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a b s t r a c t

In this paper we give details on the numerical realization of a new finite element method
for the simulation of two-phase flows which was recently introduced in Basting and
Weismann (2013). Themain ingredient is a hybrid representation of the interface between
the fluid phases: An implicit description of the interface is given by a level set function and
an explicit representation is obtained from aligning edges of the computationalmesh to the
implicitly described interface. This step is done by a black-box optimization based mesh
smoothing approach which does not change the topology of the mesh while guaranteeing
optimal mesh quality. Furthermore, we make use of quadratic isoparametric elements to
increase the approximation quality of the discrete interface.

Due to the alignment, discontinuities of the solution variables (pressure) can be
captured accurately, while a variational treatment of the curvature allows for a precise
approximation of surface tension. We present our time discretization scheme for the
coupled Navier–Stokes/level set equations, and discuss our space discretization based on
the so called subspace projection method (SPM) to account for discontinuities across the
interface.

We present two numerical examples for which reference solutions exist. We consider
the oscillation of a single droplet and provide our results for an established two-phase flow
benchmark problem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

When it comes to numerical methods for flow problems with free interfaces, the representation of the interface is a key
issue. Consequently, over the years, many approaches have been proposed. Most of these approaches may be classified as
either interface capturing or interface tracking methods.

In interface capturing methods, the interface is represented implicitly by an additional function, for instance as a distance
function in the level set method [1,2] or by means of a volume fraction in VOF methods [3]. Commonly, these methods are
defined on structured meshes. Due to the implicit representation of the interface, these methods are especially powerful
when strong deformations of the interface occur. However, if interface forces such as surface tension play an essential role,
special care has to be taken with regard to its discretization. Furthermore, since the computational mesh is in general not
aligned with the interface, solution properties such as discontinuities of the pressure across the interface are difficult to
capture.

On the other hand, in interface tracking methods, the interface is discretized explicitly. This can be achieved by additional
markers which are transported by the flow field, or by a separate interface mesh. A special class of interface tracking
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methods is obtained from aligning the computational mesh with the discrete interface. Usually, in these aligned interface
methods, equations are formulated in arbitrary Lagrangian–Eulerian (ALE) coordinates [4] which allows for the movement
of the computational mesh with the interface. In this case, the aforementioned problems of surface tension evaluation and
representation of discontinuities of the pressure can be treated very easily: due to the alignment, a discrete representation of
the interface is always at hand in terms of edges of the computational mesh, and finite element spaces taking discontinuities
into account may be realized quite easily. However, the movement may lead to degeneration of the computational mesh.
Although techniques such as remeshing or special extension operators allow to deal with more complex situations (see
for instance [5,6] for numerical studies on different mesh moving strategies for problems with large deformations), these
methods are usually applied when deformations of the interface can be expected to be ‘‘mild’’.

A hybrid approach which aims at combining interface capturing and interface tracking methods to achieve enhanced
geometrical flexibility while retaining the benefits of alignedmeshmethodswas introduced in [7] and applied to particulate
flows in [8]. The main idea is to use a level set representation of the interface while aligning the computational mesh with
the zero level set in each time step. This is achieved in an automatic way by a black-box mesh optimization approach.
The interface is always approximated by certain edges of the mesh (which are not specified a priori as in ‘‘classical’’ aligned
interfacemethods). In this paper,we review this approach andgive details on the time and space discretization of themethod
presented in [7]: We discuss a splitting of the coupled Navier–Stokes/level set equations in time, time discretization of the
resulting subproblems and show how a finite element spacewhich is able to capture the discontinuity of the pressure across
the interface can be realized using a discrete projection (the subspace projection method), which was introduced in [9–11].

We present two numerical examples to demonstrate the benefits but also the limitations of our proposed approach.

2. Mathematical model

We consider the behavior of two immiscible, incompressible Newtonian fluids modeled by the incompressible Navier–
Stokes equations. More precisely, we assume to have one time independent domain Ω ⊂ R2 occupied by two time
dependent fluid domains Ω1(t),Ω2(t) which are separated by a sharp interface Γ (t), i.e. Ω̄ = Ω̄1(t) ∪ Ω̄2(t),Ω1(t) ∩

Ω2(t) = ∅ and Γ (t) = Ω̄1(t) ∩ Ω̄2(t) for time instants t ∈ [0, T ]. In each domain Ωi(t), we require the fluid to have
constant density ρi and viscosity µi.

The governing equations in the bulk read in dimensionless form

Λi (∂tu + (u · ∇)u)− ∇ · σ i = Λif
∇ · u = 0


inΩi(t), (1)

u = 0 on ∂Ω,
where u denotes velocity, p pressure, f denotes the vector of external forces and

Λi =
ρi

ρc
, Rei =

ρiUL
µi

, σ i =
1
Rei


∇u + (∇u)T


− pI

denote density ratio (with reference density ρc), Reynolds number and stress tensor for each domain. U denotes a charac-
teristic velocity and L a characteristic length scale.

