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Abstract

An analogue of Euler’s partition identity: “The number of partitions of a positive integer � into odd parts
equals the number of its partitions into distinct parts” is obtained for ordered partitions. The ideas developed are
then used in obtaining several new combinatorial properties of the n-colour compositions introduced recently
by the author.
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1. Introduction

The 5rst partition identity which states “The number of partitions of a positive integer into odd
parts equals the number of its partitions into distinct parts” is due to Euler (see [6, p. 277]). In
Section 2 we shall prove analytically as well as combinatorially an analogue of Euler’s identity for
ordered partitions (also called compositions in [7]). The ideas developed in Section 2 will be used
in Section 3 in obtaining several new combinatorial properties of n-colour compositions introduced
recently [1]. First, we recall the following de5nitions which will be used in the sequel:

De�nition 1 (Andrews [3]): An “odd–even” partition of a positive integer � is a partition in which
the parts (arranged in ascending order) alternate in parity starting with the smallest part odd. Thus,
for example, the “odd–even” partitions of 7 are: 7; 1 + 6; 3 + 4.
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De�nition 2 (Frobenius [5]): A two-rowed array of nonnegative integers(
a1 a2 · · · ar

b1 b2 · · · br

)
;

where a1¿a2¿ · · ·¿ar¿ 0; b1¿b2¿ · · ·¿br¿ 0 and � = r +
∑r

i=1 ai +
∑r

i=1 bi is called a
Frobenius partition of �. We note that each partition can be represented by a Frobenius notation since
if we delete from the Ferrers graph of the partition the main diagonal which suppose possesses r dots
then the remaining rows of dots to the right of the diagonal are enumerated to provide one strictly
decreasing sequence of r nonnegative integers (the rth such row might be empty thus producing
0). The remaining dots below the diagonal are enumerated by columns to provide a second strictly
decreasing sequence of r nonnegative integers (the rth such column might be empty thus producing
0). The resulting two sequences are then presented in the Frobenius notation. For example, the
Frobenius notation for 7 + 7 + 5 + 4 + 4 + 1 is(

6 5 2 0

5 3 2 1

)
:

De�nition 3 (Agarwal and Andrews [2]): An n-colour partition (or, a partition with “n copies of n”)
is a partition in which a part of size n; n¿ 1 can come in n diHerent colours denoted by subscripts:
n1; n2; : : : ; nn and parts satisfy the order

11¡ 21¡ 22¡ 31¡ 32¡ 33¡ 41¡ 42¡ 43¡ 44¡ 51¡ 52 · · · :

For example, there are six n-colour partitions of 3, viz., 31; 32; 33; 21 + 11; 22 + 11; 11 + 11 + 11.

De�nition 4 (Agarwal [1]): An n-colour ordered partition is called an n-colour composition. For
example, there are eight n-colour compositions of 3, viz., 31; 32; 33; 2211,

1122; 2111; 1121; 111111:

Let C(�) denote the number of n-colour compositions of �, C(m; �) denote the number of n-colour
compositions of � into m parts and C(m; q) and C(q) denote the enumerative generating functions
for C(m; �) and C(�); respectively. The following basic formulas were proved in [1]:

C(m; q) =
qm

(1 − q)2m ; (1.1)

C(q) =
q

1 − 3q+ q2 ; (1.2)

C(m; �) =

(
�+ m− 1

2m− 1

)
(1.3)
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and

C(�) = F2�; (1.4)

where F2� is the (2�)th Fibonacci number.

2. An analogue of the Euler’s partition identity

We shall prove the following result:

Theorem 2.1. Let c(O; �) denote the number of compositions of � into odd parts and cm(O; �)
denote the number of compositions of � into exactly m odd parts. Let OE� denote the number of
“odd–even” partitions with largest part � and OEm� denote the number of “odd–even” partitions
with largest part � into exactly m parts. Then

cm(O; �) = OEm� (2.1)

and

c(O; �) = OE�: (2.2)

Example. For � = 6; m = 2, we see that c2(O; 6) = 3, since there are three compositions of 6 into
two odd parts, viz., 5 + 1; 1 + 5; 3 + 3. Also, OE2

