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Abstract

The marker method for the solution of nonlinear diffusion equations is described. The method relies on the definition of a convective
field associated with the underlying partial differential equation; the information about the approximate solution is associated with
the response of an ensemble of markers to this convective field. Some key aspects of the method, such as the selection of the shape
function and the initial loading, are discussed in some detail. Numerical experiments show that the method is accurate in determining
the long time behavior of nonlinear diffusion equations. The marker method can be applied to an ensemble of nonlinear dispersive
partial differential equations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Marker methods have been used for a long time in plasma physics to give a numerical solution of purely convective
problems such as, for example, the collisionless Vlasov equation [1,6,8,9]. In these methods each marker (or ‘super-
particle’) carries the information associated with a small element of phase space. In the absence of collisions, each
phase space element changes its shape but its volume remains constant as a consequence of Liouville’s theorem. In
conventional marker methods [1,6] collisional effects are introduced perturbatively; in the first step, the collisionless
trajectories of the markers are followed in phase space; in the second step, the velocities (and possibly the weights) of
the markers are modified such as to account for collisional effects. The method presented in this paper allows for the
simultaneous treatment of purely convective effects and diffusive effects.

The method can actually be used to solve a more general set of partial differential equations (PDEs) that are
encountered commonly in physical and engineering sciences. In this paper a marker method for the solution of nonlinear
diffusion equations is described. As it will become apparent in the next section, the marker method can be generalized
to nonlinear, dispersive PDEs such as the Korteweg—de Vries (KdV) [7] and Burgers’ equation [2].

The main idea behind the marker method for the solution of a given PDE is to rewrite it as a conservation equation
with a generalized convective velocity. In general (even in linear cases), the generalized convective velocity depends
on the solution of the PDE itself. Each marker, which carries the information of the solution of the PDE through its
weight and its position, is advance in time using a Lagrangian scheme. The generalized convective velocity mentioned
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earlier is computed through the information contained in the ensemble of markers (and through the so-called shape
function [6]).

The marker method, unlike the finite difference and the finite element methods, does not rely on the concept of a
grid (of course one can, if needed, reconstruct the solution on a fixed grid through the collective information associated
with the markers). Increased resolution can be achieved in a natural way by locally increasing the number of markers
and/or modifying the initial loading of the markers. Unlike the finite difference method, the marker method can be
trivially extended to multi-dimensional problems.

The marker method is a grid-free method. Ghoniem and Sherman [5] have developed a grid-free simulation method
for diffusion equations; their method is self-adaptive and computational elements move according to local gradients.
The grid-free method of Ghoniem and Sherman [5] is based on random walks of a set of markers (Monte Carlo
simulation) that simulate a continuum field in a diffusion equation. In contrast, the method presented in this paper is
deterministic and does not require random numbers.

This paper is organized as follows: in Section 2, the marker method is described in the context of the solution of a
one-dimensional linear diffusion equation. The shape function, which is involved in the evaluation of the approximate
solution, is analyzed in some detail in the same section. A numerical example is also presented. The marker method
is applied to a nonlinear diffusion equation in Section 3 and numerical results are presented. Concluding remarks are
given in Section 4.

2. Marker method

In this section, the basic idea behind the marker method is described through a simple example: the linear diffusion
equation. An analysis of the smoothing approximation obtained through the shape function is also discussed. A specific
numerical application of the marker method to the case of a one-dimensional linear diffusion equation is given.

2.1. Basic idea

For illustrative purposes, we describe the marker method for one-dimensional problems (as mentioned in the Intro-
duction, the generalization to multi-dimensional problems is straightforward). We consider an ensemble of N markers.
Each marker £ is defined through its position x; and its weight Wy. The solution of a given one-dimensional PDE is
found by allowing the set {(xx, Wi); k=1, ..., N} to evolve in time according to a generalized nonlinear convective
velocity. The generalized convective velocity usually depends on the solution itself and a form of convolution of the
approximate solution with a shape function is required.

