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a b s t r a c t

A modification of the Ikebe algorithm for computing the lower half of the inverse
of an (unreduced) upper Hessenberg matrix, extended to compute the entries of the
superdiagonal, is considered in this paper. It enables us to compute the inverse of a
quasiseparable Hessenberg matrix in O(n2) times. A new factorization expressing the
inverse of a nonsingular Hessenberg matrix as a product of two suitable matrices is
obtained. Because this allows us the use of back substitution for the inversion of triangular
matrices, the inverse is computed with complexity O(n3). Some comparisons with results
obtained using other recent inversion algorithms are also provided.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The important role of Hessenberg matrices in computational and applied mathematics is well known. In particular they
arise in numerical linear algebra, as a result of the application of Givens or Householder orthogonal transformations to a
general matrix, when solving the eigenvalue problem, [1,2]. Furthermore the search for fast and simple algorithms for the
inversion of such structured matrices is of current interest. The Ikebe algorithm, [3], yields the entries of the upper half of
the inverse of any (unreduced) lower Hessenberg matrix with complexity O(n2). This algorithm provides all the entries of
the inverse if the involved matrix is a tridiagonal one. Currently used algorithms utilized specifically for the inversion of
tridiagonal matrices are considered in [4].

Two algorithms with complexity O(n3) have been recently introduced, [5,6], for computing the inverse matrix and
the determinant of any (unreduced) nonsingular lower Hessenberg matrix; i.e. with superdiagonal entries hi,i+1 ≠

0, (i = 1, 2, . . . , n − 1). The method provided in [6] is simpler. Although the procedure described in [5] has a minor flop
count, the algorithm given there is more complex because of the way it achieves the inversion of the expanded triangular
matrix.

Results about the existence of representations of the inverses of Hessenberg matrices as rank one perturbations of
triangular matrices, i.e. in the form H−1

= T + u⃗ · v⃗T , are known; see e.g. [7,8]. Here the matrix T represents a particular
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triangular matrix. A constructive example of such a representation for the inverse of a nonsingular lower Hessenbergmatrix
is given in Theorem 1 of [5].

The aim of this paper is to propose a new characterization of the nonsingular Hessenberg matrices through the
factorization

H−1
= HL · U−1, (1)

for their inverses. A constructive procedure for computing such factorization is also provided.
ThematrixHL is quasiseparable; i.e. rank (HL(i + 1 : n, 1 : i)) ≤ 1, rank (HL(1 : i, i + 1 : n)) ≤ 1, and i = 1, 2, . . . , n−1;

see e.g. [9]. The matrix U is upper triangular, with ones on its main diagonal. Without loss of generality we consider upper
Hessenbergmatrices. Analogous results can be obtained for the lower Hessenberg case by taking transposes. In addition, we
assume that hi+1,i ≠ 0 (i = 1, 2, . . . , n − 1); i.e. the matrix H is unreduced. The reduced case can be handled in a similar
way by partitioning the matrix in blocks in an appropriate manner.

The nonsingular lower Hessenberg matrix HL is obtained directly by a simple extension of the Ikebe algorithm to the
entries of the superdiagonal ofH−1. The computational complexity of our proposed algorithm for the inversion of unreduced
Hessenberg matrices is equivalent to that of back substitution for the entries of U−1, see e.g. [1,2], plus an additional O(n2)
term.

The procedure introduced here can also be used to obtain a factorization

H = U · HU (2)

of the original matrix H. The matrix HU = H−1
L is a quasiseparable nonsingular upper Hessenberg matrix.

WhenH is also quasiseparable the back substitution stage can be avoided. In this situation, the expanded Ikebe algorithm
provides a faster computation of the inverse matrix with complexity O(n2).

The structure of the paper is as follows. In Section 2, after recalling the Ikebe algorithm, we demonstrate the factorization
(1) and show how to compute the inverse matrix H−1 using the algorithm detailed in Appendix A. In Section 3 a customary
example and graphical comparisons of the elapsed times are introduced for quasiseparable Hessenberg matrices, and also
for matrices associated to the upper Hessenberg form of nonsingular matrices taking on random values in (−5; 5). Some
conclusions are outlined at the end.