If we denote the constant surface tension coefficient by σ and the curvature of Γ by κ , the capillary boundary condition
on Γ is given by

[[σ(u, p)]] =
1
We

κn on Γ (t) (2)

with Weber number We =
ρcU2L
σ

. The movement of the interface Γ is prescribed by the kinematic boundary condition

VΓ = u · n on Γ (t). (3)
In this paper, we make use of the arbitrary Lagrangian–Eulerian (ALE) formulation [4] of the mathematical model to

follow the movement of the fluid interface. To this end, we consider a fixed reference domain Ω̂ ⊂ R2 whose boundary
coincides with the boundary ofΩ , i.e. ∂Ω̂ = ∂Ω(t) ∀t . We assume to have a smooth mapping

ξ : [0, T ] × Ω̂ → R2,

ξ(t, Ω̂) = Ω(t) for all t ∈ [0, T ].

For each time instant t ∈ [0, T ], we assume ξ to be a homeomorphism. The velocity of the domainw is defined as

w(t, ·) : Ω(t) → R2,

w(t, ·) = ∂tξ(t, ξ(t, ·)−1).
(4)

For any sufficiently smooth function F : [0, T ] × R2
→ R we may define the ALE time derivative of F as

∂̂tF(t, x) := ∂tF(t, ξ(t, x̂)) = ∂tF(t, x)+ w(t, x) · ∇F(t, x) (5)

for x = ξ(t, x̂), x̂ ∈ Ω̂ .
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Replacing the time derivative in (1) with the ALE time derivative from relation (5), we arrive at the following system:

Λi


∂̂tu + ((u − w) · ∇)u


− ∇ · σ i = Λif

∇ · u = 0


inΩi(t) (6)

u = 0 on ∂Ω.

Remark 1. So far, we have notmade any requirements on the ALEmapping ξ. In classical ALEmodels, themapping is usually
chosen in such a way that a certain reference interface Γ̂ ⊂ Ω̂ (in a discrete sense, for instance, given by fixed edges of the
triangulation of the reference domain Ω̂) matches the time dependent interface Γ , i.e.

ξ(t, Γ̂ ) = Γ (t) for all t ∈ [0, T ].

In the proposed approach, we do not prescribe such a fixed reference configuration but construct amappingwhichmay lead
to different parametrizations of Γ (t) in time.

In order to track the interface Γ over time, we assume that both phasesΩi and the interface Γ may be written in terms of
a continuous level set function φ : [0, T ] ×Ω → R:

Ω1/2(t) = {x ∈ Ω : φ(t, x) ≷ 0} ,
Γ (t) = {x ∈ Ω : φ(t, x) = 0} .

(7)

The evolution of the interface Γ is then given by the transport equation for the level set function φ,

∂̂tφ + ((u − w) · ∇) φ = 0 for all x ∈ Ω, t ∈ [0, T ] (8)

and appropriate initial conditions such that Γ (0) = {x ∈ Ω : φ(0, x) = 0}.

3. Geometry representation: level set aligned, optimal triangulations

In this section, we briefly revisit the main building block of our hybrid approach, a detailed description was already
presented in [7,12]. The method is based on two ingredients:

• A variational mesh optimization technique which produces triangulations of ‘‘optimal’’ quality by modifying nodal
coordinates and

• an additional constraint on the mesh optimization problem to enforce the alignment of Γ and edges of the resulting
triangulation.

In the following subsections, we proceed with a brief outline of our mesh alignment method.

3.1. Optimal triangulations

Our approach to obtaining level set aligned, optimal triangulations is based on a variationalmesh optimization technique
for simplicial triangulations which was introduced and analyzed by M. Rumpf [13]. Given an initial triangulation T of the
domainΩ , the idea is to find an ‘‘optimal’’ triangulation T ∗

= ϕ∗(T ) resulting from an optimal mesh deformation ϕ∗
∈ D.

These deformations are assumed to be piecewise affine, orientation preserving and globally continuous i.e.

D =

ϕ ∈ C0(Ω) : ∇ϕ|T ∈ GL(2), det(∇ϕ|T ) > 0 ∀T ∈ T


,

where GL(n) = {A ∈ Rn×n
: det(A) ≠ 0} denotes the general linear group over Rn. An optimal deformation ϕ∗

∈ D can be
found as the minimizer of certain functionals F :

F (ϕ∗) = min
ϕ∈D

F (ϕ). (9)

We assume that the functionals in (9) can be represented by a sum of weighted, element-wise contributions,

F (ϕ) =


T∈T

µT FT (ϕ) (10)

whereµT > 0,


T µT = 1 denotes a positiveweight and FT the contribution of the deformation ϕ restricted to T . Assuming
translational invariance, isotropy and frame indifference of the functionals it can be shown (see [13]) that the local contri-
bution FT may be expressed in terms of the invariants of the linear reference mapping RT : h(T )T ∗

→ T , where T ∗ denotes
the normalized equilateral simplex and h(T ) denotes the desired edge length for T . In two dimensions, FT takes the form

FT = F(∥∇RT (ϕ)∥
2, det(∇RT (ϕ))) =: F(a, d). (11)



474 S. Basting, M. Weismann / Journal of Computational and Applied Mathematics 270 (2014) 471–483

Fig. 1. A triangulation not aligned to Γ (left) and aligned triangulation (right).