Consider the one-dimensional diffusion equation

0 0?
o _2f ()
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subject to the initial condition fy(x) = f(x,0). The main idea behind the marker method is to write Eq. (1) as a
(nonlinear) conservation equation

6_f E(V )=0 @
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where
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For clarity, f(x, t) is used to denote the exact solution of Eq. (1) whereas F(x, t) represents its approximation. The
function f'can be approximated by an ensemble of markers (or ‘superparticles’) where each marker j has an associated
weight, W;, and a time-dependent position, x;(¢). As in standard particle methods [1,6], such an approximation
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can be written in terms of delta functions
N
F=Y" Wdx —x), 4
j=1

where 0(x) is the usual Kronecker delta function; the hat notation indicates that the representation is singular. For
example, 1/F (x, t) can be singular in region where f (x, t) is nonzero; furthermore, the ratio of delta functions is not
defined. Substituting the discrete representation (4) in Eq. (2) yields the characteristics associated with the generalized
velocity V

dxj/dt=V(xj(t),t)}j

(0) = xo; =1,...,N. 5)

/}\s noted above, V oF /0x/ F is not well defined. As in conventional particle methods [1,6] a smoothed version of
F is obtained by taking the convolution of Eq. (4) with a shape function

N

Fx.t)=(S;x F)(x,0) =Y W;S;(x —x;), (6)
j=1

where S;(x)=S(x/¢)/eand [ S dx=1;¢is termed the support parameter. Note that the method can be easily generalized
to the noninhomogeneous case. For example, given the diffusion equation of

of df
E—ax—z‘f‘Q(x),

one can easily determine the appropriate velocity V as
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Using representation (6) in the trajectory equations, Eq. (5), one gets

dxj 3 WaSi () — (1)
dr SN WiSe(x (1) — i (1)

where a prime denotes a derivative with respect to x and the initial positions are x;(0) = x;. Note that the weights
in Eq. (7) do not vary in time; in particular, if all the weights are initially equal, then all the information about the
approximation F (x, t) is contained in the marker positions. The equations of motion (7) can be integrated using standard
ordinary differential equation (ODE) techniques, such as the Runge—Kutta method [10], as used in this paper. As it is
apparent in Eq. (3) the generalized velocity V can become singular as f + 0. This apparent singularity is also evident
in the equations of motion [Eq. (7)]. Note however that the denominator of Eq. (7) does not vanish in practice. To see
this, one can write the denominator of Eq. (7) as

)

N N
D WiSe(xj () — xi (1) = W Se(0) + Y WiSe(xj (1) — xx(0)).
k=1 k]

Although the last term on the right-hand side of the above equation can vanish, the first term does not. Nevertheless,
where the solution is small we except the velocity V to be large and the time step of integration must have to be reduced
accordingly.

Before considering a numerical illustration of the marker method, several observations are in order. Clearly the
accuracy of the marker method depends crucially on the shape function and its support parameter, ¢ (see next section).
The number of markers, the method of integration of the equations of motion, the initial loading of the ensemble
{(xk, Wi); k=1, ..., N} and the time step of integration are parameters that also influence the accuracy of the marker
method. In some sense, the positions of the markers define a moving grid as far as the approximate solution is concerned.
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Of course one can reconstruct the approximate solution F on a fixed grid {X,; g =1, ..., N,} at time ¢ by invoking
the representation (6):

N
Fo(t)=F(Xg. 1) =Y W;Se(Xg — x;(1)).
j=1

The marker method can be easily generalized to nonlinear dispersive PDEs such as the KdV equation [7] and Burgers’
equation [2]. For example, the KdV equation [7]

2 3
A AL
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can be written as a nonlinear conservation equation [Eq. (2)] with a generalized velocity

0% f(x,1)/0x2
fx, 1)

as it can be verified by direct substitution. Therefore the marker method is very versatile in its applications, whereas
conventional (e.g. finite difference) methods usually require substantial modifications to account for additional nonlinear
or dispersive terms, for example. This is illustrated in Section 3 where the marker method is shown to be easily
generalized to a highly nonlinear diffusion equation.

Vx,t)=3f(x,t) +

2.2. Analysis of the smoothing approximation

As mentioned in the previous section, the accuracy of the marker method depends crucially on the smoothing
approximation of the PDEs approximate solution. Therefore it is important to study the impact of the shape function and
its support parameter ¢ on test functions. As it will become apparent below, the accuracy of the smoothing approximation
is also related to the initial loading of the markers. The smoothed approximation of the exact solution f (x) is given by

N
F(x)=Y" W;S:(x —x)), ®)

j=1

where S;(x) = S(x/¢)/¢ and the shape function S(x) with finite support satisfies the normalization condition

