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Abstract

The space fractional coupled nonlinear Schrödinger (CNLS) equations are discretized by an im-
plicit conservative difference scheme with the fractional centered difference formula, which is un-
conditionally stable. The coefficient matrix of the discretized linear system is equal to the sum of
a complex scaled identity matrix and a symmetric positive definite diagonal-plus-Toeplitz matrix.
The Hermitian and skew-Hermitian splitting (HSS) method and the partially inexact HSS (PIHSS)
method are employed to solve the discretized linear system. In the inner iteration processes of the
HSS method, we only need to solve the linear sub-systems associated with the Hermitian part in-
exactly by the conjugate gradient (CG) method, resulting in PIHSS iteration method. Theoretical
analyses show that both HSS and PIHSS methods are unconditionally convergent. Numerical exam-
ples are given to demonstrate the effectiveness of the HSS iteration and the PIHSS iteration.

Keywords: The space fractional Schrödinger equations; Hermitian and skew-Hermitian splitting;
Inexact iterations; Conjugate gradient method; Convergence analysis

1 Introduction

In this paper, we consider the space fractional coupled nonlinear Schrödinger (CNLS) equations



iut + γ(−∆)
α
2 u + ρ

(|u|2 + β|v|2)u = 0,
a ≤ x ≤ b, 0 < t ≤ T,

ivt + γ(−∆)
α
2 v + ρ

(|v|2 + β|u|2)v = 0,
(1.1)

with the initial boundary value conditions

{
u(x, 0) = u0(x), v(x, 0) = v0(x), a ≤ x ≤ b,
u(a, t) = u(b, t) = 0, v(a, t) = v(b, t) = 0, 0 ≤ t ≤ T,
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†E-mail address: modiker@163.com (J.-G. Wang).
‡E-mail address: wdyxtu@126.com (D.-L. Wang).

1



2 Y.-H. Ran, J.-G. Wang and D.-L. Wang

where i =
√−1, 1 < α < 2 and the parameters γ > 0, ρ > 0, β ≥ 0 are constants. The fractional

Laplacian [9] can be characterized as

(−∆)
α
2 u(x, t) = F −1

(
|ξ|αF (

u(x, t)
))
,

where F is the Fourier transform acting on the spatial variable x. Furthermore, it is shown that the Riesz
fractional derivative [21] can also be defined as

∂α

∂|x|α u(x, t) = −(−∆)
α
2 u(x, t) = − 1

2 cos πα
2

[
−∞Dα

x u(x, t) + xDα
+∞u(x, t)

]
,

where −∞Dα
x u(x, t) and xDα

+∞u(x, t) are the left and right Riemann-Liouville derivatives, respectively.

The classical Schrödinger equations describe the evolution of microscopic particles, and they can
be derived from the path integral over the Brownian motion. Laskin [12] generalized the path integral
method from the Brownian motion to the Lévy-α process to obtain the space fractional Schrödinger
equations. Many papers focus on the solution of the fractional Schrödinger equations. Generally, it is
very difficult to obtain the exact solutions of fractional differential equations because of the nonlocal
nature of the fractional operator. Consequently, the numerical methods become important and powerful
tools to understand the behaviors of fractional differential equations [1, 2, 11]. But for the fractional
Schrödinger equations, the numerical methods are very few until now.

The main problem for the numerical methods for the space fractional CNLS equations is to discretize
the fractional Laplacian operator. Because of the nonlocal property of fractional differential operator, a
simple discretization scheme of the space fractional CNLS equations, even though implicit, lead to be un-
conditionally unstable and lead to dense or full matrices. In order to reduce the computation complexity
and memory requirement, Ortigueira [16] proposed the so-called fractional centered difference to ap-
proximate the fractional Laplacian operator. This method is of the second-order accuracy. Furthermore,
the full coefficient matrix by the Ortigueira’s method holds special complex symmetric structure, which
can be written as the sum of the complex scaled identity matrix and the symmetric positive definite
diagonal-plus-Toeplitz matrix [18–20].

As the resulting discretized systems are the complex symmetric linear systems, Bai et al. [5] pre-
sented the Hermitian and skew-Hermitian splitting (HSS) iteration and the inexact HSS (IHSS) iteration
which employs some Krylov subspace methods as its inner iteration processes at each step of the outer
HSS iteration to compute an approximate solution for non-Hermitian positive definite linear systems.
There is now considerable evidence that the good convergence properties of the HSS iteration method
are preserved even when the inner solves are performed to rather low accuracy, resulting in significant
savings, especially for very large problems. A potential difficulty with the HSS iteration approach is need
to solve the shifted skew-Hermitian sub-systems at each iteration step. However, the Krylov subspace
iterations need to be implemented in complex arithmetic. Moreover, their convergence rates tend to be
considerably worse. In order to overcome the disadvantage of the HSS method, Bai et al. [3] proposed
the modified HSS iteration method for the complex symmetric linear systems. A considerable advantage
of the modified HSS iteration consists in the fact that it is unnecessary to solve the linear sub-system
associated with the skew-Hermitian part and only two symmetric positive definite linear sub-systems
need to be solved at each step. To further generalized the modified HSS iteration method and accelerate
its convergence rate, the preconditioned modified HSS iteration method is proposed in [4].

