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a b s t r a c t

An algorithmic approach for generating generalised Zernike polynomials by differential
operators and connection matrices is proposed. This is done by introducing a new order
of generalised Zernike polynomials such that it collects all the polynomials of the same
total degree in a column vector. The connection matrices between these column vectors
composed by the generalised Zernike polynomials and a family of polynomials generated
by a Rodrigues formula are given explicitly. This yields a Rodrigues type formula for the
generalised Zernike polynomials themselves with properly defined differential operators.
Another consequence of our approach is the fact that the generalised Zernike polynomi-
als obey a rather simple partial differential equation. We recall also how to define Her-
mite–Zernike polynomials.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we establish a recursive method for computing the generalised Zernike polynomials which are known to
be orthogonal on the unit disc of R2 with respect to the weight function

ρ(x, y; λ) = (1 − x2 − y2)λ, λ > −1. (1)

The use of Zernike polynomials [1] for describing the classical aberrations of an optical system is well known [2–4]. There
have been many other applications, such as to describe the statistical strength of aberrations produced by atmospheric
turbulence, atmospheric thermal blooming effects, optical testing, opthalmic optics, corneal topography, interferometer
measurements, ocular aberrometry, just to mention a few of them.

The main difficulties when dealing with Zernike polynomials come from the different ordering used in different sources
in the literature. The most common is the Noll ordering [5], but Wyant and Creath [6] and Malacara [7] suggest different
ones. In general, these orderings preserve the radial power increasing order (that is, the n index), but differ in the order of
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the m term (that is, the angular term). Other orderings motivated by the desire to match certain boundary conditions can
be found in [8,9].

In this paper we propose an algorithmic approach for generating recursively the real generalised Zernike polynomials
defined as a product of angular functions and radial polynomials

Zm,j(ϱ, θ; λ) =

R0
m(ϱ; λ), m = [j/2],

Rm−[j/2]
m (ϱ; λ) cos (θ (m − [j/2])) , m − [j/2] > 0, j + m2 odd,

Rm−[j/2]
m (ϱ; λ) sin (θ (m − [j/2])) , m − [j/2] > 0, j + m2 even,

(2)

for 0 ≤ j ≤ 2m, where 0 ≤ ϱ < 1, 0 ≤ θ < 2π , [x] denotes the integer part of x, and ordered in accordance with their total
degree. The radial part of Zm,j(ϱ, θ; λ) is

Rm
n (ϱ; λ) =

n−m
s=0

(−1)s(λ − m + n + 1)nϱ−m+2n−2s(λ + n + 1)−m+n−s

s!(n − s)!
2n−m
n−m


(−m + n − s)!

, (3)

where 0 ≤ m ≤ n, λ > −1 and (A)s = A(A + 1)(A + s − 1), (A)0 = 1, denotes the Pochhammer symbol. For λ = 0 they
coincide with Zernike polynomials [1]. Moreover, these generalised Zernike polynomials are the real and imaginary parts of
those in complex variables introduced in [10] and applied in quantum optics in [11]. Operational formulas and generating
functions for these complex generalised Zernike polynomials have been obtained in [12].

In order to build the desired algorithm, consider first the column vector of all generalised Zernike polynomials of a fixed
total degree s ordered as follows. For odd degree s = 2p + 1, the corresponding vectors of 2p + 2 polynomials are

Zλ
1 =


Z1,0(ϱ, θ; λ)
Z1,1(ϱ, θ; λ)


, Zλ

3 =

Z2,2(ϱ, θ; λ)
Z2,3(ϱ, θ; λ)
Z3,0(ϱ, θ; λ)
Z3,1(ϱ, θ; λ)

 ,

Zλ
2p+1 =



Zp+1,2p(ϱ, θ; λ)
Zp+1,2p+1(ϱ, θ; λ)
Zp+2,2p−2(ϱ, θ; λ)
Zp+2,2p−1(ϱ, θ; λ)

· · ·

Z2p+1,0(ϱ, θ; λ)
Z2p+1,1(ϱ, θ; λ)

 , p ≥ 2,

and for even degree s = 2p, the vectors of 2p + 1 generalised Zernike polynomials are

Zλ
2 =

Z1,2(ϱ, θ, λ)
Z2,1(ϱ, θ, λ)
Z2,0(ϱ, θ, λ)


, Zλ

2p =



Zp,2p(ϱ, θ; λ)
Zp+1,2p−2(ϱ, θ; λ)
Zp+1,2p−1(ϱ, θ; λ)
Zp+2,2p−4(ϱ, θ; λ)
Zp+2,2p−3(ϱ, θ; λ)

· · ·

Z2p,0(ϱ, θ; λ)
Z2p,1(ϱ, θ; λ)


, p ≥ 2.