1
/ Sx)dx =1
—1

and S(x) =0 for |x| > 1. In some cases, there are advantages in using shape functions with infinite support, in which
case the normalization condition is of the form [ j;o S dx = 1. Apart from the actual form of the shape function, there
is some freedom in selecting the value of the support parameter e&. However one can estimate an appropriate value
for & based on the following considerations. For illustrative purposes, consider a simulation with N markers that are
initially distributed uniformly in the interval x € [—L, L]; therefore, at t = 0, the average distance between markers is
h=2L/N.If the support parameter is such that ¢ < &, then S, (x; —xx) o S((x; —xx)/e) =0 for all markers j # k; this
implies that the position of each marker will be independent of the positions of the other markers at least at # = 0. We
conclude that the support parameter must be larger than the average distance between markers, at least in the average
sense. In addition, the value of ¢, which is akin to a grid spacing in the finite difference method, must be chosen such as
to accurately resolve the spatial scale length of f(x). In summary, if 4 denotes the (known or estimated) spatial scale
length of f(x) and h is the average distance between markers, the support parameter, ¢, must satisfy the following
inequality:

h<e<A.
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There is some freedom in selecting a shape function. Typically one requires some smoothness properties and/or ease of
computation (for example, a Gaussian shape function is smoother than a hat shape function, but it is computationally
more demanding to evaluate). Below is a set of shape functions that are defined on the interval [—1, +1]:

S1(x) = % (gate function),

S>(x) =1—|x| (hat function),

S3(x) =3 (1 —x%) (quadratic polynomial),

Sa(x) = % (1 —x%)? (quartic polynomial),

Ss(x) = p(l — |x|)e_"2 (hat/Gaussian shape function),

Se(x) = — xz)ze_x ’ (quartic polynomial/Gaussian shape function), ©))

where p= (/merf (1) +1/e — 1)~!and p=2/ (% erf (1) — 1/e) are constants of normalization, and erf (x) denotes the
error function

2 T
erf(x)=ﬁ/0 e ' dr.

The second factor that affects the approximation of f(x) is the distribution of the position of the markers and their
associated weights. There are two basic approaches to the initialization of the ensemble {(x;, W;); j=1,..., N}. In
the first approach, the markers are uniformly distributed in space. Using the approximation of

/f(x)dx ~ Y fGph,
J
where £ is the distance between two consecutive markers, and noting that [see Eq. (4)]
/ Fdx = Z Wi,
J
it follows that

Wi=f(xjh, xj11 —xj=h.

In the second approach, each marker has the same weight, but the spatial distribution of the markers is not uniform.
If there are N markers, the marker weight is then W; = /N, where ¢ = [ :Loos f dx. In order to determine the spatial
distribution of the markers, it is convenient to introduce the variable

[ fodx
[ podx

which, by construction, is a positive-definite quantity in the unit interval. A uniform distribution in ¢, thatis ¢; = (j —
/N (¥)), yields

+00 j_l
xj=g"" (( f(x)dx) N2>,

W=, (10)

¢

where ¢! denotes the inverse of g(x) = [* x")dx’. As a numerical illustration, consider the function
g 8 o0

flx)= xe ™,
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Fig. 1. Approximation of the function f(x) =xe™ (plain line) based on a set of N =32 markers. The dotted (dashed) line is for the case of uniform
(nonuniform) spatial loading. The shape function is a quadratic polynomial [S(x) = S3(x); see Eq. (9)] with parameter ¢ = 0.1.
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Fig. 2. Approximation of the function f(x) =xe™ (plain line) based on a set of N =32 markers. The dotted (dashed) line is for the case of uniform
(nonuniform) spatial loading. The shape function is a quartic polynomial [S(x) = S4(x); see Eq. (9)] with parameter ¢ = 0.1.

in the interval x € [0, xo], xo > 0. The initialization based on a set of uniformly distributed x ; yields

2
xj=(j = 1/2h, W; =xje ",

where Ax = xo/N. Alternatively, one can demand that each marker carries an equal weight; following the procedure
described in the previous section [Eq. (10)] one obtains

sz\/—1n<1—#(1—e—x3)>, W,-:%, (1)

