
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3. Finite element approximations

We now define, using finite element methods, an approximate optimality system from which
approximations to the optimal state, co-state, and control may be determined. It is important to
emphasize at the beginning that the finite element methods that may be employed to this end are
exactly those that may be used for determining approximate solutions of the Navier—Stokes
equations. Thus, the same finite element spaces may be used for the pressure and velocity
approximations (and for the corresponding adjoint variables) as those used for the corresponding
variables in the Navier—Stokes equations. Thus, one may consult the vast literature and long
catalog of stable finite element velocity—pressure pairs that are available for the Navier—Stokes
equations; see, e.g., [6,7].

A finite element discretization of the optimality system (2.7)—(2.9) and (2.11) is defined in the
usual manner. First one chooses families of finite dimensional subspaces X* < H}(Q) and
S* = LE(22). These families are parametrized by a parameter h that tends to zero; commonly, h is
chosen to be some measure of the grid size. It is natural to assume that as h — 0,

inf |[v— 0", 50 VoeHNQ) (3.1)
vhexh

and
inf |[g—q"lo—0 VgeL3(Q). (3.2)
g'es’

Here we may choose any pair of subspaces X* and S* that can be used for finding finite element
approximations of solutions of the Navier—Stokes equations and we make the same assumptions
as are employed in that setting. Thus, we assume the inf-sup condition, or Ladyzhenskaya—
Babuska—Brezzi condition: there exists a constant C, independent of h, such that

h h
inf  sup b(vq)

0 # g"eS" 0 # v"eXx* [ v fqll qh llo

= C. (3.3)

This condition assures the stability of finite element discretizations of the Navier-Stokes equations.
We shall see that it also assures the stability of the approximation of the Ladyzhenskaya model and
the optimality system. Similar discussions may be found in [5]. For thorough discussions of the
approximation properties (3.1) and (3.2), see, e.g., [4] and for like discussions of the stability
condition (3.3), see, e.g., [6 or 7]. These references may also be consulted for a catalog of finite
element subspaces that meet the requirements of (3.1)—(3.3).

In the sequel we will use the following modified trilinear form c(u,v,w). for any
(u,0,w) € [H' ()],

c(u,v,w) =%j [u-gradv.w — u-gradw.v] dQ.
Q

Note that for (u,v,w)e [V*], this definition coincides with the original definition. Also, the
modified ¢(-,-, ") satisfies

c(u,o,w) =0 Vu,ve H(Q)
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and, for some constant Cy > 0,
|c(u,v,w)| < Collgradu|lo llgradvo lgrad wlo Vu,v,we Ho(R). (3.4)

Once the approximating subspaces have been chosen, we can define the approximate problem
from which approximate states and co-states may be determined: seek u" € X", p" € $*, €* € X" and
o" € S* such that

[vo + via(" u")]a(", v") + c(u”, u",v*) + b(v" p*) = (f — E"v*) Vohe XM, (3.5

bu".q")=0 Vg"eS" (3.6)

[vo + via(u®, u")]a(E", o) + 2viau", Ea(u", o) + c(w" u", &) + c(u’, " ") + b(w", o)

=" —up,0") Vo'eX" (3.7)

and

b(E"Y") =0 VyreSt (3.8)
Following (2.10) or (2.18), we define the approximate control by

g"=—¢&" inQ.

The main results concerning finite element approximations are proved in Sections 4.4 and 4.5.
These may be summarized as follows:

under certain conditions on the data vy, vy, and f, one can show that solutions of the approximate
optimality system (3.5)—(3.8) exist and converge to solutions of the optimality system (2.7)-(2.9) and
(2.11); under more stringent restrictions on the data, one may also show that the solution of the
approximate optimality system (3.5)~(3.8) is unique.

One may also show that if one choose proper finite element subspaces such that the stability
condition (3.3) is satisfied and such that the errors in (3.1) and (3.2) have the same asymptotic order
of convergence in h as h — 0, then the same asymptotic order of convergence holds for the finite
element approximation (", p", &* o*), provided that v, is sufficiently large and that the regularity
results presented in Section 4.3 hold. Then, for example, if one uses a Taylor—Hood element pair
(see, e.g., [6 or 7]) consisting of continuous piecewise quadratic velocity approximations and
continuous piecewise linear pressure approximations, both defined with respect to the same grid,
then provided solutions are regular enough, we achieve O(h?) convergence for the H(€)-norm of
the velocity error and the L?(2)-norm of the pressure error.