The optimally deformed simplex h(T )T ∗ is obtained if ϕ∗

|T = Id, i.e. if

FT (ϕ∗) = min
ϕ

FT (ϕ) = FT (Id) = F(∥Id∥2, det(Id)) = F(2, 1).

In order to rule out deformations with vanishing determinant, we also assume that limdet(∇RT (ϕ))→0 FT (ϕ) = ∞. A typical
example of the local function FT is given by

F(a, d) = (a − 2)2 + d +
1
d
. (12)

Note that the quantity a = ∥∇RT (ϕ)∥
2 measures the change of edge lengths with respect to the reference element and

d = det(∇RT (ϕ))measures the change in volume. Let us close this section by briefly summarizing the properties and ben-
efits of the variational mesh smoothing approach (see also [13,7,12]):

• Minimizing (10) yields triangulations T ∗ which are optimal in the sense of the local measure (12).
• These triangulations can be shown to be non-degenerate (no self-intersection of elements occurs).
• The element-wise representation of F provides built-in, local mesh quality control.
• r-adaptivity can be easily achieved by prescribing desired edge lengths for each mesh element.
• The functional F is highly non-linear, non-convex and global minimizers may be non-unique.

3.2. Level set alignment

We are now interested in adjusting the position of the nodes in such a way that edges of the triangulation approximate
the interface Γ . This can be achieved by explicitly shifting certain nodes onto Γ (see for instance [14] for such an approach).
However, in our approach we would like to circumvent the combinatorial work required for such a method. To this end, we
make a key observation regarding the alignment of edges of the triangulation with the interface Γ : Consider the situation
depicted in Fig. 1 and let e be an arbitrary edge of the triangulation T . By xe,1 and xe,2 we denote the nodes adjacent to edge
e. Due to continuity of φ and assumption (7), we conclude that

φ(xe,1)φ(xe,2) < 0 (13)

if and only if e is intersected byΓ (provided that themesh size h is sufficiently small to resolve the shape ofΓ ). We therefore
define the triangulation to be linearly aligned with Γ if

φ(xe,1)φ(xe,2) ≥ 0 for all e ∈ T . (14)

If we employ the mesh optimization procedure introduced in the last section, we may rule out non aligned triangulations
by introducing the single scalar constraint

c : D → R+

0 ,

c(ϕ) =


e∈ϕ(T )

H(φ(xe,1)φ(xe,2)) where

H(z) :=


> 0 if z < 0,
= 0 otherwise.

Restricting the set of admissible deformations to deformations forwhich c(ϕ) = 0, a linearly aligned triangulation of optimal
quality is obtained from the constrained optimization problem

min
ϕ∈D

F (ϕ) such that c(ϕ) = 0. (15)

Details on the numerical realization of this problem can be found in [7,12].
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A linearly aligned triangulation is sketched in Fig. 1. Given such an aligned triangulation, we may define a linear approx-
imation to the interface Γ as

Γh(T ) :=

e ∈ T : φ(xe,i) = 0 for i = 1, 2


. (16)

In order to increase the approximation quality of Γh, we also consider piecewise quadratic approximations to Γ . To
this end, we first construct a piecewise linear representation Γh as described above. If we introduce the reference simplex
K̂ = {x̂ ∈ R2

:
2

i=1 x̂
(i)

≤ 1, x̂(i) ≥ 0} and the quadratic isoparametric mapping GK : K̂ → K by

GK (x̂) =

6
i=1

xiϕi(x̂),

where ϕi, i = 1, . . . , 6 denote the quadratic Lagrange basis functions, each edge e ∈ Γh may be expressed as

e = GK (ê) =


2

i=1

xe,iϕi(x̂)+ xmϕ3(x̂) for x̂ ∈ ê := [0, 1] × {0}


.

The quadratic node xm is then shifted onto the zero level set of φ, resulting in a quadratic approximation to Γ . Details on
the numerical realization together with an evaluation of mesh and approximation quality and computational costs can be
found in [7,8,12].

4. Time and space discretization

In this section, we present our numerical method to solving Eqs. (6) and (8). The numerical treatment of this system
is very challenging due to the strong coupling and appearance of strong nonlinearities (in the Navier–Stokes equations,
curvature of the interface and especially due to the time dependency of the ALE parametrization ξ).