2. An extension of the Ikebe algorithm for computing the inverses of Hessenberg matrices

2.1. The Ikebe algorithm for the lower half of the inverse of nonsingular Hessenberg matrices

In order to obtain the inverse factorization (1), we begin with the Ikebe algorithm from [3], adapted here to an
(unreduced) nonsingular upper Hessenberg matrix of order n. It gives us the lower half of the inverse matrix H−1, i.e. h(−1)

i,j
with i ≥ j. Following [3], we have

h(−1)
i,j = y(i) · x(j); i ≥ j, (3)

where y(i) and x(j) are the ith and jth components of the vectors y⃗ and x⃗, respectively.
The components of the vector x⃗were achieved in the following recursive way, with h−1

j,j−1 = 1/hj,j−1,

x(1) = λ ≠ 0 (an arbitrary constant),

x(j) = −h−1
j,j−1

j−1
k=1

hk,j−1x(k) (j = 2, 3, . . . , n). (4)

The components of the vector y⃗were given by the following recurrence,

y(n) =


n

k=1

hk,nx(k)

−1

,

y(i) = −h−1
i+1,i

n
k=i+1

hi+1,ky(k) (i = n − 1, n − 2, . . . , 1). (5)

In addition, we can recover from y(n) the value of detH, the determinant of H, with the convention detH(n)
0 = 1, by

detH = (−1)n−1


n

k=2
hk,k−1


λ · y(n)

. (6)

We define now a lower triangular matrix L∗ with its ij entry (i ≥ j) given by (3). These entries constitute the lower half
of H−1.
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Proposition 1. Let L∗ be a lower triangular matrix obtained from the Ikebe algorithm, given by Eqs. (3)–(5), applied to an
(unreduced) nonsingular upper Hessenberg matrix H. Then, the following statements are equivalent:

1. L∗ is nonsingular.
2. H−1 has a particular LU factorization of the form H−1

= L∗
· U∗−1, with U∗ a nonsingular upper triangular matrix.

Proof. 1 ⇒ 2. Since the lower triangular matrix L∗ is nonsingular, all its diagonal entries are nonzero. Then the matrix
product U∗

= H · L∗ is also nonsingular. However, the entries u∗

i,j with i > j are null, because L∗ gives us the lower half of
H−1, and H · H−1

= In. Hence, U∗ is upper triangular, and we have H−1
= L∗

· U∗−1.
2 ⇒ 1. The nonsingularity of L∗ is immediate from its expression, L∗

= H−1
· U∗, as the product of two nonsingular

matrices. �

Remark 1. The matrix L∗, obtained by applying the Ikebe algorithm to a nonsingular lower Hessenberg matrix could be a
lower singular matrix. In such a case, we cannot obtain the particular LU factorization of the inverse matrix using the Ikebe
algorithm, as the following example illustrates.

Example 1. Given a nonsingular upper Hessenberg matrix H of order 4, we obtain a singular lower triangular matrix L∗

using the Ikebe algorithm with λ = 1:

H =

 1 −1 1 1
−1 1 1 1
0 −1 1 1
0 0 −1 1

 ; L∗
=

1.00 0.00 0.00 0.00
0.50 0.50 0.00 0.00
0.25 0.25 0.00 0.00
0.25 0.25 0.00 0.50

 .

2.2. The expanded Ikebe algorithm

To overcome the previous drawback of the Ikebe algorithm, we compare Eqs. (3)–(5) with the closed form representation
for the entries of the inverse of a nonsingular upper Hessenberg matrix; see [10, Corollary 1]. In this way, we can extend the
Ikebe algorithm to obtain the entries of the superdiagonal, h(−1)

i,i+1, i = 1, . . . , n − 1, of H−1. First, we introduce two results
necessary in the following.

Lemma 1. A compact representation for the components of the vector x⃗ from the Ikebe algorithm is given by

x(i) = (−1)i−1 λ · detHi−1
i

m=2
hm,m−1

 , 1 ≤ i ≤ n, (7)

where detHi−1 is the determinant of the left principal submatrix of order i − 1.