4. Proofs of main results
We now provide proofs of the results given in Sections 3 and 4.

4.1. Existence of optimal solutions

We first show that an optimal solution exists. To this end we first present some useful resuits.
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Lemma 4.1.
a(u,u)a(u,u — v) — a(v,v)a(v,u — v)
> 4(llgradu||5 + [lgradv|3) | grad(u — v) (3 + 4[a(v,u — v)]?
+ i[a(u,u —v)]? Yu,ve H'(Q).

Proof. By the Cauchy-Schwartz inequality, we have
a(u,u)a(u,u —v) — a(v,v)a(v,u — v)
= a(u,u)a(u — v,u —v) + [a(u,u) — a(v,v)]a(v,u —v)
= a(u,u)a(u — v,u —v) + a(u,u — v)a(v,u — v) + a(v,u — v)a(v,u — v)
> a(u,u)a(u — v,u — v) — 4[a(u,u — v)]* — $[a(v,u — )] + [a(v,u — v)]?
> a(u,w)ale — v,u —v) + 1[a®,u — v)]*> — $[a(u,u)a(m — v, u — v)]
> 4[a,u — 0)]* + La(u,u)a(u —v,u —v) Vu,vecH(Q).

Using the symmetry in # and v, we obtain the result in the lemma. []

For convenience, let us define
ao(w;u,v) = voa(u,v) + via(w,w)a(u,) Yu,v,we H(Q). 4.1)

From the previous lemma, we see that the nonlinear mapping u +— ao(u; u, - ) is of monotone type in
H'(Q). Thus, we have the following result.

Corollary 4.2. (i) There exists a constant C such that
ao(u;u,u) > Cllull} VueH;(Q).

(ii) For each v € H}(Q), the mapping u v aq(u;u,v) is sequentially weakly continuous on H}(Q).

The second part of the corollary follows from the sequential weak continuity of monotone
operators; see, e.g., [6] for related discussions.
We next quote an abstract theorem on the existence of weak solutions for the problem

ay(u;u,v) = F(v) VvekX, (4.2)

where X is an separable Banach space equipped with norm || - ||x and the form a,(-;-,) is such that
for each fixed w € X, a,(w;-,-) 1s a continuous bilinear form.

Lemma 4.3. Assume that there exists a constant C such that

a;wuu)>Cllull? VueX
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and for each v € X, the mapping u — a, (u; u, v) is sequentially weakly continuous on X. T hen, for each
F € X*, (4.2) has at least one solution u € X. Furthermore, every solution u of (4.2) satisfies the
estimate

1
lullx < = IF I

Proof. See [6]. O
We are now in a position to establish the existence of a solution of (2.1).

Proposition 4.4. If f + g € H™ (), then (2.1) has at least one solution u € V. Moreover, there exists
a constant C, independent of vy, such that every solution u of (2.1) satisfies

C
lally <=1 f+gl-1 (4.3)
0

Proof. We wish to apply Lemma 4.3 to (2.1). We choose the space X to be the Hilbert space V. We
define

a;(w;u,v) = agw;u,v) + c(w,u,v) VwuvelV.

We immediately obtain the coercivity from Corollary 4.2 (i) and the fact that c(w,u,u) = 0.
We now turn to the question of sequential weak continuity. As discussed in, e.g., [6], for each
v € V, the weak continuity of the form u + c(u, u,v) may be verified as follows. From the relation

c(u™ u™,v) = — J u.gradv-u™dQ VveC®(Q)nV
Q

and the compact imbedding H} (Q) = L*(Q) (i.e., if u™ — u in H} (Q), then a subsequence ¥ — u in
L*(Q)), we obtain that

lim c(@u™,u™,v) = —f u-gradv-udQ = c(u,u,v) Voe C*(Q)nV.
Q

Thus, the denseness of C*(€) in H} () implies that

lim c(@™,u™,v) = c(u,u,v) VveV.

n— o0

Combining this result with Corollary 4.2 (ii), we readily deduce, for each fixed v, the sequential
weak continuity of the mapping u +— a, (u; u, v). Hence the result of this proposition follows directly
from Lemma 4.3. [

One can also prove the following regularity results:

Lemma 4.5. If f + g € L2(Q), then u € H*(Q). Moreover, there exists a constant C such that
full2 < Clf+9glo- 4.4)
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Proof. See [9]. O
We are now in a position to establish the existence of an optimal solution as defined in (2.4).
Theorem 4.6. There exists a (i, §) € U.q such that (2.2) is minimized in the sense of (2.4).