We denote by (Zλ
s )i the ith polynomial in the column vector Zλ

s . Notice that Zλ
s contains the s + 1 generalised Zernike

polynomials of total degree s. Thus, we have for 1 ≤ k ≤ s + 1 and odd s,
Zλ
s


k =


Z(s+k)/2,s−k(ϱ, θ; λ), k = 1, 3, 5, . . . , s − 2, s,
Z(s+k−1)/2,s−k+2(ϱ, θ; λ), k = 2, 4, 6, . . . , s − 1, s + 1. (4)

Moreover, for even s ≥ 4


Zλ
s


k =

Zs/2,s−k+1(ϱ, θ; λ), k = 1,
Zs/2+[k/2],s−k+2(ϱ, θ; λ), k = 3, 5, . . . , s − 1, s + 1,
Zs/2+[k/2],s−k(ϱ, θ; λ), k = 2, 4, 6, . . . , s − 2, s.

(5)

Observe that generalised Zernike polynomials (2) can be written for odd s as

Zλ
1 = (λ + 1)


Re(Pλ

1,0(z, z
∗))

Im(Pλ
1,0(z, z

∗))


, Zλ

3 =
(λ + 1)3

3!


Im(Pλ

2,1(z, z
∗))

Re(Pλ
2,1(z, z

∗))

Re(Pλ
3,0(z, z

∗))

Im(Pλ
3,0(z, z

∗))

 , (6)
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and for s > 3,
Zλ
s


k =

(λ + 1)s
s!


σ[k/2]Re


Pλ

(s+1)/2+[(k−1)/2],(s−1)/2−[(k−1)/2](z, z
∗)


+ σ[k/2]+1 Im

Pλ

(s+1)/2+[(k−1)/2],(s−1)/2−[(k−1)/2](z, z
∗)


, (7)

where Re(z) and Im(z) denote the real and imaginary part of z,

σn =
1 + (−1)n

2
.

If follows from [10, Eq. (2.5)] that

Pλ
m,n(z, z

∗) =

min(m,n)
k=0

(−1)km!n!Γ (λ + 1)
k!(m − k)!(n − k)!Γ (k + λ + 1)

(1 − zz∗)k zm−k(z∗)n−k (8)

with z = x + iy, z∗
= x − iy. Moreover, for even s the generalised Zernike polynomials (2) can be written as


Zλ
s


1 =

(λ + 1)s
s!

Re

Pλ
s/2,s/2(z, z

∗)

, (9)

and for k > 1,


Zλ
s


k =

(λ + 1)s
s!


σ[(k+1)/2]Re


Pλ
s/2+[k/2],s/2−[k/2](z, z

∗)

+ σ[(k+3)/2]Im


Pλ
s/2+[k/2],s/2−[k/2](z, z

∗)


. (10)

The generalised Zernike polynomials form a complete orthogonal set on the unit disc D = {(x, y) ∈ R2
| x2 + y2 ≤ 1}

with respect to the inner product (see [10]),
D
(Zλ

n)(Z
λ
m)T (1 − x2 − y2)λdxdy = Λn,m δn,m, λ > −1,

where AT denotes the transpose of A, Λn,m is a (n + 1) × (m + 1) matrix which is zero for n ≠ m and a diagonal invertible
matrix for n = m, and δn,m denotes the Kronecker delta.

Our recursive approach is based on a relation between Zλ
s and the bivariate polynomials defined by the Rodrigues-type

formula [13]

Pn,m(x, y; λ) =
1

(1 − x2 − y2)λ
∂n+m

∂xn∂ym

(1 − x2 − y2)n+m+λ


. (11)

We shall use the following notation for the column vector of (n + 1) polynomials of total degree exactly n:

Pλ
n =


Pn,0(x, y; λ), Pn−1,1(x, y; λ), . . . , P0,n(x, y; λ)

T
, (12)

where the elements are arranged according to the lexicographical order [14,15].
The column vector Pλ

n contains one of the polynomial solutions of the following second order partial differential equation
of hypergeometric type [16]

(1 − x2)
∂2

∂x2
u(x, y) + (1 − y2)

∂2

∂y2
u(x, y) − 2xy

∂2

∂x∂y
u(x, y)

− (2λ + 3)

x

∂

∂x
+ y

∂

∂y


u(x, y) + n(n + 2λ + 2)u(x, y) = 0. (13)

As it was shown by Hermite [13], the polynomials Pλ
n , defined in (12), are orthogonal within subspaces (orthogonal to all

polynomials of no higher than n − 1 [17]) on the unit disc D with respect to the same weight function ρ(x, y; λ) defined in
(1), i.e.,

