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a b s t r a c t

We present a novel approach to automatic adaptivity in higher-order finite element
methods (hp-FEM) which is free of analytical error estimates. This means that a computer
code based on this approach can be used to solve adaptively a wide range of PDE problems.
A posteriori error estimation is done computationally via hierarchic extension of finite
element spaces. This is an analogy to embedded higher-order methods for ODE. The
adaptivity process yields a sequence of embedded stiffness matrices which are solved
efficiently using a simple combined direct-iterative algorithm. The methodology works
equally well for standard low-order FEM and for the hp-FEM. Numerical examples are
presented.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The hp-FEM is a modern version of the finite element method capable of achieving exponential convergence rates by
combining optimally finite elements of different sizes (h) and polynomial degrees (p) [1–8]. The goal of our work is to
develop adaptive hp-FEM algorithmswith controlled accuracy in both space and time for complexmultiphysics engineering
problems. Here we face two major complications:
• Very few analytical error estimates are available for arbitrary-order finite elements.
• Very few analytical error estimates exist for multiphysics problems.

Taking into account the complicated structure of PDE systems describing realistic multiphysics processes, and the
challenges related to higher-order finite element discretizations, a question arises if analytical error estimates for such
problems will ever be available at all.
During the past two decades, analytical error estimates have been derived mainly for single-physics problems solved by

means of low-ordermethods (such as piecewise-linear FEM). Analytical error estimates differ a lot from one PDE to another,
and are virtually impossible to combine into one universal methodology covering a wide range of multiphysics problems.
Their practical application can be problematic, since sometimes they contain tuning parameters or dubious constants which
need to be approximated using additional nontrivial mathematical tricks. The practitioner may not be skilled enough in
mathematics or have enough time to do that. In the hp-FEM, an element can be refined in many different ways (typically
around one hundred on 2D elements and several hundreds in 3D) [5], and thus an elementwise-constant error estimate is
not enough — one needs to know the shape of the error on every element, as a function.
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Fig. 1. Coarse mesh τ c0 and the globally refined reference mesh τ
r
0 .

In order to obtain a method which is applicable to a wide range of PDE including multiphysics problems, and which
works for both the standard FEM and the hp-FEM, we use an a posteriori error estimate computed using approximation pairs
(consisting of approximations with different orders of accuracy). The idea is analogous to embedded higher-order methods
for ODE [9]. The adaptive strategy is described in Section 2. A novel technique for hierarchic extension of polynomial spaces
on arbitrary-order quadrilateral and triangular finite elements is described in Section 3. In Section 4 we introduce a novel
technique for efficient solution of the sequence of embedded discrete problems obtained during the adaptivity process.
Section 5 uses a model problem to study the performance of the method.

2. PDE-independent adaptive strategy

For the reasons explained above, we need to replace traditional analytical error estimateswith amore universal approach
working for a wide range of PDE including multiphysics problems, as well as for the hp-FEM. We resort to an idea that
has been used in the ODE community for a long time: In every time step, embedded adaptive higher-order ODE methods
compute efficiently two approximations with different orders of accuracy (an approximation pair). The error is estimated
using their difference. If the difference is large, then the last step is repeated with smaller time step size, otherwise the time
step size is increased. Of course, the PDE case is technically more complicated:
Initial step — construction of the approximation pair
In the initial step, we construct a pair of approximations with different orders of accuracy. We begin with a coarse mesh

τ c0 , and construct a reference mesh τ
r
0 using global refinement of τ

c
0 . This is done by increasing the polynomial degrees of all

elements in the mesh τ c0 by one and subdividing them uniformly in space, as illustrated in Fig. 1.
Next we build the stiffness matrix on the reference mesh τ r0 , its LU factorization (using sophisticated multifrontal al-

gorithms of the direct solver UMFPACK [10]), and solve on τ r0 . By u
r
0 let us denote the reference solution on τ

r
0 . The initial

algorithmic step is finished by projecting the reference solution ur0 onto the coarse mesh τ
c
0 . Note that an orthogonal projec-

tion yields the best approximation of ur0 on the coarse mesh τ
c
0 , andmoreover, it is easier and faster to perform than to solve