Proof. We first claim that %,4 is not empty. The existence of a solution for (2.1) was given in
Proposition 4.4 for any given right-hand side f+ g € L2(Q). In particular, we deduce that there
exists a & € V that satisfies (2.1) with g = 0. Moreover, we have #(@,0) < C(||#)2 + ||uo|3) < .
Thus, (#,0) € X .q.

Now, let {#,g™} be a sequence in %,4 such that

lim #u®™,¢g™) = inf _#(u,g)

n— u,9)€Hua
Then, by (2.2), (¥, ¢") is uniformly bounded in L?(Q) x L*(), and

[vo + via@™,u™)]a@™,u™) + c@™,u™,v) = (f+ g™, v) VveV. (4.5)
By (4.3), we have

lu®], < C.

We may then extract subsequences such that
g"—§ inL*Q), u«”—a inV, u”-a inL*Q)

for some (&, §) € V x L*(R2). The last convergence result above follows from the compact imbedding
H}(Q) = L*(R). We may then pass to the limit in (4.5). We may deduce that (&, §) satisfies (2.1)
using arguments similar to the ones given earlier to derive the result in Proposition 4.4.

Finally, by the weak lower semicontinuity of #(-,-), we conclude that (&, g) is an optimal
solution, i.e.,

Fla,g)= inf Fug)

(4, 9)E¥ua
This proves the theorem. []

Remark. Because the optimal control § € L(2), we may deduce, using the regularity results in
Lemma 4.5 for the Ladyzhenskaya equations, that & € H*(Q2).

Remark. Using (1.7) and (1.10), one can show that, similar to the Navier—Stokes equations case,
there exists a p € LE(Q) such that (&, p) is a weak solution of (1.1)-(1.3), i.e.,

[vo + via(@, @)]a(@,v) + c(@,a,v) + b(v,p) = (f+ §,v) VveH;(Q) (4.6)
and

b(a,q) =0 VqeL}(Q). 4.7)
Since f+ § € L*(Q2), we actually have (&, p) e H*(Q) x H (Q).
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4.2. Existence of Lagrange multipliers

We wish to use the method of Lagrange multipliers to turn the constrained optimization problem
(2.4) into an unconstrained one. We begin by showing that suitable Lagrange multipliers exist.

We first quote the following abstract theorem concerning the existence of Lagrange multipliers
for smooth constrained minimization problems on Banach spaces.

Proposition 4.7. Let X and Y be two real Banach spaces, ¢ a functional on X, and M a mapping from
X to Y. Assume u is a solution of the following constrained minimization problem:

find ue X such that #(u) = inf{ ¢ (v): ve X,M{) = fo},

where f, is any fixed element of Y. Assume further the following conditions are satisfied:
(A) #:Nbhd(u) =€ X — R is Frechet-differentiable at u with Frechet derivative J',
(B) M is Frechet-differentiable in an open neighborhood of u and its Frechet derivative M’ is
continuous at u;
(C) Range (M'(u)) =Y.
Then there exists a pe Y* such that

_</,(u)’w> + <M’M’(u)w> =0 VwelX.
Proof. See [14]. [

Let X = H}(Q)x L3(Q) x L*(Q)and Y = H™ }(Q) x L3(R2) and let the functional ¢ be defined as
in (1.4) and the nonlinear mapping M: X — Y denote the (generalized) constraint equations, i.e.,
M(u,p,g) = (f,¢) for (u,p,g) € X and (f,¢) e Y if and only if

[vo + via(u,u)]a(u,v) + c(u,u,v) + b(v,p) — (g,0) = (f,v) VveHLQ) (4.8)
and
b(u,q) = (¢,q) VqeL§(Q). ' 4.9

One may show that Misa C ‘-maPQing and its Frechet derivative M'(&, p,§) € £ (X, Y) is defined
as follows: M'(&, p, g) - (w,r,s) = (f, @) for (w,r,s) € X, and (f,¢) € Y, if and only if

[vo + via(@,@a)]a(w,v) + 2v a(w,@)a(@,v) + c(@,w,v) + c(w,a,v) + b(v,r) — (s,v)
=(f,v) VveHL(RQ) (4.10)
and
bw,q) = (¢,q) Y qeL§(Q). (4.11)