4.1. Decoupling of the problems

For an efficient solution strategy, we first decouple the problem into a series of ‘‘simpler’’ subproblems. To this end, we
discretize the time interval [0, T ]with time instants tk = τk for a fixed time step size τ > 0 andwriteΩk

:= Ω(tk),uk(·) :=

u(tk, ·), pk(·) := p(tk, ·). The solution strategy is based on the following time stepping procedure:
For each time instant tk,

1. Solve for the flow variables uk+1, pk+1 onΩk.
2. Using uk+1 solve the transport equation for φk+1 onΩk.
3. Obtain new partitioning ofΩ intoΩk+1

i and corresponding discrete interface Γ k+1
h by the mesh optimization procedure

from Section 3. Update the mesh velocity according towk+1
= (xk+1

− xk)/τ .

In what follows, we will discuss the first two steps of the time stepping procedure in detail.

4.2. Weak formulation

We proceed by deriving a weak formulation and discretizing in time (Rothe’s method) the problems arising in the first
two steps of the time-stepping procedure. To this end, we introduce the function spaces

X0 =

H1

0 (Ω)
2
, Wu =


φ ∈ L2(Ω) : u · ∇φ ∈ L2(Ω)


and Y = L2(Ω).

Multiplying (6), (8) by suitable test functions v ∈ X0, q ∈ Y and v ∈ Y and integrating overΩi(t)we obtain:
For i = 1, 2 and almost all t ∈ [0, T ] find u(t, ·) ∈ X0, p(t, ·) ∈ Y and φ(t, ·) ∈ Wu−w such that

Ωi(t)
Λi∂̂tu +Λi((u − w) · ∇)u · v −

1
Rei
1u · v + ∇p · v =


Ωi(t)

Λif · v,
Ωi(t)

∇ · uq = 0,
Ω

∂̂tφv + (u − w) · ∇φv = 0.

(17)

The capillary boundary condition (2) can be integrated in theweak form by integrating by parts−

Ω
(∇ · σ i)·vwhich yields

−


Ω

(∇ · σ i) · v =

2
i=1

1
2Rei


Ωi(t)

D(u) : D(v)−


Ω

p∇ · v −
1
We


Γ (t)

κn · v.
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The last term in the previous equation can then be treated using the Laplace–Beltrami characterization of the curvature
proposed by Dziuk in [15],

−


Γ (t)

κn · v = −


Γ (t)
(∆x) · v =


Γ (t)

∇x : ∇v,

where∆ denotes the Laplace–Beltrami operator and ∇ denotes the tangential gradient ∇ = (Id − nnT )∇ .
We now introduce the following linear forms onΩ and Γ :

m(Ω;u, v) =

2
i=1


Ωi

Λiu · v, (18a)

a(Ω;u, v) =

2
i=1


Ωi

1
2Rei

D(u) : D(v), (18b)

c(Ω;u; v,w) =

2
i=1


Ωi

Λi (u · ∇) v · w, (18c)

b(Ω; p, v) = −


Ω

p∇ · v, (18d)

f (Ω; v) =

2
i=1


Ωi

Λif · v, (18e)

e(Γ ; v) =
1
We


Γ

∇x : ∇v. (18f)

Using these linear forms (17) can be written as
For almost all t ∈ [0, T ] find u(t, ·) ∈ X0, p(t, ·) ∈ Y and φ(t, ·) ∈ Wu−w such that

m(Ω(t); ∂̂tu, v)+ c(Ω(t);u − w;u, v)+ a(Ω(t);u, v)+ b(Ω(t); p, v) = f (Ω(t); v)− e(Γ (t); v) ∀v ∈ X0, (19a)
b(Ω(t); q,u) = 0 ∀q ∈ Y , (19b)

(∂̂tφ, v)+ ((u − w) · ∇φ, v) = 0 ∀v ∈ L2(Ω) (19c)

with initial data

u(0, ·) = u0(·) and φ(0, ·) = φ0(·) inΩ.

4.3. Time discretization

We first comment on the time discretization of theNavier–Stokes equations (19a) and (19b). A critical part is the handling
of the curvature term e(Γ ; v). An explicit treatment of this term will lead to a CFL condition of τ ≤ C

√
We h3/2 [16] and

in order to avoid the computational effort which comes with a fully implicit scheme, we use a semi-implicit treatment: the
integration domain is associated with the current time instant tk while the evaluation of the curvature is associated with
the next time step tk+1. To this end, we consider a discrete version of the kinematic boundary condition (3):

xk+1
= xk + τuk+1

and define the bilinear form

d(Γ ;u, v) =


Γ

∇u : ∇v. (20)

Using the semi-implicit discretization of the curvature term e(Γ ; ·),

e(Γ k+1
; v) ≈ e(Γ k

; v)+ τd(Γ k
;uk+1, v),

unconditional stability for the resulting discretization was proved in [17].
For the discretization of the Navier–Stokes equations, we use the fractional step theta-scheme in an operator splitting

variant proposed in [18]. We also refer to [19,20] for further information on time discretization in the ALE frame. Using the
bilinear forms (19) and the semi-implicit treatment of the curvature term in (21), the modified fractional step theta-scheme
reads (see also [21] for a single-phase version with free capillary boundary):