The main aim of this paper is to solve the complex symmetric linear systems from the discretization of
the space fractional CNLS equations. The coefficient matrix of the discretized linear system is equal to
the sum of the complex scaled identity matrix and the symmetric positive definite diagonal-plus-Toeplitz
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matrix. The HSS and the partially inexact HSS (PIHSS) methods [6] are applied to solve the discretized
linear system. At each HSS iteration step, we only need to solve the linear sub-system associated with
the Hermitian part inexactly by the conjugate gradient (CG) method [10]. This may result in PIHSS
iteration method.

The remaining of the paper is outlined as follows. In Section 2, we present the discretized system. In
Section 3, we employ the HSS method and the PIHSS method to solve the discretized system, and study
their convergence properties. In Section 4, numerical examples are given to show the effectiveness of the
HSS method and the PIHSS method. Finally, concluding remarks are presented in Section 5.

2 Discretization of the space fractional CNLS equations

Let τ = T/N and h = (b − a)/(M + 1) be the sizes of time step and spatial grid, respectively, where
N and M are positive integers. We define a temporal and spatial partition tn = nτ for n = 0, 1, . . . ,N
and x j = a + jh for j = 0, 1, . . . ,M + 1. Let un

j ≈ u(x j, tn) and vn
j ≈ v(x j, tn) denote the corresponding

numerical solutions. By the fractional centered difference [16], we can discrete the fractional Laplacian
(−∆)

α
2 in the truncated bounded domain as

(−∆)
α
2 u(x j) = − ∂α

∂|x|α u(x j) =
1
hα

M∑

k=1

c j−kuk + O(h2),

where the coefficients

ck =
(−1)kΓ(α + 1)

Γ(α/2 − k + 1)Γ(α/2 + k + 1)
,

with Γ(·) being the gamma function. Moreover, the coefficients ck satisfy the following properties



c0 ≥ 0,
ck = c−k ≤ 0, k = 1, 2, . . . ,

+∞∑
k=−∞,k,0

|ck| = c0.

They proposed the following implicit difference scheme for the space fractional CNLS equations (1.1)


i
un+1

j −un−1
j

2τ +
γ
hα

M∑
k=1

c j−k

(un+1
k +un−1

k
2

)
+ ρ

(
|un

j |2 + β|vn
j |2

)un+1
j +un−1

j

2 = 0,

i
vn+1

j −vn−1
j

2τ +
γ
hα

M∑
k=1

c j−k

( vn+1
k +vn−1

k
2

)
+ ρ

(
|vn

j |2 + β|un
j |2

) vn+1
j +vn−1

j

2 = 0,
(2.1)

where j = 1, 2, . . . ,M, n = 1, 2, . . . ,N − 1, and proved that the scheme (2.1) is unconditionally stable
[18–20]. By the initial boundary value conditions, we have

u0
j = u0(x j), v0

j = v0(x j), un
0 = un

M+1 = 0, vn
0 = vn

M+1 = 0.

In addition, the first step can be obtained by some second or higher order time integrators. The structure
of the first difference equation in (2.1) is the same as the second one. Denote

un+1 =
[
un+1

1 , . . . , un+1
M

]T
, bn+1 =

[
bn+1

1 , . . . , bn+1
M

]T
, η =

1
2τ
, µ =

γ

2hα
, dn+1

j =
ρ

2

(
|un

j |2 + β|vn
j |2

)
,
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where

bn+1
j = iηun−1

j − µ
M∑

k=1

c j−kun−1
k − dn+1

j un−1
j , j = 1, 2, . . . ,M.

Then we can rewrite the first difference scheme in (2.1) into the following matrix vector form

An+1un+1 = bn+1, n = 1, 2, . . . ,N − 1, (2.2)

where the coefficient matrix An+1 is of the form

An+1 = iηI + Dn+1 + T.

Here I is the identity matrix, Dn+1 is the diagonal matrix defined by Dn+1 = diag(dn+1
1 , dn+1

2 , . . . , dn+1
M )

and T is the Toeplitz matrix

T = µ



c0 c−1 · · · c2−M c1−M

c1 c0 · · · c3−M c2−M
...

...
. . .

...
...

cM−2 cM−3 · · · c0 c−1

cM−1 cM−2 · · · c1 c0



. (2.3)

From the fact γ > 0, ρ > 0, β ≥ 0 and the properties of the coefficients ck we see that the Toeplitz
matrix T is symmetric strictly diagonally dominant, then symmetric positive definite, and Dn+1 is non-
negative diagonal matrix. Thus, the matrix Dn+1 + T is symmetric positive definite. Based on these facts,
the coefficient matrix An+1 is complex symmetric and non-Hermitian positive definite.

3 The PIHSS iteration method

In the following, we consider the iterative solution of the system of linear equations

Au = b, A ∈ CM×M nonsingular, and u, b ∈ CM, (3.1)

where A is a complex symmetric matrix of the form

A = D + T + iηI (3.2)

and η > 0, i =
√−1 is the imaginary unit, I is the identity matrix, D = diag(d1, . . . , dM) is the nonnegative

diagonal matrix with di ≥ 0, i = 1, . . . ,M, T is the symmetric positive definite Toeplitz matrix defined in
(2.3).