Theorem 4.8. Let (i, p, §) € H () x L3() x L*(R2) denote an optimal solution in the sense of (2.4).
Then, there exists a nonzero Lagrange multiplier (€,6) € H}(Q) x L3(Q) satisfying the Euler equa-
tions
—F'(@,§)-(w,r,8) + (M’ (@, p,§)- (w,r,5),(£,0)) =0 Y (w,r,5) € Hy(Q) x L§(Q) x L*(Q),
4.12)
where (-, denotes the duality pairing between H}(Q) x L3(R2) and H™ () x L§(Q).
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Proof. The operator M’ (&, p, §) from X into Y is onto. To see this, we let (f, @) € Y be given and we
first examine the problem of seeking an element (w,r) e Ha () x L3(2) such that

[vo + via(@,é)]a(w,v) + 2v,a(w,a)a(a,v) + c(a,w,v) + c(w,ia,v) + b(v,r)

=(fiv) Voe H}Q) (4.13)
and
bw.q) = (¢,q9) VqeL§Q), (4.14)
which can be rewritten as
d(w,v) + b(v,r) = (f,v) Vve HL:Q) 4.15)
and
bw,q) = (#,9) VqeL3(Q), (4.16)

where d(w,v) = [vo + via(@, &t)]a(w,v) + 2v,a(w,@t)a(@, v) + c(@, w,v). For each w e H}(Q) we have
c(ie,w,w) = 0 such that

aw,w) = [vo + via(@,a)]a(w,w) + 2via(w,i)alit,w) > vo [ w |1}

Hence, using well-known results for proving the existence of solutions for the Stokes equations
[12] we readily conclude that there exists a (w,7) € H} () x L(Q) such that (4.15) and (4.16), or
(4.13) and (4.14) hold. Next, we set s = w-grad & so that c(w, &, v) = (s, ) for all ve H'(Q). Since
we H'(Q) and & € H*(Q) (see the remarks at the end of Section 4.1), we deduce from imbedding
theorems that s € L?(Q). By adding c(w, &, v) — (s, v) = 0 to (4.13) we see that (w,r,s) € X satisfies
(4.10) and (4.11), i.e., we have proved that M’'(&, p, §) is onto.

Hence, by Proposition 4.7, we deduce that there exists a (§,0) € H} () x L2(€2) such that (4.12)
hold. J

Using (4.10) and (4.11), we may rewrite (4.12) in the form
—(@ — uo,w) — (§,8) + [vo + vial@,a)]a(w, &) + 2via(§, a)a(a,w) + c(w,a,§) + c(a,w, )
+ b(&,r) — (5,&) + b(w,0) =0 V(w,r,s) € H} () x L3(Q) x L*(Q).

Upon separation of the above equation, one obtains (2.8)—(2.10). Since the optimal solution (&, p, §)
also satisfies the constraint (2.6) and (2.7), we see that necessary conditions for an optimum are that
the system (2.6)—(2.10), i.e., the optimality system, is satisfied.

4.3. Regularity of solutions of the optimality system

We now examine the regularity of solutions of the optimality system (2.7)-(2.9) and (2.11), or
equivalently, (2.12)—(2.18).

Theorem 4.9. Suppose the given data satisfies f € L*(Q) and u, € L*(Q). Suppose that Q is of class
CY Y. Then,if (u,p, & 6) € H}(Q) x L3(Q2) x H} (2) x LE(Q) denotes a solution of the optimality system
(2.7)-(29) and (2.11), or equivalently, (2.12)-(2.18), we have that (u,p,& 6)e H*(Q)x H'(Q)
x H*(Q) x H ().
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Proof. Since & € H'(Q2), we have that the right-hand side of (2.12) belongs to L?(£2). Then, the
additional regularity of u and p follows from Lemma 4.5 (or regularity results for the
Navier—Stokes equations by noting that the term [vo + v a(u,u)] is a constant).