D
(Pλ

n) (Pλ
m)T (1 − x2 − y2)λdxdy = Hn,mδn,m, λ > −1,

where Hn,m is a (n + 1) × (m + 1) matrix which is zero for n ≠ m and a non-diagonal matrix for n = m.
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2. The algorithm and the main results

We shall present our algorithm and its outcome. Let I be the identity operator and define the operators

∆ =
∂2

∂x2
+

∂2

∂y2
, E =

∂

∂x
, F =

∂

∂y
, (14)

and do the following initialisation Y0,1 = I , Y1,1 = E , and Y1,2 = F .
For each n, compute recursively the following n+1 differential operatorsYn,k, 1 ≤ k ≤ n+1, by the following procedure

that we call the
Algorithm 1

for m ≥ 1 do
if n = 2m then Yn,1 = ∆ ◦ Yn−2,1,

for j = 1, 2, . . . ,m − 1 do

Yn,2j = ∆ ◦ Yn−2,2j+1, Yn,2j+1 = ∆ ◦ Yn−2,2j,

end
Yn,n = 2Ym,m ◦ Ym,m+1,

Yn,n+1 = (−1)m+1(Ym,m ◦ Ym,m − Ym,m+1 ◦ Ym,m+1).

else
for j = 0, . . . ,m − 1 do

Yn,2j+1 = ∆ ◦ Yn−2,2j+2, Yn,2j+2 = ∆ ◦ Yn−2,2j+1,

end
Yn,n = ∆m

◦ E − 2Y2[(m+2)/2]−1,2[(m+2)/2] ◦ Y2[(m+1)/2],2[(m+1)/2],

Yn,n+1 = (−1)m ∆m
◦ F

+ 2Y2[(m+2)/2]−1,2[(m+2)/2]−1 ◦ Y2[(m+1)/2],2[(m+1)/2].

end
end

Then our main result states that

Theorem 2.1. For each n and for 1 ≤ k ≤ n + 1,

Yn,k

(1 − x2 − y2)n+λ


= (−1)n 2n n! (1 − x2 − y2)λ (Zλ

n)k, (15)

where the differential operators Yn,k are computed by the proposed algorithm and Zλ
n denotes the column vector of generalised

Zernike polynomials defined in (6), (7), (9), and (10).

Proof. The result can be proved by induction.

Corollary 2.2. For each n, the generalised Zernike polynomials defined in (6), (7), (9), and (10) are generated by the Rodrigues-
type formula

(Zλ
n)k =

(−1)n

2n n!
(1 − x2 − y2)−λYn,k


(1 − x2 − y2)n+λ


, 1 ≤ k ≤ n + 1, (16)

where the differential operators Yn,k are computed by Algorithm 1.

It is worth emphasising that Algorithm 1 implies that Yn,k is a homogeneous linear differential operator of order n with
constant coefficients, so that it can be written as

Yn,k =

n+1
r=1

a(n)
k,r

∂n

∂xn+1−r∂yr−1
, 1 ≤ k ≤ n + 1. (17)
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Let An be the (n + 1) × (n + 1) matrix whose entries are the coefficients which appear in (17):

An =


a(n)
k,r


1≤k,r≤n+1

. (18)

Algorithm 1 implies that

Corollary 2.3. For each n, the connection matrices An linking the column vector polynomials Pλ
n defined in (12) and the column

vector of generalised Zernike polynomials Zλ
n defined in (6), (7), (9), and (10), that is, the matrices An that obey

Zλ
n =

(−1)n

2n n!
AnPλ

n, (19)

can be computed in a recursive way by Algorithm 1.

2.1. Results and discussion

From Algorithm 1, the first matrices An defined in (17) and (18) are given by

A1 =


1 0
0 1


, A2 =

1 0 1
0 2 0
1 0 −1


, A3 =

0 1 0 1
1 0 1 0
1 0 −3 0
0 3 0 −1

 ,

A4 =


1 0 2 0 1
1 0 0 0 −1
0 2 0 2 0
0 4 0 −4 0
1 0 −6 0 1

 , A5 =


1 0 2 0 1 0
0 1 0 2 0 1
0 3 0 2 0 −1
1 0 −2 0 −3 0
1 0 −10 0 5 0
0 5 0 −10 0 1

 ,

where, as we have already noticed, the coefficients a(n)
k,r do not depend on λ.