Let (Θ,Θ ′, α, β) = (1 −
1
2

√
2, 1

2

√
2, 2 −

√
2,

√
2 − 1)
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Quasi-Stokes substep (QS1): Find

uk+Θ , pk+Θ


∈ X0 × Y such that

m

Ωk

;
uk+Θ

− uk

Θτ
, v


+ αa(Ωk
;uk+Θ , v)+ τd(Ωk

;uk+Θ , v)+ b(Ωk
; pk+Θ , v)

= f (Ωk
; v)− c(Ωk

;uk
− wk

;uk, v)− βa(Ωk
;uk, v)− e(Γ k

; v), (21a)

b(Ωk
; q,uk+Θ) = 0 (21b)

for all (v, q) ∈ (X0, Y ).
Nonlinear substep (NL): Find uk+Θ ′

∈ X0 such that

m


Ωk

;
uk+Θ ′

− uk+Θ

(1 − 2Θ)τ
, v


+ βa(Ωk

;uk+Θ ′

, v)+ c(Ωk
;uk+Θ ′

− wk
;uk+Θ ′

, v)+ τd(Ωk
;uk+Θ ′

, v)

= f (Ωk
; v)− αa(Ωk

;uk+Θ , v)− b(Ωk
; pk+Θ , v)− e(Γ k

; v) (22)

for all v ∈ X0.
Quasi-Stokes substep (QS2): Find


uk+1, pk+1


∈ X0 × Y such that

m


Ωk

;
uk+1

− uk+Θ ′

Θτ
, v


+ αa(Ωk

;uk+1, v)+ τd(Ωk
;uk+1, v)+ b(Ωk

; pk+1, v)

= f (Ωk
; v)− c(Ωk

;uk+Θ ′

− wk
;uk+Θ ′

, v)− βa(Ωk
;uk+Θ ′

, v)− e(Γ k
; v), (23a)

b(Ωk
; q,uk+1) = 0 (23b)

for all (v, q) ∈ (X0, Y ).
Note that the fractional step theta-scheme decouples twomain difficulties of the Navier–Stokes equations: The nonlinear

term in the momentum balance is treated in the second substep (NL)while the incompressibility condition is treated in the
first and last substeps (QS1) and (QS2). Substeps (QS1) and (QS2) can be expressed formally using a bilinear form

s : (X0 × Y )× (X0 × Y ) → R

and linear form

g : X0 × Y → R.

Using these forms, the generic discretized problem reads: Find (u, p) ∈ X0 × Y such that

s ((u, p), (v, q)) = g(v, q) for all (v, q) ∈ X0 × Y . (24)

We proceed with commenting on space discretization and postpone the treatment of the level set equation (19c) until
Section 4.5.

4.4. Space discretization

In order to derive a stable discretization for Eqs. (21), (23)we employ the LBB-stable quadratic Taylor–Hood finite element
defined on isoparametric elements. However, in view of the capillary boundary condition (2), the pressure space should be
able to capture discontinuities across the interface Γ . This aspect, together with an accurate treatment of the curvature, is
essential to avoid instabilities which may arise due to spurious velocities (see for instance [22–24]). In order to deal with
the discontinuity of the pressure, for each time instant tk we first introduce the decoupled Taylor–Hood spaces

X̃k
h =


vh ∈ H1(Ωk

h) : vh|K ◦ G2
K ∈ P2(K̂), vh|Ωk

h,i
∈ C0(Ωk

h,i)

,

X̃k
h,0 =


vh ∈ Xk

h : vh|∂Ω
= 0


,

X̃k
h = X̃k

h × X̃k
h , X̃k

h,0 = X̃k
h,0 × X̃k

h,0 and

Ỹ k
h =


qh ∈ L2(Ωk

h) : qh|K ◦ G2
K ∈ P1(K̂), qh|Ωk

h,i
∈ C0(Ωk

h,i)


and their continuous counterparts

Xk
h = X̃k

h ∩ C0(Ωk
h), Xk

h,0 = X̃k
h,0 ∩ C0(Ωk

h),

Xk
h = Xk

h × Xk
h , Xk

h,0 = Xk
h,0 × Xk

h,0 and

Y k
h = Ỹ k

h ∩ C0(Ωk
h)
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definedon thediscretizeddomainΩk
h . The appropriate finite element pair for theunknowns (uk+1, pk+1) is givenbyXk

h,0×Ỹ k
h ,

i.e. globally continuous piecewise quadratic functions (on the reference element) for the velocity and piecewise linear
functions (on the reference element) which are continuous in every subdomainΩk

h,i, but may be discontinuous across Γ k
h .

