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1. Introduction

Integral equations have several applications in Physics and Engineering. Analytical solutions of integral equations,
however, either do not exist or are hard to find. It is precisely due to this fact that several numerical methods have been
developed for finding solutions of integral equations. Recent contributions in this regard include Chebyshev polynomials [1],
the modified homotopy perturbation method [2,3], wavelet methods [4-7], radial basis functions (RBFs) [8,9], Bernstein’s
approximation [10], the Toeplitz matrix method [11], the linear multistep method [12], and the triangular function
method [13]. Some of these methods are applicable only to linear integral equations while others are applicable to special
cases of nonlinear integral equations. The need to develop a generic algorithm which can be applied to a general type of
nonlinear integral equations is felt necessary in order to have a single platform to be used for the numerical solution of
these types of problem. In the present paper we propose two new algorithms based on Haar wavelets which are designed
for general types of both nonlinear Fredholm and Volterra integral equations.

The use of wavelets has come to prominence during the last two decades. They have wide-ranging applications in
scientific computing, and it is no surprise that they have been extensively used in numerical approximation in the recent
relevant literature. This is largely due to the fact that wavelets provide a natural mechanism for decomposing the solution
into a set of coefficients, which depend on scale and location. Due to this property, the suitability of wavelets for numerical
approximation remains uncontested. Researchers have employed various methods in applying wavelets to numerical
approximations. These include the wavelet collocation method [14], the wavelet Galerkin method [15], the wavelet-based
finite element method [ 16], and the wavelet meshless method [17]. A survey of some of the early works can be found in [18].
Researchers have applied wavelets for numerical integration [19-21], and for numerical solutions of integral equations
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[22,4-7], integro-differential equations [23], ordinary differential equations [24,14,25], partial differential equations [26,27]
and fractional partial differential equations [28,29]. These methods involve different types of wavelet. The examples include
Daubechies [16], Battle-Lemarie [30], B-spline [24], Chebyshev [31,32], Coifman [33], CAS [23], Legendre [34,35] and Haar
wavelets [36,37,14,20]. On account of their simplicity, Haar wavelets have received the attention of many researchers.
Applications of Haar wavelets for numerical approximations can be found in [37-39,36,40,41,7].

Various types of wavelet have been applied for numerical solution of different kinds of integral equation. These include
Haar [7,42-44,41,5,4,45,46], Legendre [6], trigonometric [47], CAS [48], Chebyshev [31], and Coifman [33] wavelets. Many
researchers have applied Haar wavelets for the numerical solution of integral equations. Babolian and Shahsavaran [7] have
applied Haar wavelets to a particular class of nonlinear Fredholm integral equations. Lepik and Tamme [46] have applied
Haar wavelets to nonlinear Fredholm integral equations, but their method involves approximation of certain integrals. Our
method is new and different from all the existing Haar wavelet methods applied to integral equations. The main advantage
of our method is that it can be applied to general types of nonlinear Fredholm and Volterra integral equations.

In the present work we will consider two types of nonlinear integral equation. The first type is nonlinear Fredholm
integral equations of the second kind, given as follows:

1
u(x) = f(x) —i—/ K(x, t,u(t))dt, (1)
0

and the second type is nonlinear Volterra integral equations of the second kind, given as follows:

ux) =f(x) + /X K(x, t,u(t))dt, (2)
0

where K (x, t, u(t)) is a nonlinear function defined on [0, 1] x [0, 1].In both cases, the known function K (x, t, u(t)) is called
the kernel of the integral equation while the unknown function u(x) represents the solution of the integral equation.

The organization of the rest of the paper is as follows. In Section 2, Haar wavelets and their integrals are described.
In Section 3, formulation of the method based on Haar wavelets is defined for nonlinear Fredholm and Volterra integral
equations. Numerical results are reported in Section 4, and conclusions are drawn in Section 5.