6 = 3, since there are three “odd–even” partitions
into two parts with largest part 6, viz., 6 + 5; 6 + 3; 6 + 1. Further, we see that c(O; 6) = 8, since
there are eight compositions of 6 into odd parts viz., 5 + 1; 1 + 5; 3 + 3; 3 + 1 + 1 + 1; 1 + 3 + 1 + 1,
1+1+3+1; 1+1+1+3; 1+1+1+1+1+1. Also, OE6 =8, since the relevant “odd–even” partitions
are 6 + 5 + 4 + 3 + 2 + 1; 6 + 5 + 4 + 3; 6 + 5 + 4 + 1; 6 + 5 + 2 + 1, 6 + 3 + 2 + 1; 6 + 5; 6 + 3; 6 + 1.

Remark 1. We see that (2.2) is very similar in structure to Euler’s identity. We call (2.2) an
analogue of Euler’s identity for compositions.

Remark 2. Obviously (2.2) is an immediate consequence of (2.1). We shall provide two proofs for
(2.1).

First proof of (2.1) (analytical). Let OEmk (�) denote the number of “odd–even” partitions of � into
m parts with largest part k. Then by using MacMahon’s partition analysis [4, Chapter 11] we have

∞∑
�=0

OEmk (�)zkq� =�¿
∑

n1¿n2¿···¿nm¿0

z2n1+mq(2n1+m)+(2n2+m−1)+···+(2nm+1)

×�n1−n2
1 �n2−n3

2 · · · �nm−1−nm
m−1 ; (2.3)

where the variables �1; �2; : : : ; �m−1 handle the inequalities satis5ed by nj while the nj themselves
become free. The linear operator �¿ when applied to the Laurent series in �1; �2; : : : ; �m−1 annihilates
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terms with any negative exponents and in the remaining terms sets �i = 1: Hence (2.3) becomes
∞∑
k;�=0

OEmk (�)zkq� = zmqm(m+1)=2�¿
∑

n1 ;n2 ;:::;nm¿0

(z2q2�1)n1

(
q2 �2

�1

)n2

· · ·
(
q2

�m−1

)nm

= zmqm(m+1)=2 1

(1 − z2q2�1)(1 − q2 �2
�1

) · · · (1 − q2 �m−1

�m−2
)(1 − q2

�m−1
)
: (2.4)

Now on applying to each of �1; �2; : : : ; �m−1 in Eq. (2.4) the following result [4, Lemma 11.2.1,
p. 556]

�¿
1

(1 − �x)(1 − y=�)
=

1
(1 − x)(1 − xy)

; (2.5)

we obtain
∞∑
k;�=0

OEmk (�)zkq� =
zmqm(m+1)=2

(1 − z2q2)(1 − z2q4) · · · (1 − z2q2m)
: (2.6)

By setting q= 1 in (2.6), we obtain
∞∑
k=0

OEmk z
k =

zm

(1 − z2)m
: (2.7)

On the other hand, we see that
∞∑
�=0

cm(O; �)z� = (z + z3 + z5 + · · ·)m =
zm

(1 − z2)m
: (2.8)

A comparison of (2.7) and (2.8) leads to (2.1).

Remark 3. Using (2.7) and (2.8) one can easily show that
∞∑
n=0

OEnqn =
∞∑
n=0

c(O; n)qn =
q

1 − q− q2 : (2.9)

Since the extreme right-hand side of (2.9) also generates Fibonacci numbers, we conclude that

OEn = c(O; n) = Fn: (2.10)

Second proof of (2.1) (combinatorial). Let Graph A be the graph of an “odd–even” partition �
into m parts with largest part n. We represent each part ‘a’ by a row of ‘a’ dots. (In Graph A,
n= 6; m= 4 and �= 6 + 5 + 2 + 1, also note that the x-axis is drawn one unit of length below the
last row and the y-axis one unit of length to the left of the 5rst column.)

We draw vertical lines from the corner point of each row and measure the distance of each line
from its preceding one taking y-axis also into consideration. Since � is an “odd–even” partition (that
is, its parts alternate in parity starting with the smallest part odd), these distances are all of odd
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lengths and sum upto the largest part n. Consequently, these distances give rise to a composition of
n into exactly m odd parts. Since the correspondence is one-to-one (2.1) is proved.