From an implementation point of view, it may be advantageous to work with the more general spaces X̃k
h, X̃

k
h and Ỹ k

h and
use an additional projection step to enforce continuity for the velocity uk+1 on Γ k

h . This strategy, denoted by SPM (Subspace
Projection Method), was described in detail in [11] with respect to two-phase flows and in [10] with respect to particulate
flows. Here, we only give a brief outline and consider again the generic discretized problem (24). Note that Xk

h,0 is a vector
subspace of the space X̃k

h. Therefore, we may define a projection

P : X̃k
h → Xk

h,0. (25)

In the discrete setting, the generic problem (24) reads: Find (uh, p̃h) ∈ Xk
h,0 × Ỹ k

h such that

s

(uh, p̃h), (vh, q̃h)


= g(vh, q̃h) for all (vh, q̃h) ∈ Xk

h,0 × Ỹ k
h . (26)

Equivalently, one may rewrite problem (26) using the projection operator (25) as: Find (ũh, p̃h) ∈ X̃k
h × Ỹ k

h such that

s

(P ũh, p̃h), (P ṽh, q̃h)


= g(P ṽh, q̃h) for all (ṽh, q̃h) ∈ X̃k

h × Ỹ k
h (27)

and set uh = P ũh.
If we denote by ϕi the basis functions of X̃h and by ψi the basis functions of Ỹh, elements ũh ∈ X̃k

h and p̃h ∈ Ỹ k
h can be

represented uniquely by the nodal vectors ũ ∈ R2N and p̃ ∈ RM , i.e.

ũh(x) =

2N
i=1

ũiϕi(x) and p̃h(x) =

M
i=1

p̃
i
ψi(x).

If we denote by P̂ the discrete version of the projection P acting on the nodal vector ũi,

P

ũ
p̃


=


P̂ũ
p̃


and PT


ũ
p̃


=


P̂T ũ
p̃


defines the combined projection P and its adjoint mapping PT . Let us denote by S the system matrix arising from the
discretization of s : (X̃k

h × Ỹ k
h ) × (X̃k

h × Ỹ k
h ) and by G the corresponding discretized right hand side. The resulting linear

system for problem (27) then reads:
Find [ũ, p̃]T ∈ R2N+M such that

PT SP

ũ
p̃


= PTG (28)

and set u = P̂ũ.
In a numerical realization, the system matrix PT SP does not have to be assembled explicitly. Instead, if iterative solvers

are used to solve the systems, simple routines can perform the action of the discrete operators P and PT on vectors, see [11]
for more details.

Let us introduce the following matrices arising from the discretization of the forms (18):

Mk
i,j = m(Ωk

h; ϕj,ϕi), Ak
i,j = a(Ωk

h; ϕj,ϕi),

Ck(v)i,j = c(Ωk
h; v; ϕj,ϕi), Dk

i,j = d(Ωk
h; ϕj,ϕi) and

Bk
j,l = b(Ωk

h;ψl,ϕi)

(29)

and

f k
i
= f (Ωk

h; ϕi), eki = e(Γ k
h ; ϕi). (30)

Applying the subspace projectionmethod (28) to the time discrete problems (21) and (22) yields the following fully discrete
scheme (we omit the third substep (23) which reads as the first one with obvious modifications):

(dQS1): Find uk+Θ , p̃k+Θ ∈ R2N
× RM such that

P̂TVQ1P̂ũk+Θ
+Θτ P̂TBkp̃k+Θ = P̂T f

Q1
,

(Bk)T P̂ũk+Θ
= 0

(31)

with f
Q1

= Mkuk
+Θτ


−βAkuk

− Ck(uk
− wk)uk

+ f k+Θ − ek

,

VQ1 = Mk
+Θτ


αAk

+ τDk and

uk+Θ
= P̂ũk+Θ

.
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(dNL): Find uk+Θ ′

∈ R2N such that

P̂TVN(uk+Θ ′

)P̂ũk+1
= P̂T f

N
(32)

with f
N

= Mkuk+Θ
+ (1 − 2Θ)τ


−αAkuk+Θ ′

+ f k+Θ
′

− ek − Bkp̃k+Θ

,

VN = Mk
+ (1 − 2Θ)τ


βAk

+ Ck(uk+Θ ′

− wk)+ τDk


and

uk+Θ ′

= P̂ũk+Θ ′

.