2. Haar wavelets

The scaling function for the family of Haar wavelets is defined on the interval [0, 1) and is given as follows:

|1 forxe[0,1)
haary (x) = {0 elsewhere.

All other functions in the Haar wavelet family are defined on subintervals of [0, 1), and are given as follows:

1 forx € [, B)

haar;(x) = {—1 forx € [B,y) (4)
0 elsewhere,

where
k k+0.5 k+1 .
a=—, f= . V= . i=2,3,...,2M. (5)
m m m
The integer m = 2/, wherej =0, 1,...,J,M = 2 and integer k = 0, 1, ..., m — 1. The integer j indicates the level of the

wavelet and k is the translation parameter. The maximal level of resolution is the integer J. The relation between i, m and k
isgivenbyi=m+ k+ 1.

The function haar, (x) is called the mother wavelet, and all other functions in the Haar wavelet family except the scaling
function are generated from the mother wavelet by the operations of dilation and translation.

The Haar wavelet functions are orthogonal to each other because

1
/ haarj(x)haary(x)dx = 0, wheneverj # k. (6)
0
Any function f (x) which is square integrable in the interval (0, 1) can be expressed as an infinite sum of Haar wavelets:
o0
fx) =) ahaar(x). (7)
i=1

The above series terminates at finite terms if f (x) is piecewise constant or can be approximated as piecewise constant during
each subinterval.
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We introduce the following notation:

ihaar; {(x) = / haar;(x) dx’. (8)
0

This integral can be evaluated using Eq. (4), and is given as follows:

x—a forxe[a,p),
ihaar;1(x) = {y —x forxe[B,y), 9)
0 elsewhere.

3. Numerical methods

In this section, we will discuss the proposed numerical methods for two different types of integral equation. In the
first subsection, we prove a theorem for efficient evaluation of one-dimensional Haar wavelet approximation, while in the
second subsection theoretical results are extended to efficient evaluation of two-dimensional Haar wavelet approximation.
In the third and fourth subsections we apply these results for finding numerical solutions of Fredholm and Volterra integral
equations. For Haar wavelet approximations, the following collocation points are considered:

x, = P~ 0> =1,2 2M (10)
p= a0 P=12..2M,

q—0.5
t, = , q=1,2,...,2N. 11
q N q (11)

3.1. One-dimensional Haar wavelet system

Any square integrable function f (x) can be approximated using Haar wavelets as follows:

M
fx) = Z a;haar;(x). (12)
i=1

Substituting the collocation points given in Eq. (10), we obtain the following linear system of equations:

2M
fG) =) ahaar(x), p=1.2,....2M. (13)

i=1
This is a 2M x 2M linear system of equations whose solution for the unknown coefficients a; can be calculated using the
following theorem.

Theorem 1. The solution of system (13) is given as follows:

1 2M
@ = jzzlf(xj), (14)

1 B )4
a=- (Zf(xp) -y f(xp)>, i=2,3,...,2M, (15)
p=o

p=p+1
where
a=plc—-1)+1,
B=po—-1+2,

2
y = 0o,
2M
p=—.
T
o=i—r,

1 = plloga(=DJ
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Proof. For proof of Eq. (14) see [20]. For the second part of the proof we use induction on J. We will prove Eq. (15) for

i=2,3,...,2M, where M = 2/, For ] = 0, we have M = 1, and the linear system in this case is given as follows:
X1) =a1+a
f( 1) 1 2 (16)
fx) =a — ay.
This system has the following solution:
1
a = E[f(xl) —f(x)]. (17)

Now let us substitutei = 2and M = 1inEq.(15)sothatt = 1,0 = 1,p =2, a =1, =1,y =2anda, = %[f(xl)
— f(x2)], which agrees with Eq. (17), and hence the formula is true for ] = 0.