the finite element problem on the coarsemesh τ c0 . The finite element problem is never solved on the coarsemesh. Themulti-
mesh hp-FEM [6] described above is used to perform efficiently all operations involving the coarse and reference meshes.
One step of the adaptive algorithm — update of the approximation pair
Let us set k := 0. The difference ek = urk−u

c
k is used as an error function on themesh τ

c
k . Note that such an error estimator

does not depend on the underlying equation and that it works without any limitations both for standard FEM and hp-FEM.
If the global norm of the function ek is less than a prescribed tolerance TOL, the computation stops. Otherwise, one marks
for refinement elements in the coarse mesh τ ck with largest approximation error, until the number of newly added degrees
of freedom (DOF) reaches a user-defined number Nref . After performing these local refinements, one obtains a new coarse
mesh τ ck+1. Analogous local refinements are done to the referencemesh τ

r
k so that the new referencemesh τ

r
k+1 corresponds

to a global refinement of the new coarse mesh τ ck+1. The finite element basis on τ
r
k is extended hierarchically to a basis on

τ rk+1 (to be described in Section 3). Hence, the stiffness matrix S
r
k corresponding to the mesh τ

r
k is subset of the new stiffness

matrix Srk+1 on the mesh τ
r
k+1. This fact is used to optimize the solution of the discrete problem on the mesh τ

r
k+1 (to be

described in Section 4).

3. Hierarchic basis extensions on higher-order elements

Let us consider a triangular element Kh,p of degree p ≥ 1. The corresponding polynomial space Pp(Kh,p) of dimension
(p+1)(p+2)/2 contains 3 vertex functions associated with the vertices, 3(p−1) edge functions associated with the edges,
and (p − 1)(p − 2)/2 bubble functions which are local to the element interior [5]. By the symbol Kh/2,p+1 let us denote
the enriched element obtained by increasing the polynomial degree of Kh,p by one and splitting it uniformly in space, as
illustrated in Fig. 2.
It is easy to calculate that the dimension of the enriched space on Kh/2,p+1 is 2p2 + 7p + 6: The standard hp-FEM basis

on Kh/2,p+1 contains 6 vertex functions (one per vertex), 9p edge functions (p per edge) and 4p(p − 1)/2 bubble functions
[p(p−1)/2 per subelement]. In order to create a new basis on Kh/2,p+1 containing the original basis on Kh,p as a subset, let us
begin with the (p+ 1)(p+ 2)/2 basis functions from Kh,p. Next we add 3 vertex functions associated with the new vertices
(denoted by black dots in Fig. 3).
Next we add p − 1 edge functions of degrees 2, 3, . . . , p to each of the six edges highlighted in Fig. 4. The set of edge

functions is completed by adding one edge function of degree p + 1 to each of the 9 edges of Kh/2,p+1. Next, we pick any
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Fig. 2. Triangular element Kh,p and the corresponding enriched element Kh/2,p+1 .

Fig. 3. New vertex functions added to the basis of Kh/2,p+1 .

Fig. 4. New edge functions of degrees 2, 3, . . . , p added to the basis of Kh/2,p+1 .

three subelements (for example those highlighted in Fig. 5), and add to each of them (p− 1)(p− 2)/2 bubble functions of
degrees 3, 4, . . . , p. In a final step, we add p− 1 bubble functions of degree p+ 1 to each of the four subelements.

Proposition 3.1. The 2p2 + 7p + 6 functions on Kh/2,p+1 defined above are linearly independent, and they generate the same
piecewise-polynomial space as the standard hp-FEM basis on Kh/2,p+1.

The proof of this lemma is elementary— it is easy to check that the piecewise-polynomial spaces generated by the original
and new basis are the same, that the number of basis elements in both cases is the same, and that the elements in the new
basis are linearly independent.
Quadrilateral elements
The situation on quadrilaterals is even simpler than on triangles thanks to the product structure of the polynomial

spaces. Consider two different directional polynomial degrees p, q ≥ 1. A quadrilateral element Kh,p,q and the corresponding
enriched element Kh/2,p+1,q+1 are illustrated in Fig. 6.
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Fig. 5. Three subelements to which we add bubble functions of degrees 3, 4, . . . , p.

Fig. 6. Quadrilateral element Kh,p,q and the corresponding enriched element Kh/2,p+1,q+1 .