Proof. We take detH0 = 1, and the usual conventions about products. Trivially x(1) = λ, in agreement with the initial
condition of the recurrence (4). Also, the representation (7) for x(i) satisfies the recurrence relation (4),

x(i) = −h−1
i,i−1

i−1
k=1

hk,i−1(−1)k−1 λ · detHk−1
k

m=2
hm,m−1


=

(−1)i−1λ
i

m=2
hm,m−1

 i−1
k=1

hk,i−1(−1)k+i−1 detHk−1


i−1

m=k+1

hm,m−1



=
(−1)i−1λ
i

m=2
hm,m−1

 i−1
k=1

hk,i−1A
(i−1)
k,i−1,

where A(i−1)
k,i−1 is the cofactor of the element hk,i−1 in the matrix Hi−1. Hence,

x(i) = (−1)i−1 λ · detHi−1
i

m=2
hm,m−1

 .

The proof follows by the uniqueness of the solution of the recurrence (4) with the initial condition x(1) = λ, an arbitrary
constant. �
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Lemma 2. A compact representation for the components of the vector y⃗ from the Ikebe algorithm is given by

y(i) = (−1)i−1


i

m=2
hm,m−1


· detH(i)

n−i

λ · detH
, 1 ≤ i ≤ n, (8)

where detH(i)
n−i is the determinant of the right principal submatrix of order n − i, which begins in the i + 1-th row and column

and finishes in the n-th row and column.

Proof. For the proof we use the recurrence relation (5) and Lemma 1, the usual conventions about products, and we take
detH(n)

0 = 1. Substituting Eq. (7) in the initial condition from (5),

y(n) =

 n
k=1

hk,n(−1)k−1 λ · detHk−1
k

m=2
hm,m−1




−1

=

(−1)n−1


n
m=2

hm,m−1


detH(n)

0

λ ·

n
k=1

hk,n(−1)n+k detHk−1


n

m=k+1
hm,m−1



=

(−1)n−1


n
m=2

hm,m−1


detH(n)

0

λ ·

n
k=1

hk,nA
(n)
k,n

=

(−1)n−1


n
m=2

hm,m−1


detH(n)

0

λ · detH
,

in agreement with Eq. (8) for i = n. Also, the representation (8) for y(i) satisfies the recurrence relation (5),

y(i) = −h−1
i+1,i

n
k=i+1

hi+1,k(−1)k−1


k

m=2
hm,m−1


· detH(k)

n−k

λ · detH

=

(−1)i−1


i
m=2

hm,m−1


λ · detH

n
k=1

hi+1,k(−1)i+1+k
k

m=i+1

hm,m−1 detH
(k)
n−k

=

(−1)i−1


i
m=2

hm,m−1


λ · detH

n
k=1

hi+1,kA
(n−i)
i+1,k,

where A(n−i)
i+1,k is the cofactor of the element hi+1,k in the matrix H(i)

n−i. Hence,

y(i) = (−1)i−1


i

m=2
hm,m−1


· detH(i)

n−i

λ · detH
.

The proof follows by the uniqueness of the solution of the recurrence (5). �

A representation for the entries of the superdiagonal of the matrix H−1 is now introduced by using the two vectors x⃗ and
y⃗ from the Ikebe algorithm.

Proposition 2. The entries for the superdiagonal of the inverse of an (unreduced) nonsingular upper Hessenberg matrixH can be
represented as

h(−1)
i,i+1 = y(i) · x(i + 1) + h−1

i+1,i; 1 ≤ i ≤ n − 1, (9)

where y(i) and x(i + 1), given by (5) and (4) , respectively, are obtained from the Ikebe algorithm.
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Proof. First, because H is unreduced, all the h−1
i+1,i are well defined. From [10, Eq. (8)], we have, for 1 ≤ i ≤ n − 1,

h(−1)
i,i+1 = −

detHi · detH
(i)
n−i

hi+1,i · detH
+

1
hi+1,i

. (10)

Taking the product y(i) · x(i + 1) by using the representations (7) and (8), we have

y(i) · x(i + 1) = −
detHi · detH

(i)
n−i

hi+1,i · detH
. (11)

Eq. (9) for the entries of the superdiagonal of H−1 follows by substituting the product (11) in the representation (10). �

Furthermore, since h(−1)
i,i+1 =

1
hi+1,i


1 −

detHi·detH
(i)
n−i

detH


, the entry h(−1)

i,i+1 is null

h(−1)
i,i+1 = 0


when detHi · detH

(i)
n−i = detH.

Obtaining h(−1)
i,i+1 by using (9) requires no additional computational effort. We call this procedure for obtaining the

quasiseparable lower Hessenberg matrixHL using Eqs. (3)–(9) the expanded Ikebe algorithm. Moreover, such a matrix allows
us to propose our main result.