Next assume that the formula is true for] = n — 1,n = 1, 2, ..., and consider the linear system with ] = n. For] = n,
we have M = 2", and we obtain a 2M x 2M linear system. From this system we obtain a new system by adding equations
corresponding top = 2k — 1and p = 2k for k = 1, 2, ..., M. This new system is an M x M linear system, and it can be

expressed as follows:

1 M
5 (F(op1) + () = D _aihaari(xy), p=1,2,....M. (18)
i=1
Using the induction hypothesis, the solution of this system is given as follows:
1 (&1 rq ,
a= Z 5 (FGap1) +f(xap)) — Z SF ) +fGp) |, =23, M, (19)
p=a p=p"+1
where v/ = 2W°820=D] " —j ¢/ p' = %: o =p 0 —-1D+1, =p -1+ %/ and y’ = p'o’.

Eq. (19) can be written in a more compact form as follows:

28 2y’
( Do) - > f(xp)>, i=23,...,M. (20)

p=2a'—1 p=2p"+1

1
ai =
2p’
Now let us suppose that

7 = ¢/ = 2loe(=Dl

oc=0=i—r,
n+1
=2 /_2
p=20" = ,
T

a=2d—1=pc—1)+1,
/ 1Y
B=28 =P(‘7—1)+§,

y =2y =po,

then Eq. (20) becomes exactly the same as Eq. (15) for p = 2, 3, ..., M. This proves that the formula is true for p =
2,3, ..., M. Next we will prove that it is also true forp = M + 1,M + 2, ..., 2M. Let us assume that p = M + j, where
j = 1,2,..., M. Subtracting the equation corresponding to p = 2j from the equation corresponding to p = 2j — 1 for
j=1,2,...,Min the system given in Eq. (13), we obtain the following:

1
aM+j=5(f(X2j—l) —fxy), i=1,2,....M. (21)

Now, forp = M +j,wehavetr = M,0 =j,p =2, = 2j— 1,8 = 2j — 1, y = 2j, and the formula given in Eq. (15)
matches Eq. (21) forj = 1, 2, ..., M. This proves the theorem. O

3.2. Two-dimensional Haar wavelet system

A real-valued function F(x, t) of two real variables x and t can be approximated using a two-dimensional Haar wavelet
basis as

2M 2N

F(x, t) ~ Z Z b; jhaar;(x)haar;(t). (22)

i=1 j=1
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In order to calculate the unknown coefficients b; j, the collocation points defined in Eqs. (10) and (11) are substituted in
Eq. (22). Hence, we obtain the following 4MN x 4MN linear system with unknown b; j:

2M 2N
Frg=Y_ Y bijhaari(x,)haar(t,), p=1,2,....2M, q=1,2,....2N, (23)
i=1 j=1

where for simplicity we have introduced the notation F, 4 for the value of F(x,, t;). The solution of this system can be
calculated using the following theorem.
Theorem 2. The solution of system (23) is given below:

2M 2N

b F, 4, 24
R 2M><2NZZ” (24)
p=1 g=1
bi1 = ( Foq— Fp,q> , i=2,3,...,2M, (25)
o1 x 2N p=a1 g=1 p=B1+1 g=1
M i Wy
by = ( Fpq— Fp,q> . j=2.3,....2N, (26)
2M X P2 p=1q=0 p=1q=pr+1

B B 2} 71
= s (X 303 3 ha- 3 S
PIPS \p=a} 4= p=a1 q=p+1 p=p1+14q=02
Y1 Y2

+ Y Y F,,,L,), i=2,3,...,2M,j=2,3,...,2N, (27)

p=p1+1q=p2+1
where
a; = p1(or —1) + 1,
Br1=pi(c1— 1)+ %,

Y1 = P101,

M (28)
P1=—",

T1
o1 =1i—1,
7 = 2Llog2(i—1)J’

and similarly,
ay = pp(oy — 1) + 1,
02

B2 =pa(o2 — 1) + ER
Y2 = p202,

IN (29)
P2 =—,

T2
oy =]j— 1,

7, = 2llog20-1)