Now, since u € H*(Q) and & € H'(2), we have that Au, &-(gradu)’, and u-grad & belong to
L*(Q). Also, u — u, belongs to L2(Q2). Thus, by rewriting (2.15) in the form

—[vo + via(u,u)]AE + grado = 2v,a(u, E)Au — E-(gradw)" + u-grad & + (u — uy) in Q,
4.17)

we have a right-hand side that belongs to L*(2). Then, since Qis of class C!** and a(u, u) and a(u, £)
are constants, well-known regularity results for the Stokes problem applied to (2.16), (2.17) and
(4.17) yield that Ee H?(Q) and 6 e H'(2). O

Remark. The above result also holds for convex regions of R?. In general, we may show that if
fe H™(Q), uo e H™(Q), and Q is sufficiently smooth, then (u,p,&, 0) e H™ 2(Q)x H™*(Q) x
H™ 2(Q)x H™*1(Q). In particular, if £and u, are both of class C*(@), and Q is of class C*, then
u,p, & and o are all C*(Q) functions as well.

4.4. Existence of finite element approximations

We now turn to the question of the existence of solutions of the discrete system (3.5)-(3.8). Note
that here and in Section 4.5, we drop the (*) notation in denoting optimal solutions.
The discrete inf-sup condition (3.3) implies that the subspace

Vh = {v"e X" b(v",q") =0 V ¢" e S"} (4.18)

of the finite element space X" is nonempty and, along with the approximation property (3.1), that,
as h—0,

inf |[v —v"|; -0 VveV;

vheyt

see [6]. Thus, (u*, p", &" o") e X* x S" x X* x §" is a solution of (3.5)—(3.8) if and only if (u’,&") e
VEx V" is a solution of

[vo + via(u®, u")]a@" v") + c(u”, u* v*) = (f — E*,v") VoteV* (4.19)
and
[vo + via" u")]a(E", o) + 2via”, EMa(u", 0") + c(w" u", E") + c(u*, o, )
=(u" —ug,0") Vo'ebh (4.20)
We define

a1 (4, 8); (1), (v, @) = [vo + via(w,u)]a(z,v) + c(u,z,v) + (n,0)
+ [vo + via(u,u)]a(n, @) + 2v,a(u, n)a(u, »)
+ clo,u,n) + clu,0,n) — (z,w) V,p),L,0)eVxV
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and
F((v,0)) = (£,v) — (o, w) V(v,@)e VxV.

Clearly, (u,&) € V' x V is a solution of (2.19) and (2.20) if and only if

ar((u,8); (u,8), (v, @) = F((v,)) V(v,@)eVxV; (4.21)
(u", E") e V' x V* is a solution of (4.19) and (4.20) if and only if
a, ((u", E*); (u*, EN), V", ")) = F((v",0")) V (v* 0" e V*x VE (4.22)

We now prove the existence of solutions to Eqs. (4.19) and (4.20), or equivalently, (4.22), under
suitable assumptions and derive a uniform bound for these solutions (#”, &").

Theorem 4.10. Assume 4vov, > CZ where C,, is the constant in (3.4). Then, the discrete system (4.22)
has at least one solution (u", &*) € V* x V*. Furthermore, there exists a positive u > 0 independent of
h such that every solution (u", &") of (4.22) satisfies

a7 + 1€"1% < .

Proof. The assumption 4vov; > C3 implies that

y=9(vo,v1) = min (v + v;x2 — Cox) > 0.

-0 <x<

Then, for each (u”, &") € V" x V" we have that
a,((u", &"); (", &), (", &"))
= [vo + via(u®, u")]a@’ u) + c(u",u" u") + (&", u") + [vo + via(u" u")]a(E" &)
+ 2vya(u”, &M a@”, &) + (& u", &) + c@”, &, &) — ", &)
= [vo + vy llgrad w”||§] [l grad w*||§ + [vo + vy || grad u” |13 || grad &*||3]
+ 2vya(u®, EMa(u®, E") + c(E" u*, E)
> [vo + v1 | gradw*||3] | grad w®||§ + [vo + vy llgradu®||§ — Co || grad u” o] | grad &" |13
>y |lgrad u” (1§ + vo |l grad £"(|3.

Note that on the finite dimensional space V*, the mapping u* — a, (u"; u", v") (for each fixed v*) is
automatically sequentially weakly continuous on V*. Thus, by Lemma 4.2 we deduce that there
exists at least one (u", £") satisfying (4.19) and (4.20).