Fig. 7. Extension of the LU factorization of the stiffness matrix Srk = LkUk to the LU factorization S
r
k+1 = Lk+1Uk+1 corresponding to the next reference

mesh τ rk+1 .

Analogously to the triangular case, we calculate that the dimensions of the original and enriched spaces are (p+1)(q+1)
and 9+ 6p+ 6q+ 4pq = (2p+ 3)(2q+ 3), respectively. Due to the product character of the basis, it is sufficient to describe
the extension of basis for a one-dimensional interval of degree p: The original basis has p+1 elements (two vertex functions
and p− 1 bubble functions). The enriched basis contains one additional vertex function associated with its midpoint, p− 1
additional bubble functions of degrees 2, 3, . . . , p (each being nonzero in one half of the interval only), and two additional
bubble functions of degree p + 1 (each being nonzero in one half of the interval only). Thus the enriched space on the
one-dimensional interval has dimension (p+ 1)+ 1+ (p− 1)+ 2 = 2p+ 3.

4. Solution of embedded discrete problems

Thanks to the hierarchic extensions of finite element spaces during the adaptivity process, the reference meshes
τ r0 , τ

r
1 , τ

r
2 , . . . yield a sequence of embedded stiffness matrices S

r
0 ⊂ S

r
1 ⊂ S

r
2 ⊂ · · ·. This fact can be used to optimize

the solution of the discrete problem in every adaptivity step. In this section, we describe two different methods that we
designed for this purpose. Since our target applications are in multiphysics problems, both of them are based on direct
sparse solvers. The performance of the methods will be compared in Section 5.
M1: Hierarchic extension of LU factorizations
During the initial step, we create the LU factorization of the stiffnessmatrix Sr0 corresponding to the initial referencemesh

τ r0 (more precisely, we use UMFPACK [10] for this purpose). In every other adaptivity step, the LU factorization from the
previous step is extended by adding new columns and rows corresponding to the newly added basis functions, as illustrated
in Fig. 7.
The algorithm is easy to design as it only involves elementary matrix operations. With the LU factorization of the new

stiffnessmatrix Srk+1 in hand, the new reference solution u
r
k+1 is computed instantly. By projecting the new reference solution

on the mesh τ ck+1, we obtain its best representant u
c
k+1 on τ

c
k+1 and thus also the new error function ek+1 = u

r
k+1 − u

c
k+1.

Hence, one step of the adaptivity algorithm is completed.
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M2: Combined direct-iterative method
The first discrete problem on the initial referencemesh τ r0 has the form S

r
0Y0 = F0. We solve it via UMFPACK and keep the

LU factorization of Sr0. After the first mesh refinement, we obtain a newmesh τ
r
1 . Due to the hierarchic extension of the finite

element space, the corresponding stiffness matrix Sr1 consists of four blocks S
r
0, B1, C1 and S1. The right-hand side of the new

discrete problem consists of the original vector F0 and a new vector F1 corresponding to the newly added basis functions.
The situation looks as follows:(

Sr0 C1,1
B1,1 S1

)
Y =

(
F0
F1

)
. (1)

We can assume that the matrix S1 is nonsingular since it corresponds to the solution of the original PDE problem in
a subdomain equipped with homogeneous essential boundary conditions. We employ UMFPACK to construct the LU
factorization of the matrix S1 and solve efficiently the system S1Y1 = F1. The solution of the system (1) can be written
in the form

Y =
(
Y0 +1Y0
Y1 +1Y1

)
. (2)

By substituting (2) into (1), we obtain

Sr0Y0 + S
r
01Y0 + C1,1Y1 + C1,11Y1 = F0,

B1,1Y0 + B1,11Y0 + S1Y1 + S11Y1 = F1.
(3)

Application of Sr0Y0 = F0 and S1Y1 = F1 simplifies this to

Sr01Y0 + C1,1Y1 + C1,11Y1 = 0,
B1,1Y0 + B1,11Y0 + S11Y1 = 0.

(4)

The unknown vectors1Y0 and1Y1 are computed using the following iterative method:

Sr01Y
(k+1)
0 = −C1,1Y1 − C1,11Y

(k)
1 ,

S11Y
(k+1)
1 = −B1,1Y0 − B1,11Y

(k)
0 ,

(5)

which starts with1Y (0)0 = 0 and1Y
(0)
1 = 0. When this process converges, we know the solution u

r
1 on the mesh τ

r
1 .