Proof. We will prove the theorem by using induction onJ = J; + J,, where M = 2/t and N = 22, ForJ] = 0, we have
M =1, N = 1, and by solving system (23), we obtain the following values of the unknown b ;:

1
b1 = 2 (Fi1+Fi2+ Fa1 + Fop)

1
b1, = 2 (Fi1 —Fi2 4 F1 — Fa)
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1
byq = 2 (Fii+Fip2 — Fo1 — Fa)

1
by, = 2 (Fii—Fi2 —F1+Fp),

which agree with Egs. (24)-(27). Thus the theorem is true for ] = 0. Next let us assume that the theorem is true for ] =
0,1,...,m+n—1,and suppose that] = m +n.Thus M = 2™ and N = 2", and we have 2™+"*2 equations in the resulting
system.

First, assume that m = 0 and n > 0. Adding equations correspondingtop = k,q=2l—1andp = k,q =2lfork = 1,2
andl =1, 2,...,2" we obtain the following system:

2 2"
Gpg = ZZb,-,jhaar,-(xp)haarj(tq), p=12,9g=12,...,2", (30)
i=1 j=1
where
1
Cpa =3 (Fp2q-1+ Fp.2q) - (31)

Applying the induction hypothesis to system (30) we obtain the following values of b; ;:

2

2!1
bii=> Xlzn ZZGM, (32)

p=1 g=1

1 2" 2n
brr= 5o (q; Grg— ;Gz,q> : (33)

1 2 B 2 v
b”:m YN Gua=Y. Y. Gg|. i=2.3.....2", (34)

p=1 g=d), p=1q=p,+1
1 By v By )
b2qj = ﬁ Z Gl,q - Z G],q - Z C;Z,L;{ + Z Gz,q s ] = 2» 35 B 2n7 (35)
P2 q=a’} q=p}+1 q=a} q=p}+1

where 7y = 210020-0) o) = j— 7} pl = 2. &) = pj(0; — 1) + 1, B5 = pj(03 — 1) + 2 and y; = pjo;. Substituting the

value of G, 4 and simplifying, we obtain the following:

211+1
bia= 2 % 2n+1 ZZFP q (36)
p=1 q=
2n+1 2n+1
o1 = 2 % 2n+l ZFl q ZFZ a1 (37)
2 2B 2y,
b= g (2 2 Fa-Y Y o). i=232 (38)
’O p=1g=2a} -1 p=1q=2p)+1
1 Zﬁé 2;/2’ Zﬁé 2y2'
b2j = 55 Y Fg— Y Fg— Y. Fg+ Y. Fgl|. i=23....2" (39)
P2 q=20)—1 q=2p,+1 g=205—1 q=2p,+1

Now let us assume that
T, = TZ, — 2L10g2(i—1)J,

0y = 02, =i— T,

2n+1

=2 ! = s
02 P2 =

oy =205 —1=py(02 — 1)+ 1,
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02
B2 = 2B, = pa(oa — 1) + ER
Y2 = 2y, = p203.

Then Egs. (36)-(39) agree with Egs. (24)-(27) fori = 1,2 andj = 1, 2, ..., 2". Next, subtracting equations corresponding
top = k,q = 2l from equations corresponding to p = k, q = 21 — 1, respectively, fork = 1,2and [ = 1,2, ..., 2", we
obtain the following system:

Fiaim1 — Fio = 2bygnyy 4+ 2by gy, 1=1,2,...,2"

40
Fooi1 —Egy = 2byongg —2byonyy, 1=1,2,...,2" (40)
This implies the following:
1 n
bioy =~ (Fla—1 +Fo1 —Fla—Fa), 1=1,2,...,2
H (41)

1
by any = I (Fro-1—Fia—Fa1+Fa), 1=1,2,...,2"