Now, let (", £") be an arbitrary solution of (4.19) and (4.20). It can be verified that

yllgradu” |3 + vo | grad &* I3 < C,

where

1 1
C=oc_2_); I£1%, +a—2‘;”"0“2—1
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and o > 0 is the constant in (1.9). By setting

_ IFIEy + lluo %y
«* min{vo, 7}

the desired estimate follows. []
4.5. Convergence of finite element approximations

With the uniform bound on the finite element approximations, we may pass to the limit to show
the convergence to the solution of the continuous optimality system. In doing so, we will need the
following resuit.

Lemma 4.11. For each v € H}(Q), the mapping
(u, &) € Hy () x Hy (Q) — a(u, u)a(, v) + 2a(u, &)a(u,v)

is weakly sequentially continuous in Hy ().

Proof. Using the identity
aw + & u+8au+Ev)—alu—&u—Eala—E&v)
= 4a(u,&)a(u,v) + 2[a(u,u) + a(§, )] a(é,v),
we obtain
a(u,u)a(&,v) + 2a(u,&)a(u,v)
=3{a@ + &u + &aw + &v) — alu — &u — Ealu — &,v) — 2a(§, §)a(§,v)}.
Thus, the weak sequential continuity of the mapping
(u,8) —a(u,u)a(g,v) + 2a(u,&)a(u,v)
follows from the weak sequential continuity of the mapping (for each fixed v)
u—a(u,u)a(u,v),
while the latter is a consequence of Lemma 4.1. [
Remark. It is interesting to note that the above result implies the weak continuity (for each fixed v)

of the mapping (u, &) — a(u, u)a(&,v) + 2a(u, €)a(u,v), even though one may not have the weak
continuity of mappings (u, &) > a(u,u)a(&,v) and (u, &) — a(u, &)a(u,v) separately.

Proposition 4.12. Assume the hypotheses of Theorem 4.10. Then, there exists a subsequence (u™, &)
that converges weakly in H}(Q) to a solution of the optimality system (4.21) as h, — 0 (n — o).

Proof. By the uniform bounds in Theorem 4.10, we can extract a subsequence (u™,&")
which converges weakly to (u,&) in Hy(Q)x H3 (). It is easy to verify that F is a bounded
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linear functional on H}(Q)x H}(Q). Combining Lemma 4.2 with the weak continuity of
the mappings

u—a(u,u)a(u,v), u—c(u,u,v),
1,8) —c(u,é,v), (,&) —c(& u,v),

for each fixed v € H} (), we apply standard procedures to pass to the limit in (4.22) and use the
approximation property (3.1) and inf-sup condition (3.3), which imply that, as h — 0,

inf |[o —v")|; -0 VoeV,
vhept

to obtain
ar((u,§), (u,8),(v,0)) = F((v,w)) V(v,@)eVxV,
i.e., (u,&) is a weak solution of the optimality system (4.21). [
Theorem 4.13. Assume the hypothesis of Theorem 4.10. Then, the subsequence (u™ &™) in

Theorem 4.12, which converges weakly in Hj (Q) x H(Q) to a solution (u, &) of the optimality system
(4.22) as h, — 0, converges strongly to (u,&) in Hy(2) x Hy ().

Proof. Imbedding theorems imply the following strong convergence: u® — u in L*(Q), &* — & in
L*(Q). Hence (&, ,u,,) — (4, &) as h, - 0. Now using (2.19) and (4.19) we obtain
ao(usu,u) = (f — & u) = lim (f — & u™) = lim ao(u™, u™, u™),
h— 0 h,—0
ie.,

lim (vo || grad #™ |3 + v, || grad ™ |3) = vo || grad w|§ + v, || grad |5
hn=0

We set y, = vo ||grada™ |3 + v, | gradu™||§ and y = v, | grad |3 + v, | gradu||§. Then lim, ., y,

= y. It can be easily verified that
— Vo + V5 + vy

— Vo ++/ v + 4vyy,
2v, '

2v,
Thus we readily deduce that

Igrad u™ |3 = and |gradu|3 =

lim | gradu™(|§ = | gradu|3.

This implies that ||#™ ||; converges to | u ||, . Therefore, the sequence {u™} converges strongly to u in
H, (2).
Now, using (4.20) and (2.20), we have that

lim [vo + via(u™, u*)]a(@™ &™) + 2vi[a(u™ &*)1* + c(§™, u™ &™) + cu™, & &)

n— o

= lim (u" — ug, &™) = (U — uq, &)

n-+oo

= [VO + vla(u’ u)]a(f, é) + zvl [a(us 6)]2 + C(:, u, :) + C(u, c’ ‘f)
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Using the strong convergence of u™ — u in H} () and u" — u in L*(Q), as well as the estimate
lc@,w,2)] < [|0]l2@) Wl [|2]l22y for all w, v,z € Hy(Q), we deduce that

lim (2v1[a(u"”, §h..)]2 + C(Ch",uh", fh") + C(uh",fh", gh..))