Fig. 1 shows the smoothed approximation of f(x) for a uniform spatial loading (dotted line) and a nonuniform spatial
loading (dashed line) using a quadratic shape function with support parameter ¢ = 0.1 for a set of N = 32 markers.
The plain line represents the exact function. For the same parameters, the quartic shape function, which satisfies
S'(x = £1) = 0, yields a better approximation (Fig. 2). Further improvement (Fig. 3) can be achieved using the shape
function based on a quartic polynomial and a Gaussian function [S(x) = S¢(x); see Eq. (9)]. Of course, in all the above
cases, smoother approximations can be obtained by increasing the number of markers N. Another parameter affecting
the quality of the approximation is the support parameter, ¢. Fig. 4 is the same as Fig. 2 except that the support parameter
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Fig. 3. Approximation of the function f(x) = )ce*)‘2 (plain line) based on a set of N = 32 markers. The dotted (dashed) line is for the case of
uniform (nonuniform) spatial loading. The shape function is a based on a quartic polynomial and a Gaussian function [S(x) = Sg(x); see Eq. (9)]
with parameter ¢ = 0.1.
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Fig. 4. Approximation of the function f(x) =xe™" (plain line) based on a set of N =32 markers. The dotted (dashed) line is for the case of uniform
(nonuniform) spatial loading. The shape function is a quartic polynomial [S(x) = S4(x); see Eq. (9)] with parameter ¢ = 0.2.

has been doubled (¢=0.2). Clearly a much better agreement between the approximated functions and the exact function
is found. If the support parameter is further increased the smoothing effect of S(x) becomes too important and the
quality of the approximated function degrades.

In the multidimensional case, the markers can be uniformly distributed in space in a straighforward way. A nonuniform
spatial loading is however more difficult since the generalization of the quantity ¢ mentioned above does not yield a
simple algorithm for the marker loading. It is however possible to adopt an alternative approach. For sake of clarity,
consider a two-dimensional function f(x, y). For convenience, we introduce the spatial averages of f as

+o00
() = f(x', y)dx
and
+00
() = fx,y)dy'.

—00
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Instead of a single variable ¢ we now define the set (¢, ¢,) such that

i S o)y () dx
JE2f) () dx
and
Sl F) () dy
= Ty ody
Jo (e () dy

The procedure for the one-dimensional case can be generalized to a uniform loading in ¢, and ¢,; note, however, that
the alternative method presented here is not equivalent to the one-dimensional case since the loading in the x and y
directions are decoupled.

It it worth noting that the smoothing technique based on Gaussian-like shape functions presented in this section is
not unique. In fact it is sometimes justified to formulate shape functions that take into account the underlying PDE to
be solved. In that spirit the reader should consult the paper by Chen [3] in which the radial basis function (RBF in
short) is described.

2.3. Numerical example for the linear diffusion equation

In this section, we apply the marker method for the diffusion equation, Eq. (1), with initial conditions

fox) =1 |x[<1 }

=0; |x|>1. (12)

The solution of the diffusion equation, Eq. (1), with initial conditions (12) is easily found using Laplace transforms
1 f +o0 5 1 x+1 x—1

—— Jo(&) exp(—(x — &) /41)d¢ = - |erf —erf ;

A/ 47'L't —00 p / 2 2\/; 2\/;

where, as before, erf (x) is the error function with argument x. There is some freedom in the choice of the shape function
S(x). Here we have considered 2 shape functions with finite support

fx. 1) =

S4(x) =12 (1 —x»? (quartic polynomial) (13)
and
S7(x) = a(l — xz)e_)‘2 (quadratic polynomial/Gaussian), (14)

where o« = (1/e + /merf(1)/2)~! is a constant of normalization, as well as a shape function with infinite support
(superGaussian)

3/2—x% _

The equations of motion (7) have been integrated using a second-order Runge—Kutta method [10] with a fixed time step.
The approximate solution F'(x, t) has been ‘reconstructed’ on a fixed grid X, =—L+ (¢ —1)AX forg=1, ..., N, with
grid spacing AX =2L/(N, — 1) and on a moving grid defined by the marker positions x = {x;(t); j=1,..., N}. The
accuracy of the approximate solution will depend on the support parameter ¢. Intuitively, the solution will be oscillatory
if € is too small, whereas F'(x, t) will represent a smoothed version of f(x, t) if the support parameter is too large.
Figs. 5-7 illustrate this aspect. In these figures, the dotted and plain line represent the approximate and exact solutions,
respectively, at # =4.0. The parameters are: Ar =0.02, L =14.0, N, =1000 and the number of markers is N =256. The
shape function is the super Gaussian, Eq. (15). Fig. 5 shows the approximate and exact solution for the case of a small
support parameter, ¢ = 0.2. The first-order derivative of the approximate solution is clearly overestimated compared
to that of the exact solution; this is due to the fact that a small ¢ is unable to capture the large scale features associated
with F(x, t). On the other hand, |0F /0x]| is too small when the support parameter is too large (Fig. 6). An intermediate
value of ¢ = 1.0 seems to be optimal and a good approximation is obtained with few markers (Fig. 7).