The values given in Eq. (41) agree with the values obtained from Eqs. (26) and (27). This proves the theorem when m = 0
and n > 0. A similar reasoning proves the theorem for m > 0 and n = 0.
Finally, we assume that m > 0 and n > 0. Adding equations correspondingtop = 2k — 1,q = land p = 2k, q = I for

k=1,2,...,2%and [ =1, 2,...,2""! we obtain the following system:
2m il
Gpqg=Y_ Y bijhaarix)haar(t,), p=1.2,....2", ¢=1,2,...,2"", (42)
i=1 j=1
where
1
Gpg = 5 (Fap-1,q + F2pq) - (43)

Applying the induction hypothesis to system (42), we obtain the following values of b; ;:

om 2n+l
bi1= om 2n+1 Z Z Gp.q» (44)
p=1 g=1
ﬁl on+1 Vl/ gn+1
— ;o m
bm_p x2n+1 ZZGM Z ZGM . i=2,3,...,2", (45)
p=aj 4=1 p=p1+1 9=1
2m ﬁz 21” yz
= (S5 60-5 3 6] mznz )
p2 p=1q=0; p=1q=p+1
B B B 2) 2 B2
bij = 2D Goa- Z D Gra= D D G
’O P2 p=a} 1=02 p=a/ 4=F2+1 p=p1+19=2%
" V2
+ Y Y Gy i=23....2m j=2,3,....2", (47)
p=p1+19=P2+1
where 7] = 2080=D) o/ —j_ 7/ ol = , S = pl(o] =1 +1, B, = pl(o] - 1)+ 2 - ,)/1 = plo], t; = 2lUeel=Dl o5 —

i—1, 0, =2 T sy = pi(os — 1)+ 1,85 = py(oy — 1) + 2 and y; = pjo5. After simplifications, Eqs. (44)-(47) can be
5]

written as follows:

2m+1 2n+‘]

b1 = 2m+1 % 20+l Z Z Fpa. (48)

26 o+l 2y; ol

1
bi_]] = W Z Z prq - Z Z prq 5 1 = 2, 3, ey Zm! (49)

p=2a—1 q=1 p=2;+1 =1
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2m+1 2m+1 ¥
T 0 5] SLTE S SE N R R 50
2" x py p=1 g=a; p=1 g=p+1
1 281 B2 281 2) 2y B2
LI vl EDDED DL YEED DD DN YLD DED DL
P1 X P2 p=2a/j—19=2 p=2a{—19=p2+1 p=2;+19=22
2y 72
+ Y ) Ry i=2.3...2m j=23...2"" (51)

p=2p;+19=F2+1
Now let us suppose that
| = 1] = 2les2l-DJ

o1 =0']/ =i—T1,
2n+l
p1=2p] = .
T
oy =207 —1=pi(o7 — 1)+ 1,
P1
B1=2B;=pi(o1 — 1) + 5

Y1 =2y, = p101;

then Eqgs. (48)-(51) yield (24)-(27) fori = 1,2,...,2mandj = 1,2, ..., 2"!, Next, we add equations corresponding to
p=kqg=2l—1landp=kq=2fork=1,2,...,2"andl = 1,2, ..., 2" and in a similar way as above we obtain
(24)-(27)fori=1,2,...,2™ 1 andj = 1, 2, ..., 2". It only remains to obtain Eq. (27) fori = 2™ +1,2™ 42, ..., 2™ and
j=2"4+1,2"+2,...,2"" For this, we first add equations corresponding top = 2k—1, g = 2l—1and p = 2k, ¢ = 2l,and
then from the resultant equation obtained we subtract equations correspondingtop = 2k,q = 2l—1landp = 2k—1, q = 2I
fork=1,2,...,2™mand [ =1, 2, ..., 2". Thus we obtain the following values:

1
bom g ony = 2 (Fak=1.21-1 + Far2t — Fare1.2 — Fa2i-1) - (52)

These values agree with the values obtained from Eq. (27) fork = 2™ +1,2" 42, ..., 2™ and [ = 2" +1,2" 42, ..., 2™,
Hence the theorem is proved. O