Theorem 1. Let H be a nonsingular matrix of order n. Then the following statements are equivalent:

1. H is an upper Hessenberg matrix.
2. The inverse matrix H−1 has a factorization of the form given in (1), i.e. H−1

= HL · U−1, where the lower Hessenberg matrix
HL is quasiseparable, and U−1 is upper triangular with ones on its main diagonal.

Proof. 1 ⇒ 2. For unreduced matrices, the lower Hessenberg matrix HL is obtained by applying the expanded Ikebe
algorithm to thematrixH. In the reduced case, thematrixHL can be obtained by partitioningH into blocks in an appropriate
manner. Thus the entries h(−1)

i,j (1 ≤ i ≤ n and 1 ≤ j ≤ i + 1) of HL are equal to the corresponding entries of H−1. Note
that the matrix HL is also quasiseparable. The rank conditions rank (HL(1 : i, i + 1 : n)) ≤ 1 are trivially satisfied because
HL is a lower Hessenberg matrix. The conditions rank (HL(i + 1 : n, 1 : i)) ≤ 1 follow by the fact that the lower half of HL is
identical to the lower half of the rank one matrix y⃗ · x⃗T from the Ikebe algorithm. In addition, as H · H−1

= In, we have

H · HL = U =



1 0 u13 . . . u1,n−1 u1n
0 1 u23 . . . u2,n−1 u2n
0 0 1 . . . u3,n−1 u3n
...

...
... . . .

...
...

0 0 0 . . . 1 un−1,n
0 0 0 . . . 0 1

 , (12)

an upper triangular matrix with ones on its main diagonal. Therefore, U is nonsingular, detU = 1. Thus, from (12),
detH−1

= detHL, and HL is nonsingular. Finally, Eq. (12) yields H−1
= HL · U−1.

2 ⇒ 1. AsH−1
= HL ·U−1, we obtain Expression (2) for the nonsingular matrixH = U ·HU . Therefore, hi,j = (U · HU)i,j =

0, for j < i − 1. Thus H is an upper Hessenberg matrix. �

An equivalent result holds for nonsingular lower Hessenberg matrices.

Remark 2. For an unreduced (respectively reduced) Hessenberg matrix H, nothing is said about the matrix HL. It could
be reduced or unreduced. For an unreduced matrix H, see the comment after the proof of Proposition 2 and Example 2.
However, for an unreduced (respectively reduced) Hessenberg matrix H, the matrix HU involved in the factorization (2) is
also an unreduced (respectively reduced) matrix. Indeed, for j = i − 1, we have hi,i−1 = (U · HU)i,i−1. That is, hi,i−1 is equal
to the i, i − 1 entry of HU .

Example 2. In order to obtain HL we apply the expanded Ikebe algorithm, taking λ = 1, to the unreduced Hessenberg
matrix given in Example 1. The matrix HL contains the lower half plus the superdiagonal of the inverse matrix H−1. The
inverse factorization (1) for H−1 is:

H−1
= HL · U−1

=

1.00 0.00 0.00 0.00
0.50 0.50 −1.00 0.00
0.25 0.25 0.00 −0.50
0.25 0.25 0.00 0.50


1 0 −1 0
0 1 1 0
0 0 1 0
0 0 0 1

 .

Note that in this example the quasiseparable matrix HL is reduced.
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2.3. Inversion procedure for triangular matrices

The complexity of both themethod given in [5] and that proposed here is equivalent to that of the inversion of a triangular
matrix. We apply a vector approach, similar to that given in [5,6], for the inversion of this class of matrices. Without loss of
generality we take U to be a nonsingular upper triangular matrix of order n.

Denote the columns of In by (E1, E2, . . . , En), and those of U−1 by (C1, C2, . . . , Cn).
Since U−1

· U = In, the following vector recurrence relation yields the columns of U−1:

C1 = u−1
1,1 · E1

Cj = u−1
j,j ·


Ej −

j−1
k=1

Ck · uk,j


(j = 2, 3, . . . , n) . (13)

This is a particular vectorial back substitution scheme for the entries of the inverse of an upper triangular matrix U, [1,2].
Eq. (13) gives rise to a simpler symbolic inversion procedure, as can be seen from the examples compared in Section 3.