Sg(x) =
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Fig. 5. Exact (plain line) and approximate (dotted line) solutions of the diffusion equation at r = 4.0. The initial condition is a square profile, Eq.
(12), and the support parameter is & = 0.2. Other parameters are: At = 0.02, L = 14.0, Ng = 1000 and N = 256.
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Fig. 6. Same as Fig. 5 but for ¢ =2.0.

Figs. 8—13 show the impact of the shape function on the accuracy of the approximate solution at r = 5.0 (as before,
the plain line represents the exact solution whereas the dotted line is the approximate solution). Figs. 8—10 are for a
fixed grid whereas Figs. 11-13 are for a moving grid. The parameters are: L = 14.0, At = 0.05, N, = 1000, N = 256
and ¢ = 1.0. Fig. 8 is for the case of a quartic shape function. The formation of wiggles around x = 0 is due to a
‘clustering effect’ in the marker position, as can be seen in Fig. 11 where the same quantities are displayed on a moving
grid. In Figs. 11-13 the exact solution has been evaluated on the moving grid using the representation given by Eq.
(6). As a result, the way the exact solution is depicted is dependent on the number of markers, the shape function and
its support parameter, and the position of the markers at that specific time. The reason for doing so is to highlight
the fact that the poor approximate solutions obtained in Figs. 11 and 12 are actually the result of poor representations
of F themselves, rather than cumulative errors in the integration of equations of motion. If the representation of F is
sufficiently smooth, then much better agreement with the exact solution is found, as it is shown in Fig. 13. Note that
the distance between clusters in Fig. 11 is of the order of €. The use of a Gaussian shape function, Eq. (14), somewhat
improves the approximation (Fig. 9). However the clustering effect due to the finite support of S(x) is also apparent
in Fig. 12. Figs. 10 and 13 are for the case of a super Gaussian [Eq. (15)]. The clustering effect is absent and the
approximate solution is in good agreement with the exact solution. The use of a shape function with finite support
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Fig. 7. Same as Fig. 5 but for ¢ = 1.0.
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Fig. 8. Exact (plain line) and approximate (dotted line) solutions of the diffusion equation at # = 5.0 on a fixed grid for the shape function based on
a quartic polynomial, Eq. (13). Other parameters are: ¢ = 1.0, Ar = 0.05, L = 14.0, Ny = 1000 and N = 256.

leads to a ‘clustering’ in the marker position. Note that the distance between clusters is of the order of ¢. The same
phenomenon is observed when using a shape function based on Eq. (14) as shown in Fig. 9. The use of a shape function
based on a super Gaussian, with has infinite support, improves the accuracy of the approximate solution considerably
(Fig. 10) because of the absence of clustering (Fig. 13). The impact of finite support shape functions on the accuracy
of the approximate solutions can be accessed by monitoring the L2 norm of the error on a fixed grid

N, 1/2

E@)=|AX ) (f(Xg. 1) = F(Xg, 1)

g=1

Fig. 14 shows the above quantity as a function of time for the case of a quartic shape function. The parameters are the
same as those of Fig. 8. After an initial decrease in the error norm, E increases almost linearly. A similar behavior is
observed for the case of a shape function based on a Gaussian shape function with finite support (Fig. 15). The increase
in the error norm can be traced back to the clustering effect depicted in Figs.11 and 12. For the case of a super Gaussian
shape function the error norm decreases almost exponentially (Fig. 16).
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Fig. 9. Same as Fig. 8 but for a Gaussian shape function, Eq. (14).

0.20 i T T T T T

F(x)

0.05}

0.00f

_0.05- 1 1 1 1 1
=15 =10 -5 0 5 10
X

—_
[6))

Fig. 10. Same as Fig. 8 but for a super Gaussian shape function, Eq. (15).