From the Rodrigues formulae (11) and (19) we obtain the following column vectors for the first generalised Zernike
polynomials in Cartesian coordinates following the order presented in Section 1:

Zλ
1 =


(Zλ

1)1

(Zλ
1)2


=


(λ + 1)x
(λ + 1)y


,

Zλ
2 =

(Zλ
2)1

(Zλ
2)2

(Zλ
2)3

 =


λ + 2

2


(λ + 2)(x2 + y2) − 1


(λ + 1)(λ + 2)xy

(λ + 1)(λ + 2)
2

(x2 − y2)

 ,

Zλ
3 =


(Zλ

3)1

(Zλ
3)2

(Zλ
3)3

(Zλ
3)4

 =



1
6
(λ + 2)(λ + 3)y


(λ + 3)(x2 + y2) − 2


1
6
(λ + 2)(λ + 3)x


(λ + 3)(x2 + y2) − 2


1
6
(λ + 1)(λ + 2)(λ + 3)x


x2 − 3y2


−

1
6
(λ + 1)(λ + 2)(λ + 3)y


y2 − 3x2




,

Zλ
4 =


(Zλ

4)1

(Zλ
4)2

(Zλ
4)3

(Zλ
4)4

(Zλ
4)5

 =



1
24

(λ + 3)2

(λ + 3)


x2 + y2

 
(λ + 4)


x2 + y2


− 4


+ 2


1
24

(λ + 2)3

(λ + 4)


x4 − y4


+ 3


y2 − x2


1
12

(λ + 2)3xy

(λ + 4)


x2 + y2


− 3


1
6
(λ + 1)4xy(x − y)(x + y)

1
24

(λ + 1)4

x4 − 6x2y2 + y4




,
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Zλ
5 =



(Zλ
5)1

(Zλ
5)2

(Zλ
5)3

(Zλ
5)4

(Zλ
5)5

(Zλ
5)6


=



1
120

(λ + 3)3x

(λ + 4)


x2 + y2

 
(λ + 5)


x2 + y2


− 6


+ 6


1

120
(λ + 3)3y


(λ + 4)


x2 + y2

 
(λ + 5)


x2 + y2


− 6


+ 6


−

1
120

(λ + 2)4y

y2 − 3x2

 
(λ + 5)


x2 + y2


− 4


1

120
(λ + 2)4x


x2 − 3y2

 
(λ + 5)


x2 + y2


− 4


1

120
(λ + 1)5x


x4 − 10x2y2 + 5y4


1

120
(λ + 1)5y


5x4 − 10x2y2 + y4




.

2.2. Hermite–Zernike polynomials

The idea to reorder the generalised Zernike polynomials as in Section 1 is rather natural from mathematical point of
view. It is clear from (2) that Zm,j(ϱ, θ; λ) are represented as radial polynomials Rk

m multiplied by sines and cosines. This
suggests extensions of the Zernike polynomials to any radially symmetric weight function. Herewe recall a basis of bivariate
polynomials orthogonal with respect to the radial normal distribution. Indeed, let

w(x, y) = exp(−x2 − y2).

We have introduced in [18] the polynomials

H∗

n,m,c(ϱ, θ) = ϱmL(m)
n (ϱ2) cos(mθ), H∗

n,m,s(ϱ, θ) = ϱmL(m)
n (ϱ2) sin(mθ), (20)

where L(α)
n (x) are the Laguerre polynomials [19, p. 98], orthogonalwith respect to theweight xα exp(−x) on [0, ∞). Since the

polynomials defined in (20) are natural analogues of the generalised Zernike polynomials Zm,j(ϱ, θ; λ), we call H∗
n,m,c and

H∗
n,m,s the Hermite–Zernike polynomials. The fact that they form an orthogonal basis with respect to the weight function

w(x, y) can be easily established by straightforward integration and a polar change of variables.
It is known that the Laguerre polynomials L(α)

n (x) are generated by the Rodrigues type formula [19, (4.6.19)]

e−x xαL(α)
n (x) =

1
n!

dn

dxn

e−xxn+α


.

Therefore a slight modification of the latter implies that the radial parts of the Hermite–Zernike polynomials are generated
by a modified formula of this type.

3. Conclusions

We have obtained the Rodrigues type formula (16), where the operators Yn,k are generated recursively and can be
constructed explicitly bymeans of Algorithm1. It is clear from their definition that they are homogeneous partial differential
operators with constant coefficients that do not depend on λ. Therefore, while constructing the operators by the recursive
procedure, the coefficients a(n)

k,r in (17), and then the matrix An can be determined explicitly. This yields the equivalent but
alternative way of building the generalised Zernike polynomials Zλ

n via (19). It is worth emphasising that the connection
matrices An, defined in (18), link the family of polynomials Pλ

n orthogonal only in subspaces to the complete orthogonal
system Zλ

n (see [10]). As we have just mentioned, a remarkable feature of Algorithm 1 proposed in the present paper is
that the matrices An connecting the vector column of generalised Zernike polynomials Zλ

n and the bivariate orthogonal
polynomials Pλ

n do not depend on the parameter λ. This immediately implies another interesting result: the generalised
Zernike polynomials Zλ

n are solution of the same second-order linear partial differential equation (13) as Pλ
n .
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