4.5. Discretization of the level set equation

For the level set Eq. (8), we employ streamline diffusion stabilized P2 finite elements for space discretization and an
implicit Euler time discretization. Since in our code the discontinuous space X̃k

h is implemented, we again use the subspace

projectionmethod to enforce continuity of φ across Γ . Consider the nodal vector φ̃
k+1

∈ RN representing the discontinuous
function φ̃k+1

h ∈ X̃k
h by

φ̃k+1
h (x) =

N
i=1

φ̃
k+1

i
ϕi(x),

where ϕi are the N basis functions of X̃k
h . The stabilized mass matrix M(v) ∈ RN×N and the stabilized convection matrix

K(v) ∈ RN×N are defined by

Mi,j(v) =


Ωk

h

ϕj(ϕi + δv · ∇ϕi) and

Ki,j(v) =


Ωk

h

v · ∇ϕj(ϕi + δv · ∇ϕi) ∀i, j ∈ {1, . . . ,N},

where δ ≥ 0 denotes the streamline diffusion parameter. The linear system of equations for the (discontinuous) level set FE
vector φ̃

k+1
∈ Rk+1 then reads:

P̂T M(uk+1
− wk)+ τK(uk+1

− wk)

P̂φ̃

k+1
= P̂TM(uk+1

− wk)φk. (33)
The finite element vector representing the continuous level set function is again obtained by

φk+1
= P̂φ̃

k+1
.

During the time stepping procedure, the level set functionmight degenerate in such away that themesh optimizationwould
fail. This is mainly due to spurious oscillations which occur in the vicinity of Γ . In order to ‘‘repair’’ the level set function, we
periodically perform a redistancing step. Note that since in our method the interface is always known explicitly in terms of
Γh, no additional explicit reconstruction of the interface has to be performed. Consequently, efficient redistancing algorithms
exploiting this fact can be designed, see for instance [7].

5. Numerical results

In [7], we have already reported on numerical results of our method applied to a stationary problem and a two-phase
flow benchmark problem. In this section, we present two additional examples which demonstrate the benefits but also
limitations of our method. At this point we would also like to recall that due to our aligned mesh strategy which accurately
allows us to capture pressure jumps at the interface and the variational treatment of the curvature, spurious velocities close
to the interface are almost absent. This also makes frequent redistancing for the level set function unnecessary.

5.1. Oscillating droplet

In this first example, we consider the behavior of an oscillating droplet which is a well-studied problem. In particular,
analytical results concerning the droplet’s shape, amplitude and frequency of oscillation exist [25]. Results of our method
were already reported in [12] and we only give a brief summary.

Consider a spherical droplet of radius r0 in its unperturbed state. Let ε > 0 denote the amplitude and n > 0 the mode of
oscillation. The surface of the drop in polar coordinates is given by

(r, θ) = (r0 + ε cos(nθ), θ) for θ ∈ [0, 2π). (34)
For the oscillation frequency ω̃n of the drop

ω̃2
n =

n3
− n
r̃30

σ

ρ1 + ρ2
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Fig. 2. Oscillating bubble: Initial configuration (left), velocity profile (middle) and pressure profile (right) at t = 0.01.

Table 1
Estimated frequency, damping parameter and volume of the
discrete droplet at the final time instant.

Quantity l = 4 l = 5 l = 6 Exact

ω2 50.24 49.86 49.74 50.4420
γ 1.94 1.89 1.84 –
V (tNk ) 0.3804 0.3828 0.3837 0.3848

holds, where ρi is the density of the fluid in subdomainΩi and σ denotes the surface tension coefficient in (2). The physical
parameters for the simulation are chosen as:

ρ1 = 0.1
kg

(dm)3
, ρ2 = 1

kg
(dm)3

, σ = 50 · 10−3 N
m
,

µ1 = 0.1 · 10−3 Pa s, µ2 = 0.4 · 10−3 Pa s, r̃0 = 0.35 · 10−3 m.

The characteristic quantities are L = 10−3 m,U = 50·10−3 m
s and ρc = 0.5(ρ1+ρ2) such thatwe end upwith the following

dimensionless quantities,

Λ1 =
2
11
, Λ2 =

20
11
, Re1 = 275, Re2 = 68.75, We = 0.0275,

a frequency ω2 = 50.4420 and a periodic time Tp =
2π
ω2

= 0.124563 for the second mode.
In our computations, we consider a domain Ω = (−1, 1)2 and time interval I = [0, 2]. The initial shape of the droplet

is given by (34) with ε = 0.1, and we prescribe homogeneous Dirichlet boundary conditions at the walls, see Fig. 2. We
discretize Ω using uniform triangulations of edge length hl = 23/2

· 2−l for l = 4, 5, 6 and use a fixed time step size of
τ = 2 · 10−3. During the simulation, we track the height h̄(t) of the droplet over time and consider its deflection d from the
unperturbed radius r0: d(t) = 0.5h̄(t)− r0. d(t) is a damped oscillation and can be described by a function

df (t) = df (t; a0, p0, γ , ω) = a0 exp(−γ t) cos(tω + p0), (35)

where a0 is the initial amplitude, p0 the phase, γ denotes the damping parameter and ω denotes the frequency. For each
refinement level l, we perform a least square fit, i.e. we minimize

Nk
k=1

∥df (tk)− d(tk)∥2

to obtain the parameters.We also compute the volumeof the discrete droplet at the final time instant and denote it byV (tNk).
Results are shown in Table 1. Concerning the frequency, we see good accordance with the theoretical estimate (50.442) on
all refinement levels. We also observe that although no volume correction or redistancing step for the level set function was
performed, the relative error of V (tNk) after 1000 time steps is less than 1.2% on the coarsest level (l = 4) and less than 0.5%
on the finest level (l = 6).