Apart from the shape function and the value of the support parameter, the time step and the number of markers N
also affect the accuracy of the computed solution. The time step must of course be chosen to ensure stability. Numerical
experiments have shown that a time step of

At < 1182,

where 7 is a constant of the order of unity, ensure stability. This result is not surprising since an explicit method is used
to integrate the equations of motion which, in turn, are derived from a diffusion equation; it is well known that if an
explicit (e.g. Euler) integration scheme is used to advance the finite-difference form of Eq. (1) then the time step must
satisfy the constraint of

Ar < 1 (Ax)%,

to ensure stability [4]. Another parameter that impacts the accuracy of the marker method is the number of markers. Of
course a larger number of markers yields a better approximation although this implies additional computational work.
The relevant parameter is actually the number of markers divided by the support parameter, N /¢; this quantity is a
rough measure of the resolution of the marker method (although the optimal value of N /¢ can be problem dependent,
an average number of markers per ¢ of 10-15 yield accurate results). We also note that the number of markers is a
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Fig. 11. Exact (plain line) and approximate (dotted line) solutions of the diffusion equation at = 5.0 on a moving grid for the shape function based
on a quartic polynomial, Eq. (13). Other parameters are: ¢ = 1.0, Ar = 0.05, L = 14.0, Ng = 1000 and N = 256.
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Fig. 12. Same as Fig. 11 but for a Gaussian shape function, Eq. (14).

conserved quantity since the domain of definition of fis the real axis. Although the domain of definition of the original
PDE is infinite, the computational domain is finite but increases with time.

2.4. Additional remarks about the marker method

In the previous section the stability of the marker method has been discussed. In particular the time step of integration
cannot exceed the classical limit associated with the usual explicit integration schemes. In this section we estimate the
accuracy of the marker method. Clearly the shape function, the support parameter, the mean distance between markers
and the time step of integration affect the overall accuracy of the method. Note that the convective velocity V is in
general a nonlinear function of the position of the markers; this is true even if the original PDE is linear (a simple
example is the homogeneous heat equation); therefore to determine an exact bound for the error is not straighforward
even for a linear PDE. We now return to the discrete approximation of f(x, r) given by Eq. (6). Even if the equation
of motions given by Eq. (5) are integrated exactly, the representation (6) is not exact since (a) the support parameter &
is finite; (b) the shape function S(x) is not infinitely smooth; and (c) the mean distance between markers, 7 o< 1/N,
is finite. The approximate solution of Eq. (5) is obtained through an integration of Eq. (7) which depends on the mean
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Fig. 13. Same as Fig. 11 but for a super Gaussian shape function, Eq. (15).
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Fig. 14. L2 norm of the error as a function of time for the case of a quartic shape function, Eq. (13). The parameters are: ¢ = 1.0, Ar =0.05, L = 14.0,
Ng =1000 and N = 256.

distance between markers; therefore we use the notation of x;(7) to denote the exact solution of the jth equation of

motion (5) and M () to denote its approximation [obtained through an integration of Eq. (7)]. If f(x, ¢) is the exact
solution of the original PDE the error can be defined as

N
e(r.0)=fx.0) =Y W;Selx —x" (1) (16)

J=1

which, without loss of generality, can also be written as

N
e(x, 1) =f(x,1) =Y W;Se(x —x;(1) +(x, 1), (17
j=1
where
N
o) = 2 Wy [ Sl — ;00 = S — (0] (18)

j=1
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Fig. 16. Same as Fig. 14 but for the case of a super Gaussian shape function, Eq. (15).

Clearly the part of the error associated with e(x, ¢) is much smaller than the difference f(x, t) — Z?[:l W;Se(x —x;(1))
in Eq. (17). The infinite norm of the dominant part of the error can be estimated using the classic analysis for particle
methods [see the paper by Raviart [11] and is given by

leloo ~ C (e + (h/e)™), (19)

where C is a constant, M is related to the smoothness of the shape function and & is related to the higher-order vanishing
moment of S(x). For a given support parameter ¢ the error grows with £; since the markers tend to reproduce the
dynamics of the (physical) particles, a diffusion process implies that 4, and therefore the error, increases in time. For
a fixed mean distance &, Eq. (19) shows that an optimal of the support parameter does exist: qp = (M hM ) k)l KM
Note that the dependence of the optimal support parameter on k and M is not trivial.