After n refinement steps, the discrete problem has the form

Sr0 C1,1 C1,2 . . . C1,n

B1,1 S1 C2,2 . . . C2,n

B1,2 B2,2 S2 . . . C3,n

...
...

...
. . .

...

B1,n B2,n B3,n . . . Sn





Y 0 +1Y0,n

Y 1 +1Y1,n

Y 2 +1Y2,n

...

Y n +1Yn,n



=



F0

F1

F2

...

Fn



. (6)

Here, Y j = Yj +
∑n−1
k=j 1Yj,k, j = 0, 1, . . . , n. The (j+ 1)th equation in the system (6) has the form

j∑
k=1

Bk,j(Y k−1 +1Yk−1,n)+ Sj(Y j +1Yj,n)+
n∑

k=j+1

Cj+1,k(Y k +1Yk,n) = Fj. (7)

The vector (Y 0, Y1, . . . , Y n−1)T is the solution of the system obtained after n− 1 refinement steps. In other words,

j∑
k=1

Bk,jY k−1 + SjY j +
n−1∑
k=j+1

Cj+1,kY k = Fj, j = 0, 1, . . . , n− 1. (8)
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Fig. 8. Computational domain.

Fig. 9. Stress distribution.

Substituting this along with SnYn = Fn into (7), and using the fact that Y n = Yn, we obtain

j∑
k=1

Bk,j1Yk−1,n + Sj1Yj,n + Cj+1,nYn +
n∑

k=j+1

Cj+1,k1Yk,n = 0,

where j = 0, 1, . . . , n− 1, and
n∑
k=1

Bk,n(Y k−1 +1Yk−1,n)+ Sn1Yn,n = 0. (9)

The unknown vectors1Y0,n,1Y1,n, . . . ,1Yn,n are computed using the following iterative method:

Sj1Y
(k+1)
j,n = −

j∑
k=1

Bk,j1Y
(k)
k−1,n − Cj+1,nYn −

n∑
k=j+1

Cj+1,k1Y
(k)
k,n ,

where j = 0, 1, . . . , n− 1, and

Sn1Y (k+1)n,n = −

n∑
k=1

Bk,n(Y k−1 +1Y
(k)
k−1,n).

(10)

After nth refinement step, we only construct and store the LU factorization of one relatively small matrix Sn. The above
iterative process for the computation of urn is based on the solution of n linear systems with the matrices S

r
0, S1, . . . , Sn

whose LU factorizations are known. Our preliminary results show that this iteration converges very fast both for symmetric
positive definite matrices and for large ill-conditioned matrices. The convergence analysis is in progress.

5. Numerical example

Let us illustrate the methodology on a plane-strain model problem of linear elasticity describing the elastic behavior of a
long hollowworkpiece subject to vertical loading on its top surface. The workpiece lies on a rigid surface, as shown in Fig. 8.
Fig. 9 shows the resulting stress distribution. Piecewise-linear mesh and hp-FEM mesh corresponding to roughly the

same relative error 0.5% are shown in Figs. 10 and 11, respectively. Convergence histories of standard FEM and hp-FEM in
energy norm are compared in Fig. 12. Notice that the hp-FEM converges exponentially.
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Fig. 10. Mesh consisting of lowest-order elements (approx. error 0.5% and 21000 DOF).

Fig. 11. Mesh consisting of higher-order elements (approx. error 0.5% and 2500 DOF).

Fig. 12. Convergence of adaptive h-FEM (linear elements) and adaptive hp-FEM.

Performance of method M1

First we show that the technique M1 from Section 4 is not very suitable for practical use. To illustrate this, it is sufficient
to consider a relatively small reference mesh τ r0 with 16129 DOF. UMFPACK is used to compute the LU factorization of the
corresponding stiffness matrix Sr0. We refine the mesh τ

r
0 by adding 100, 1001, 2500, 5002 and 10002 DOF, respectively

(i.e., the new reference mesh τ r1 has 16229, 17130, 18629, 21131 and 26131 DOF). Table 1 shows the CPU times needed
by UMFPACK to compute the LU factorization of the corresponding stiffness matrix Sr1 from scratch as well as the CPU time
needed to construct the LU factorization of Sr1 by extending the LU factorization of the stiffness matrix S

r
0, using the method

M1. All times are in milliseconds (ms).
The reader can see that the method M1 is not useful — in most cases the direct solver is more efficient.