=2vi[a(,&)) + c(&,u, &) + c(,&&).
Thus
lim [vo + via@™, ut)]a(g™, &™) = [vo + via(u,u)]a(§, &),

which, together with the fact that lim, . ,, a(u™, #™) = a(u, u), implies that

lim [vo + via(u,w)]a(@™ &) = [vo + viau,u)]a(g,g),

n— a0
or, equivalently,

a(§,§) = lim a(g™, &™)

n—ao

Hence, £ converges strongly in H3(2) to & as n —»o0. [

Recall that the optimal control is given by g = —&. Thus, we have the following result for the
approximation of the control.

Corollary 4.14. Define g* = —&". Then, there exists a subsequence g™ that converges weakly in
H(Q) and strongly in L*(Q) to an optimal control g.

Remark. In general, the solution of the optimality system is not unique. However, under suitable
assumptions on vo, vy, | f| -, and | uglo, one can show the solution is unique. In this case, the
convergence of the subsequence {(u", &™)} actually implies the convergence of the entire sequence
{(u", E")} as h > 0.

For the sake of completeness, we present a uniqueness result as follows.

Proposition 4.15. Assume (vo — 2Copu — 2rou?) > 0, where ro = (1 + \/3)/2. Then, the solution to
(4.19) and (4.20) is unique.

Proof. Assume (u,,&,)and (u,, £,) are two solutions of (4.19) and (4.20). Theorem 4.10 provides the
following bounds:

oy lly + 1€ 0l < and  fually + €20l < 1,
where p = [|| f1121 + lwollZ1]/[o min(ve, y)].
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We denote e, = u; — u; and e, = &; — &,. From Eqgs. (4.19) and (4.20) we deduce that
0 = voale,,e,) + voale, e;) + vi[a(uy,uy)a(u,,e,) — au,,uz)alu;,e,)]
+ [e(uy,u1,e.) — c(uz,uz,e,)]
+ vila(uy,uy)a(,,e) — alusy,uy)a(,, ep) + 2a(uy, &1 )a(uy, e} — 2vialuy,&;)alu,, e;)]
+ [c(uy, e, &) + cleg, uq,81) — cluz, e, &) — cleg,us,85)].
Note that
a(uy,uy)a(uy,e,) — a(uy,uz)a(us,e,) =0,
lc(uy,uy,e,) — cluz,uz,e,)| = |cluy, e, e,) + cle,, uz,e,)| = |cle,, uz,e,)| < Coplle,
lc(uy,eq, &) + cles,uy, &) — c(uy,er, &) — cleg, uz,85)
= |c(e,. e &) + cleg, e, &) + cleg, uz er)| < Coplle, i +2Cou | eglf,
and
latuy,uy)a(éy,e;) — aluz,uz)a(,ue) + 2a(uy, & )aluy, ep) — 2a(uz, §2)alu;, e)|
= |a(uy,e,)a(,e;) + ale,, uz)a(ls, e;) + aluy,uz)ale, e) + 2ales, $1)alu, ;)
+ 2a(uy, ep)auy, e) + 2a(u, &2)ales, )| < 4’ eyl lleg |1 + 2p° | et
< 2p%ro |l eully + 2u%ro lleg 5
Hence, we have that
0> (vo — 2Cop — 2rop?) |le, I} + (vo — 2Cop — 2rop?) llec |1
so that under the hypothesis (vo — 2Cou — 2rou?) > 0,
le i = legl? =0,

i.e., the solution to (4.19)-(4.20) is unique. [

Remark. Similar results may be obtained for finite element solutions of (3.5)—(3.8).

5. The drag functional

We now consider a variation on the problem considered in Sections 2—-4. A substantial portion
of the analyses and results of those sections that apply to the minimization of the functional (1.4)
with distributed controls will also apply to the variation considered in this section. Therefore, here
we will merely point out the differences.