3. Nonlinear diffusion equation

In this section, we apply the marker method to the solution of nonlinear diffusion equations. As in the previous
section, we consider the one-dimensional case as the complexity of the algorithm is not affected by the dimensionality
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Fig. 17. Steady state solution of the one-dimensional nonlinear diffusion (20) (plain line). The triangles represents the initial position of the markers.

of the problem. The nonlinear diffusion equation is written

of o ( of
g2 (o a) L oW, 0)

with a diffusion coefficient of the form D = Do fe~/ and a source term

0% foo 0f\?
Q(x) = —Doe /> [foo % +(1 - foo)<af—x) } Q1)

Here foo = foo(x) denotes the steady state solution of Eq. (20). The nonlinear diffusion Eq. (20) can be written as a
conservation equation [Eq. (2)] with a generalized velocity given by

_ DAf/ox +5(x)

V(x,t) = 7 , (22)

where
Sx) = /x 0(x")dx'. (23)

The presence of the integral in Eq. (23) can be computationally prohibitive since S(x) is required for every marker at
every time step. In order to bypass this difficulty, S(x) has been computed at the beginning of the simulations for a set
of fixed grid points; the evaluation of this quantity at the marker position is carried out through a linear interpolation
using tabulated values of S(x).

The steady state solution has been taken as

Foo(x) = exp(—a(x + x0)%) + exp(—a(x — x0)?) (24)

and the initial profile is a Gaussian centered at x = 0:

for) = fx, 00 =" (25)

Fig. 17 shows the steady state solution [Eq. (24)] and the initial profile (triangles) for a set of N =256 markers uniformly
distributed in the interval [—%, %]. Other parameters are oo = 4.0, xo = 0.5 and Dy = 10; the support parameter has
been chosen as ¢ = ~/h where £ is the average distance between markers at 1 = 0. The shape function used is a super
Gaussian. As in the linear case, the equations of motions have been advanced in time using a second-order Runge—Kutta
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Fig. 18. Steady state solution of the one-dimensional nonlinear diffusion (20) (plain line). The triangles represents the position of the markers at
t = 80.

integrator [10] with a fixed time step Ar = 0.01. Fig. 18 shows the steady solution and the approximate solution at
the marker positions (triangles) at t = 80. We note the excellent agreement between the computed solution and the
exact solution. This numerical example highlights one important advantage of the marker method: it is accurate in
determining the long-time behavior of highly nonlinear dispersive equations. Further the actual implementation of the
algorithm is straightforward and be easily adapted to more complex nonlinear dispersive PDEs.

4. Conclusions

In this paper we have introduced the marker method for the solution of nonlinear partial differential equations. The
main idea behind the marker method is to rewrite a given PDE as a conservation equation. A set of markers is then
advanced in time (Lagrangian scheme) according to a generalized convective velocity associated with the conservation
equation (which itself is an alternative (but exact) form of the original PDE). The information about the approximate
solution can be obtained through a convolution of the markers’ weights and positions with a shape function. In this
paper, we have addressed several aspects of the marker method such as the choice of the shape function and the initial
loading of the markers. It has been shown that the method can be used to determine the long time behavior of nonlinear
diffusion equation. The main advantages of the marker method are its ease of implementation, flexibility and accuracy.
Further, the marker method is of course applicable to PDEs which solutions display one or more shocks since the
method is Lagrangian in nature; finite difference methods are often (but not always) not accurate in such situations.
Note however that the marker method is suitable for PDEs that involve convective and diffusive terms. Consider for
example Burgers’ equation [2]

of of 02 f

or x Ha W0

Conventional particle methods are well suited when u = 0; the diffusion term is usually treated perturbatively using a
Monte Carlo method. In the marker method, both terms are included in the marker dynamics in a deterministic way.
The marker method has, however, some limitations. One such limitation is that the solution must be positive definite.
Although in some problems one can use coordinate trsnaformations to ensure f >0, this is not always the case.

Of course the marker method cannot handle all nonlinear PDEs (dispersive or not). However the main reasons for
employing the marker method (apart from the reasons already mentioned above) for specific problems are as follows;
first, the method is easy to implement and it can therefore be used to get an idea of the solution; second, the marker
method, even when using a crude temporal integration technique (such as the first-order Euler algorithm) and a basic
shape function, can be used as an initial guess for some more accurate iterative techniques.
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The solution of integral equations using the marker method is more difficult and it requires further work.
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