3.3. Fredholm integral equations

Consider the Fredholm integral equation (1). The kernel function K (x, t, u(t)) is approximated using the two-dimensional
Haar wavelets given in Eq. (22). Substituting this approximation of the kernel function in the Fredholm integral equation
(1), we obtain the following:

2M  2M

ux) =f) + Y Y bijhaari(x) / haar;(t) dt. (53)

i=1 j=1

Using the following property of Haar wavelets:

! 1 fori=1,
haar;(t) dt = 0 fori—2 3 (54)
0 P B

Eq. (53) reduces to the following equation:

2M
u(x) =fx) + Zb,-Jhaar,-(x). (55)
i=1

Substituting the collocation points defined in Eq. (10), we obtain the following:

ulx) =f(x;) + Z b ihaari(x;), r=1,2,...,2M. (56)

i=1
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Now the coefficients b; 1 can be replaced with their expressions given in (24)-(25), and we obtain the following system of
nonlinear equations:

2M  2M

1
uGy) = fO) + 5 ;;K(xp, tq. u(ty))haar; (x;)
2M 1 B 2M 71 2M
+) — (Z D K@t ut) — Y Y K.ty u(tq))) haar;(x,),
i P1X p=aq g=1 p=p1+1 g=1
r=1,2,...,2M. (57)

Let us introduce the following notation:
ux) =ulty) =u,, r=1,2,...,2M. (58)

With this notation, the above system can be written as

2M 2M

1 1
u = f(x e —— K(x,, t;, us)haarq(x _
r f(r)+2MX2Mp21:q2: (pq q) 1(r)+2 1><2M
B1 2M 71 2M
(Z Zl((xp, tpotg) — Y Y K g, uq)) haar(x,), r=1,2,...,2M. (59)
p=a1 q= p=p1+1 g=1
Now Eq. (59) represents a 2M x 2M nonlinear system with unknown u,, r = 1,2,...,2M. We may use Newton’s or

Broyden’s method with initial guess u® = 0 to solve this system. The algorithm is terminated when the required tolerance
has been achieved; that is, when

[ —u® <,

where € is the required tolerance. This system directly gives us the solution of the Fredholm integral equation (1) at the
collocation points. Once the solution at collocation points is known, we can find solution at any point with the help of
Theorem 1.

3.4. Volterra integral equations

Consider the Volterra integral equation (2). Substituting the approximation of the kernel function given in Eq. (22) in the
Volterra integral equation (2), we obtain the following equation:

2M 2M

X
u) =fx) + Y Y bijhaar,(x) f haar;(t) dt. (60)
i=1 j=1 0
Using the property of Haar functions, this equation reduces to the following:
2M 2M
u) =f@) + Y _ Y bijhaar;(x)ihaar;(x). (61)

i=1 j=1
Substituting the collocation points, we obtain the following system:

2M  2M

ux) =f(x) + Z Zb,-,jhaar,-(x,)ihaarj(xr) r=1,2,...,2M. (62)

i=1 j=1
Now the coefficients b; j can be replaced with their expressions given in Eqs. (24)-(27):

2M  2M

1
Uy = fO) + 5o ; ; K (X, tg, ug)haar; (x,)ihaar; (x,)
2M 1 B 2M 71 2M
+ 2721\/1 > ZK(xp,rq,uq) > K.ty ulty)) | haari(x,)ihaar; (x,)
im P1X p=aq g= p=g1+1 q=1

2M 2M - B2 M 7
+ Z M x p, (Z Z K(xp, tg, ug) — Z Z K(xp, tg, uq)> haar (x,)ihaar;(x;)

j=2 p=1q=a p=1q=pr+1
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Table 1
Comparison of errors with the Haar wavelet method [46] for Example 1.
2M Haar wavelet method [46] Present method
4 3.3E-3 3.7E-3
8 2.7E-3 1.0E-3
16 1.1E-3 2.6E—4
32 3.7E—4 6.6E—5
64 1.1E—4 1.7E-5
128 3.1E-5 42E—6

v
0 50 100 150 200 250 300
N

Fig. 1. Comparison of exact and approximate solutions for Example 1.
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— Z ZK(xp,tq,uq)+ Z Z K(xp, tg, Ug) | haar;(x;)ihaar;(x;), r=1,2,...,2M. (63)
p=p1t+1q=az p=p1+1q=pF2+1

Proceeding as in the previous case, we can obtain the solution of the Volterra integral equation at the collocation points.