Now we are ready to introduce the proposed algorithm, detailed in Appendix A, for computing and factoring the inverse
matrix H−1.

2.4. The case of quasiseparable Hessenberg matrices

If H is a quasiseparable matrix, our inversion procedure is faster than the algorithms proposed in [5,6]. Suppose that an
upper Hessenberg matrix H satisfies rank (H(i + 1 : n, 1 : i)) ≤ 1, rank (H(1 : i, i + 1 : n)) ≤ 1, and i = 1, 2, . . . , n − 1.
The factorization (2) for H yields H = HU , and the inverse factorization (1) reduces to H−1

= HL. Therefore, the inverse
matrix is obtained directly from the expanded Ikebe algorithm.

3. Numerical examples and elapsed time comparisons

The results given in this section were obtained using the commercialMatlab R⃝ package on a 1.80 GHz computer.

3.1. Quasiseparable Hessenberg matrices

As an illustration we consider the case of an upper Hessenberg matrix of order n = 5. It is the transpose of a standard
example given in [5,6]:

H =


1 1 1 1 1

−1 1 1 1 1
0 −1 1 1 1
0 0 −1 1 1
0 0 0 −1 1

 .

This upper Hessenberg matrix and also its transpose belong to the class of quasiseparable matrices from Section 2.4,
i.e. rank (H(i + 1 : 5, 1 : i)) ≤ 1, rank (H(1 : i, i + 1 : 5)) ≤ 1, and i = 1, 2, . . . , 4. Hence, H−1 can be computed with
complexity O(n2) using the expanded Ikebe algorithm:

>> H^(-1) = 0.5000 -0.5000 0 0 0
0.2500 0.2500 -0.5000 0 0
0.1250 0.1250 0.2500 -0.5000 0
0.0625 0.0625 0.1250 0.2500 -0.5000
0.0625 0.0625 0.1250 0.2500 0.5000

The outcomes give the exact values of the inversematrix. As was expected, the inverse is a quasiseparable lower Hessenberg
matrix.

Fig. 1 provides a graphical comparison of the times elapsed in the computation of the inverse of a quasiseparable
Hessenberg matrix with entries hi,j = −1 for i = j + 1, hi,j = −2.5 for i ≤ j, and hi,j = 0, otherwise. The matrix order n
runs from 15 to 155 in steps of size 10.

The algorithm for the Elouafi andHadjmethod is given in Appendix B. A simple Ikebe-like procedure for obtaining the last
row of H−1 has been introduced as a first step. It gives the initial vector for an Elouafi–Hadj stage to provide the remaining
rows.

For comparison, values of norm(H−1H− I) are given in Table 1, with I the identitymatrix. For large orders, the algorithms
given in [5,6] yield inaccurate outcomes in the computation of the inverse matrix of this quasiseparable Hessenberg
matrix.
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Fig. 1. Elapsed time comparison, in Log scale, for the three algorithms in the computation of the inverse of a quasiseparable Hessenberg matrix.

Table 1
Values of norm(H−1H− I) for the three algorithms in the computation
of the inverse of a quasiseparable Hessenberg matrix.

Order Elouafi–Hadj Chen–Yu Expanded Ikebe

15 1.75e−13 1.67e−13 1.68e−14
35 7.37e−10 1.54e−10 5.34e−14
55 2.45e−06 1.31e−06 8.65e−14
75 1.36e−02 5.58e−03 2.57e−13
95 4.78e+01 2.62e+01 1.49e−13

115 1.02e+05 6.15e+04 2.57e−13
135 3.09e+08 2.29e+08 7.21e−13
155 2.55e+12 1.02e+12 2.03e−12

3.2. Random Hessenberg matrices

For a comparison using more general unreduced Hessenberg matrices, we consider the associated upper Hessenberg
form of nonsingular squared matrices, with random entries uniformly distributed in (−5; 5). Fig. 2 provides a graphical
comparison of the mean elapsed times, after 30 trials, required for the inversions of such Hessenberg matrices. In each trial
the matrix order runs from 55 to 1005, in steps of 50 units. The numerical outcomes given by the algorithms from [5,6] are
now more accurate.