5.2. Two-phase flow benchmark problem

Results of our method applied to the well-known two-phase flow benchmark problem by Hysing et al. [26] were already
reported in [7] for the ‘‘mild’’ parameter set. In this paper we also present results for the ‘‘challenging’’ parameter set.

The initial geometry of the benchmark problem is sketched in Fig. 3 and we refer the reader to [26] for a more detailed
description of the setting. The physical parameters in this benchmark lead to the following two sets of dimensionless
numbers (Table 2): The quantities of interest in this benchmark problem are

1. Volume Ṽ (t) =

Ω2(t)

1dx.
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Table 2
Dimensionless parameters for the ‘‘mild’’ and ‘‘challenging’’
parameters of the two-phase flow benchmark problem.

Case Λ1 Λ2 Re1 Re2 We

‘‘Mild’’ 10 1 3.5 35 1
‘‘Challenging’’ 10 0.01 3.5 350 12.5

Fig. 3. Rising bubble benchmark: Initial configuration (left), bubble shape at t = 1.86 for the ‘‘mild’’ parameter set (middle) and the ‘‘challenging’’
parameter set (right).

Fig. 4. Triangulation of the domain shortly before simulation breakdown.

2. Circularity ̸c(t) =
perimeter of area-equivalent circle

perimeter of bubble , measuring the deviation of the droplets’ shape from a circle.

3. Average rise velocity U(t) =


Ω2(t)

u(1)dx
V (t) .

As in the previous problem, we discretizeΩ using uniform triangulations corresponding to refinement levels l = 5, 6. This
corresponds to a mesh consisting of 4096 elements (l = 5) and 16384 (l = 6) elements, respectively. We choose a constant
time step size τ = 5 · 10−3. In Fig. 3, we depict the shape of the bubble at time instant t = 1.86 for the ‘‘mild’’ and the
‘‘challenging’’ parameter set. While for the ‘‘mild’’ case we were able to conduct the full benchmark problem until the final
time instant t = 3, the simulation breaks down in the ‘‘challenging’’ case due to the complexity of the geometry. Since we
use uniform meshes without h-adaptivity, the mesh optimization breaks down once the simulation approaches the point
when the interface shape becomes too complex (at approximately t = 1.5 on l = 5 and t = 1.86 on l = 6) to be resolved
by the mesh. The triangulation for l = 6 shortly before the breakdown is depicted in Fig. 4.
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(a) Circularity. (b) Rise velocity.

(c) Relative volume error. (d) Circularity.

(e) Rise velocity. (f) Relative volume error.

Fig. 5. Time evolution of the benchmark quantities. (a)–(c): ‘‘Mild’’ parameter set, (d)–(f): ‘‘challenging’’ parameter set. Results on refinement level l = 5
are represented by blue lines, on l = 6 by red lines. Black circles correspond to reference values. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

In Fig. 5, we depict the results of our approach for both the ‘‘mild’’ and the ‘‘challenging’’ case up to the end of the
simulation (or breakdown in the ‘‘challenging’’ setting). We also add the reference solution obtained by the flow solver
TP2D [27].

Note that in both cases, we obtain good agreement for all considered quantities despite the relative coarse space
discretization. We also note that although we do not use any volume correction for the level set function, the relative error
in volume is less than 0.25% in all simulations.

6. Conclusion

We presented details on the numerical realization of a new finite elementmethod for two-phase flow simulations which
was recently introduced in [7]. The main ingredient is a hybrid representation of the interface between the fluid phases
which is provided implicitly by a level set function and explicitly by an alignedmesh obtained using a black-box optimization
approach.

Space discretization is based on quadratic Taylor–Hood finite elements for the Navier–Stokes equations and quadratic
finite elements for the level set equation defined on isoparametric elements. The mesh alignment allows us to accurately
treat discontinuities of the solution (pressure) across the interface and, togetherwith a variational approach for the curvature
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of the interface, surface tension can be approximated very precisely. The discontinuity of the finite element space for the
pressure is realized using a subspace projection method (SPM).

Our time discretization is based on an explicit decoupling of the Navier–Stokes and level set equations.While the Navier–
Stokes equations are treated using a fractional step theta-scheme, the level set equation is treated using an implicit Euler
scheme. Equations are formulated in arbitrary Lagrangian–Eulerian (ALE) coordinates whichmakes remeshing unnecessary.

We presented two numerical experiments for which reference solutions are available and evaluated the benefits but
also the limitations of the proposed method. These limitations are mainly due to us using uniform meshes without local
adaptivity. Combining the proposed approach with local adaptivity will be subject of further work.
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