Consider flow control problems wherein the functional (1.5) involving the viscous drag dissipa-
tion is to be minimized, subject, of course, to the Ladyzhenskaya equations (1.1)—(1.3) (or (2.1)) as
constraints. Using the notation of Section 1, we rewrite (1.5) as

A (,9) = 4[2% + viau,u)late, ) — (f + g,) + 5= 1913, 5.
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The parameter é will be chosen below. The admissibility set is now defined by
Vaa = {(u,g) € V x L*(Q): (2.1) is satisfied}.

The optimization problem at hand is to minimize (5.1) over ¥,4. The existence of optimal
solutions may be shown exactly as in Theorem 4.6. Also, Theorem 4.8 on the existence of Lagrange
multipliers is easily amended to apply to the context of this section. An optimality system, which
may be derived using the method of Lagrange multipliers, is given by (2.7), (2.9), and, instead of
(2.11) and (2.8),

[vo + via(u,u)]a(u,v) + c(u,u,v) + b(v,p) = (f — 6& + du,v) Vve H)(Q) (5.2)
and
[vo + via(u,u)]a(é, o) + 2via(é, w)a(u, w) + clw,u, &) + clu, 0, &) + b(w, o)
= [vo + via(u,u)]a(u,0) — (f+ g,0) VoeH}Q), (5.3)
respectively. In (5.2) we have used the optimality condition which, instead of (2.10), is now given by
(g,8) = O(s,u — &) VselL*Q).
We may substitute (5.2) on the right-hand side of (5.3) to yield
[vo + via(u,u)]a(é, ®) + 2v,a(é, u)a(u, w) + c(w,u, &) + c(u, o, &) + b(w, §)
= —c(u,u,0) VoeHHQ) (5.4)

where 6 = ¢ + p. In the sequel we will dispense with the (*) notation. Thus, the optimality system
for the problem of minimizing (5.1) over ¥4 is given, in a form not explicitly involving the controls,
by (2.7), (2.9), (5.2), and (5.4).

By integration by parts one easily finds that the optimality system is a weak formulation of the
following system of partial differential equations and boundary conditions:

—[vo + via(u,u)]Au + u-gradu + gradp =f+ o(u — &) in Q,
dive =0 1in Q, u=0 onT,
—[vo +via(u,u)] A& — 2via(u, &) Au + &-(gradu)’ —u-grad & + grado = —(u-grad)u
in Q, (5.5)
divéE=0 in Q, E=0 onT.

By choosing ¢ sufficiently small, the existence and regularity results for this optimality system
may be derived in the same manner as that employed in Section 4. Finite element approximations
are defined exactly as in Section 3, which are given by (3.6), (3.8) and, instead of (3.5) and (3.7).

[vo + via(u", u")]a(u",v*) + c(u*, u”,v") + b(v",*p) = (f — 6&" + Sut,v*) Vo' e X" (5.6)
and
[vo + via(u", u")]a(E", o) + 2v,a(E" u)au®, o) + c(w" u” E*) + c(u”, o" &) + b(w", o")
= —(u"u" " Vo'eX" (5.7)

respectively.
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In extending the result of Theorem 4.10 we note that we now have two more terms to estimate,
ie.,

1
I(E", u®)| < |IE" |1y llu |l <5 Igrad &"[|o | grad a”[|o < 52 || grad &* 13 + 551 Ilgradu 5
and

C
e, 0")] < Co | gradu* 3 | grad €¥lo < 2° | gradu* |3 + 2 | srad &3,
Thus, similar to Theorem 4.10, we have the following result.

Theorem 5.1. For v, sufficiently large and J sufficiently small, the discrete system (3.6), (3.8), (5.6), and
(5.7) has at least one solution (u”,p", &* ") € V' x S* x V* x S§". Furthermore, there exists a positive
u > 0 independent of h such that every solution (u" ") of (3.6), (3.8), (5.6), and (5.7) satisfies

a7 + 1M%<

Again, at least for v, sufficiently large, the results of Propositions 4.12 and 4.15, Theorem 4.13,
and Corollary 4.14 can be shown to be applicable to the present case.

The main effect of making the substitution of (5.2) into the right-hand side of (5.3) is to replace
[vo + via(u,u)]a(u,w) — (f + g, ) in favor of the term —c(u, u, ), i.e., to have, on the right-hand
side of (5.5), (- grad u) instead of —[vo + v,a(u,u)] du — f — g. This replacement is necessary in
order to validate the analyses of Sections 4.4 and 4.5 for the present case.
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