The following is easily veri5ed:
6 + 5 + 4 + 3 → 3 + 1 + 1 + 1

6 + 5 + 4 + 1 → 1 + 3 + 1 + 1

6 + 5 + 2 + 1 → 1 + 1 + 3 + 1

6 + 3 + 2 + 1 → 1 + 1 + 1 + 3:

3. New combinatorial properties of n-colour compositions

We shall prove the following results:

Theorem 3.1. The number of n-colour compositions of � equals the number of “odd–even” partitions
with largest part 2�.

Theorem 3.2. The number of n-colour compositions of � equals the number of compositions of 2�
into odd parts.

Theorem 3.3. Let �� denote the number of “odd–even” partitions with largest part odd and
6 2�− 1. Then �� equals the number of n-colour compositions of �.

Example. �� = 8, since the relevant “odd–even” partitions are: 5; 5 + 4 + 3 + 2 + 1; 5 + 4 + 3; 5 +
4 + 1; 5 + 2 + 1; 3; 3 + 2 + 1; 1. We have earlier seen that there are eight n-colour compositions of 3.

Theorem 3.4. The number of n-colour compositions of � equals the number of self-conjugate par-
titions with largest part 2� such that in the Frobenius notation(

a1 a2 · · · ar

a1 a2 · · · ar

)
; ai

alternate in parity.

Example. For �=3, there are eight relevant self-conjugate partitions viz., 6224; 6 4 2212; 6 2 14; 6442;
634 32; 624222; 6 4312; 66.

Theorem 3.5. The number of n-colour compositions of � equals the number of partitions into
an even number of odd parts with largest part 4� − 1 such that the parts are alternately ≡
3 and 1 (mod 4).

Example. For �= 3, there are eight relevant partitions, viz., 11 + 9; 11 + 5; 11 + 1; 11 + 9 + 7 + 5;
11 + 9 + 7 + 1; 11 + 9 + 3 + 1; 11 + 5 + 3 + 1; 11 + 9 + 7 + 5 + 3 + 1.
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Proofs of Theorems 3.1–3.5. Theorems 3.1 and 3.2 follow from (1.4) and (2.10). Theorem 3.3 fol-
lows from (1.4), (2.8) and the identity

F1 + F3 + · · · + F2�−1 = F2�: (3.1)

To prove Theorem 3.4 we establish a bijection between the “odd–even” partitions with largest part
2� and the self-conjugate partitions with largest part 2� such that in the Frobenius notation(

a1 · · · ar

a1 · · · ar

)
; ai

alternate in parity and then use Theorem 3.1. We do it as follows:
Let � = a1 + a2 + · · · + ar(2�= a1¿a2¿ · · ·¿ar) be an “odd–even” partition with largest part

2�. We consider a graph which consists of r successive bends viz., a1-bend, a2-bend, : : : ; ar-bend.
Here by a k-bend we mean a right-bend containing k dots in the 5rst row as well as in the 5rst
column. For example, a 3-bend means

0 0 0

0

0

:

We see immediately that this graph represents a self-conjugate partition with largest part equal to
2� such that in the Frobenius notation(

a1 · · · ar

a1 · · · ar

)
; ai

alternate in parity. The correspondence being one-to-one, the Theorem 3.4 is proved.

Example. For �= 3, let us consider �= 6 + 5 + 2 + 1. Then

6 + 5 + 2 + 1 → 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

which is a graph of the self-conjugate partition 624222 with largest part 6 such that in the Frobenius
notation(

5 4 1 0

5 4 1 0

)
; ai

alternate in parity.



A.K. Agarwal / Journal of Computational and Applied Mathematics 160 (2003) 9–15 15

Theorem 3.5 follows from Theorem 3.4 once we observe that if the right-bends in the graph of
a self-conjugate partition of Theorem 3.4 are straightened then we get a partition of Theorem 3.5.
For example, the self-conjugate partition 624222 of the previous example corresponds to the partition
11 + 9 + 3 + 1 which is a partition of the type described in Theorem 3.5.
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