4. Conclusions

An extension of the Ikebe algorithm for the computation and factorization of the inverses of Hessenberg matrices has
been proposed. It allows us to provide in Theorem 1 a new characterization of this important class of matrices. An advantage
of this procedure, with respect to the usual LU inversion methods, is that the introduction of a permutation matrix is not
necessary when the Hessenberg matrix contains a singular principal submatrix; see Examples 1 and 2. In addition, our
algorithm is faster when the Hessenberg matrix is quasiseparable.

Comparison of flop counts is frequently used to measure computational complexity. Nevertheless, as is remarked in [1],
flop counting is just a ‘‘quick and dirty’’ accountingmethod that captures only one of the several dimensions of the efficiency
issue. We must not infer too much from a comparison of flop counts, in particular for algorithms having the same orders
of complexity. Hence, for a more precise measure of the computational complexity, we have compared the times elapsed
using our algorithm with those elapsed using standard currently used algorithms described in [5,6]. The results show the
capabilities of the three algorithms for computing the inverse. The simpler Elouafi–Hadj algorithm, with an Ikebe first step,
gives results similar to those given by our algorithm for matrices of low and moderate orders. However, when the orders
are increased our proposed algorithm is faster. This algorithm also provides for the inverse matrix H−1 the two matrices
appearing in the factorization (1).

The inversion method from [5] can be improved with the introduction, in Algorithm 1 given in [5], of the simpler
procedure, from Section 2.3, for the inversion of the involved triangular matrix.

The computation of detH has been omitted for brevity, although it can be included in the proposed algorithm without
additional computational effort using Expression (6). Thus in the comparisons, the procedure for computing the determinant
given in Algorithm 2 from [5] has not been considered.
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Fig. 2. Comparison of the mean value for elapsed times, in Log scale, for the three algorithms in the computation of the inverse of upper (unreduced)
Hessenberg matrices.

Appendix A. An algorithm for computing and factoring H−1

function [invH, Ike, invU] = inverseH(H, order)
%%%Preallocating matrices and vectors
Ike=zeros(order); vecx=zeros(order,1); vecy=zeros(order,1);
E=eye(order); invU=zeros(order);
%%%Step1: Computing L_{H} with the expanded Ikebe algorithm
vecx(1)=1.000; %e.g. taking lambda=1
for i=2:order

for j=1:i-1
vecx(i)=vecx(i)+H(j,i-1).*vecx(j);

end
vecx(i)=-vecx(i)./H(i,i-1);

end
for i=1:order

vecy(order)=vecy(order)+H(i,order).*vecx(i);
end

vecy(order)=1./vecy(order);
for i=orden-1:-1:1

for j=i+1:order
vecy(i)=vecy(i)+H(i+1,j).*vecy(j);

end
vecy(i)=-vecy(i)./H(i+1,i);

end
for j=1:order-1

Ike(j,1:j)=vecy(j).*vecx(1:j);
Ike(j,j+1)=vecy(j).*vecx(j+1)+1./H(j+1,j);

end
Ike(order,1:order)=vecy(order).*vecx;

%%%Step 2: Computing invU using the vector scheme (9)
U=H*Ike; invU(:,1:2)=E(:,1:2); %from Equation (8)
for j=3:order
invU(:,j)=E(:,j)-invU(:,1:j-1)*U(1:j-1,j); %diagonal entries are ones
end
%%%Step 3: Computing invH, factorization (1)
invH=Ike*invU;
end



20 J. Abderramán Marrero et al. / Journal of Computational and Applied Mathematics 252 (2013) 12–20

Appendix B. The Elouafi–Hadj algorithm with an Ikebe first step

function [invH] = alg_elo_had_ike(H, order)
%%%Preallocating matrices
invH=zeros(order); E=eye(order);
%%% Step 1: Compute the last row using an Ikebe-like procedure
invH(order,1)=1.000;
for i=2:order

for j=1:i-1
invH(order,i)=invH(order,i)+H(j,i-1).*invH(order,j);

end
invH(order,i)=-invH(order,i)./H(i,i-1);

end
vec_y=0;
for i=1:order

vec_y=vec_y+H(i,order).*invH(order,i);
end

invH(order,:)=invH(order,:)./vec_y;
%%%%%Step 2: Computing the remaining rows with the Elouafi-Hadj procedure
for k=1:order-1

invH(order-k,:)=(E(order-k+1,:)-H(order-k+1,order-k+1:order)*...
invH(order-k+1:order,:))./H(order-k+1,order-k);

end
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