4. Numerical experiments

Example 1. Consider the following nonlinear Fredholm integral equation [46]:

1
u(x) = —x* — g(zﬁ— N+2+ / xt/u(t)dt. (64)

0

The exact solution of this problem is u(x) = 2 — x*. In Table 1 we have compared the maximum absolute errors of the pro-
posed method with those from the Haar wavelet method [46]. The table shows that the performance of our method is better
than that of the Haar wavelet method [46]. In Fig. 1 we have shown the absolute errors for this problem. It is evident from the
figure that the maximum absolute error decreases with the increase in number of collocation points. The added advantage
of the new method in comparison to the Haar wavelet method [46] is that it does not involve numerical integration. In our
case we approximate the integrand with the Haar wavelet basis and perform exact integration of Haar functions.

Example 2. Consider the following nonlinear Fredholm integral equation [13]:

1 1
u(x) = sin(mwx) + = / cos(mx) sin(zwt) (u(t))3dt. (65)
0
The exact solution of this problem is

20 — /391
3

u(x) = sin(wx) + cos(x). (66)
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Fig. 2. Comparison of exact and approximate solutions for Example 2.

Table 2
Comparison of errors with the triangular function method [13] for Example 2.
2M Triangular factorization method [13] Present method
4 3.9E-2 2.8E—16
8 9.9E-3 2.9E—16
16 2.5E—3 2.8E—16
32 7.6E—4 3.3E—16
10” : : ‘
= Triangular functions method
—&— Present method
107t E
-
]
10° b E
10_4 L L L L L L
0 5 10 15 20 25 30 35

Fig. 3. Comparison of exact and approximate solutions for Example 3.

In Fig. 2, we have shown a comparison of the approximate solution with the exact solution. Table 2 shows the comparison of
errors of the present method with those of the triangular function method [13]. It is evident from the table that our method
performed far better than the triangular function method [13] for this problem.

Example 3. Consider the following nonlinear Volterra integral equation [13]:

ux) = ; - %exp(—Zx) - / (u(t)® + u(t))dt. (67)
0

The exact solution of this problem is exp(—x). In Fig. 3, we have compared the maximum absolute errors of the present
method with those of the triangular function method [ 13]. The figure shows that better accuracy is obtained with the present
method with the increase of number of collocation points. This shows the stability of our method while the errors in the
triangular function method [13] show an oscillatory behavior.
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Fig. 4. Comparison of exact and approximate solutions for Example 4.

Example 4. Consider the following nonlinear Volterra integral equation [49]:

u(x) = f(x) +/ xt2(u(t))?dt, (68)
0

where

fx) = 1—|—]]x+2x2 1x3+2x4 In(x + 1) 1(x—Hc“)(ln(x—f—l))2 11x2+5x3 x* (69)
B 9 3 3 9 3 9 18 27"

The exact solution of this problem is u(x) = In(x 4+ 1). In Fig. 4, we have shown the comparison of the approximate solution
with the exact solution.

5. Conclusion

Two new generic algorithm are proposed for the numerical solution of nonlinear Fredholm integral equations of the
second kind and nonlinear Volterra integral equations of the second kind. A two-dimensional Haar wavelet basis is used for
this purpose. The algorithms are established theoretically alongside numerical validations. The new algorithms do not need
any linear system solution for evaluation of the wavelet coefficients and are more efficient than conventional Haar wavelet
based methods. Different types of integral equation can be solved numerically by the same method more accurately than
previously.
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