Performance of method M2

To illustrate the performance of the method M2, let us consider two different reference meshes τ r0 with 130305 and
261121 DOF, respectively. For each of them, we construct five different reference meshes τ r1 by adding 1001, 2500, 5002
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Table 1
Performance of the method M1.

Rank(Sr0) DOF added Rank(Sr1) UMFPACK time M1-time

16129 100 16229 479 411
16129 1001 17130 545 4212
16129 2500 18629 640 11403
16129 5002 21131 720 24515
16129 10002 26131 1327 58637

Table 2
Performance of the method M2, rank(Sr0) = 130 305.

DOF Rank(Sr1) UMFPACK time M2-time, eps = 10−2 M2-time, eps = 10−4 M2-time, eps = 10−6

1001 131306 4454 633 1750 3241
2500 132805 4156 648 1809 3316
5002 135307 4327 768 1874 3487
10002 140307 4420 863 2008 3631

Table 3
Performance of the method M2, rank(Sr0) = 261 121.

DOF Rank(Sr1) UMFPACK time M2-time, eps = 10−2 M2-time, eps = 10−4 M2-time, eps = 10−6

1001 262122 11300 1262 2646 4133
2500 263621 10355 1257 2771 4346
5002 266123 10418 1301 2810 4370
10002 271123 11432 1792 3077 4536

and 10002 DOF, respectively. Tables 2 and 3 show the CPU times needed by UMFPACK (again in milliseconds) to construct
the LU factorization of the stiffness matrix Sr1 in all cases, along with the CPU time needed by our method M2 to obtain the
solution ur1 on the mesh τ

r
1 (using the existing LU factorization of S

r
0). The iterative method M2 stops when the l

2-norm of
the difference of two successive approximations is less than eps.
The reader can see that the method M2 takes much less CPU time than if the enriched discrete problem is solved from

scratch. The numerical experiment also shows that the performance gap becomes larger as the discrete problem size grows.

6. Conclusion and outlook

We described a method for hierarchic enrichment of finite element spaces in hp-FEM approximations, and investigated
the performance of two different techniques for the solution of the resulting embedded matrix problems. The method M1
turned out to be useless. This was quite surprising to us, andwe showed the results in order to warn the reader not to repeat
our mistake.
On the other hand, the results obtained with the method M2 are very encouraging. This method can handle very large

matrices including those which no longer can be LU-factorized. The method needs to be further studied and optimized, and
applied to indefinite matrices arising in complex multiphysics problems. Our preliminary results indicate that the method
converges very well also for strongly ill-conditioned indefinite matrices. Convergence of the iterative process needs to be
analysed, as well as the influence of the parameter eps in the stopping criterion. The residual stopping criterion needs to be
replaced with a more realistic convergence criterion based on the H1-norm in the finite element space. We hope to report
on our progress soon.

7. Free Adaptive hp-FEM Library Hermes

Hermes1 (higher-order modular finite element system) is a C++/Python library for rapid prototyping of space and
space–time adaptive hp-FEM solvers. Hermes is the first software capable of solving arbitrary multiphysics PDE problems
via space–time adaptive hp-FEM on dynamical meshes. Sample applications presented on Hermes home page include heat
transfer, thermoelasticity, electromagnetics, microwave heating, optics, incompressible and compressible flow, interface
tracking in two-phase flow, flame propagation, the Black–Scholes equation of financial mathematics, the Schrödinger
eigenvalue problem of quantum chemistry, and others. Thanks to the generality of the adaptive algorithms, Hermes even
makes it possible to employ adaptive hp-FEM for image compression [11]. The library comes with an interactive web portal
which allows the user to enter a large variety of PDE problems through a web browser and have them solved adaptively on
HPC facilities at the University of Nevada, Reno.

1 Visit Hermes home page and interactive hp-FEM web portal http://hpfem.org/.

http://hpfem.org/
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