The Hermitian and skew-Hermitian parts of the matrix A in (3.2) are given by

H =
A + A∗

2
=

(
D + T + iηI

)
+

(
D + T + iηI

)∗
2

= D + T,

and

S =
A − A∗

2
=

(
D + T + iηI

) − (
D + T + iηI

)∗
2

= iηI,

respectively, here A∗ is the conjugate transpose of the matrix A. Obviously, the Hermitian part H is
symmetric positive definite. Then A is the non-Hermitian but positive definite matrix. Thus, we can
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straightly employ the HSS iteration method to compute an approximate solution of the non-Hermitian
positive definite linear system (3.1), and it is as follows.

The HSS iteration method for the linear system (3.1). Given an initial guess u(0), for
k = 0, 1, 2, . . . , until {u(k)} converges, compute



(
α̃I + D + T

)
u(k+ 1

2 ) = (α̃ − iη)u(k) + b,
u(k+1) = 1

α̃+iη

[
(α̃I − D − T )u(k+ 1

2 ) + b
]
,

where α̃ is a given positive constant and I is the identity matrix.

The iteration matrix M(α̃) of the HSS iteration method for the linear system (3.1) is given by

M(α̃) =
α̃ − iη
α̃ + iη

(
α̃I − D − T

)(
α̃I + D + T

)−1,

and its spectral radius ρ(α̃) is

ρ(α̃) = max
λi∈λ(D+T )

∣∣∣∣∣
α̃ − λi

α̃ + λi

∣∣∣∣∣,

where λ(D + T ) is the spectral set of the symmetric positive definite matrix D + T . Since λi > 0 for
∀λi ∈ λ(D + T ), it holds that

ρ(α̃) < 1, ∀α̃ > 0.

Thus, the HSS iteration method converges to the unique solution of the system of linear equations (3.1).

Moreover, if λ1 and λM are the minimum and the maximum eigenvalues of the matrix D + T , respec-
tively, then the optimal parameter α̃∗ is

α̃∗ =
√
λ1λM and ρ(α̃∗) =

√
λM −

√
λ1√

λM +
√
λ1

=

√
κh − 1√
κh + 1

,

where κh =
λM
λ1

is the spectral condition number of D + T . We emphasize that, the optimal parameter α̃∗

minimizes the spectral radius ρ(α̃) itself and thus is really the optimal parameter in theory.

The 2-norms of the matrices (α̃ − iη)(α̃I + D + T )−1 and 1
α̃+iη (α̃I − D − T ) are given in the following

theorem which will be useful later.

Theorem 3.1. Let A ∈ CM×M be defined in (3.2), D + T and iηI be its Hermitian and skew-Hermitian
parts, respectively, and α̃ be a positive constant. Then

ch(α̃) ≡ ‖(α̃ − iη)(α̃I + D + T )−1‖2 =

√
α̃2 + η2

α̃ + λ1
,

cs(α̃) ≡ ‖ 1
α̃ + iη

(α̃I − D − T )‖2 =
1√

α̃2 + η2
max

{
|α̃ − λ1|, |α̃ − λM |

}
.

In particular, when α̃ = α̃∗ =
√
λ1λM, and let κh,s = 1 +

η2

λ1λM
, then it holds that

ch(α̃∗) =

√
κhκh,s√
κh + 1

and cs(α̃∗) =

√
κh − 1√
κhκh,s

.
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Proof. The equalities follow from straightforward computations. �

Obviously, at each step of the HSS iteration for the linear system (3.1) we only need to solve the linear
sub-system with its coefficient matrix being the symmetric positive definite one α̃I + D + T . In fact, the
linear sub-system can be solved exactly by the Cholesky factorization method which is effective for the
small dense symmetric positive definite linear system. For the large linear system, however, this will not
be the case. A remedy may be using some Krylov subspace methods such as the CG method to solve the
first linear sub-system as its inner iteration processes at each step of the outer HSS iteration. This result
in the following PIHSS iteration for solving the system of linear equations (3.1).

The PIHSS iteration method for the linear system (3.1). Given an initial guess ū(0),
for k = 0, 1, . . . , until {ū(k)} converges, compute ū(k+ 1

2 ) approximately from

(α̃I + D + T )ū(k+ 1
2 ) ≈ (α̃ − iη)ū(k) + b

by employing the CG method with ū(k) as the initial guess; then solve ū(k+1)

exactly from

ū(k+1) =
1

α̃ + iη
[
(α̃I − D − T )ū(k+ 1

2 ) + b
]
,

where α̃ is a given positive constant and I is the identity matrix.

The following lemma [6] describes convergence property of the CG method for the linear sub-system
with its coefficient matrix being the symmetric positive definite one α̃I + D + T , which is essential to
establish convergence theorems for the PIHSS iteration method for the linear system (3.1).

Lemma 3.1. Let ū(k+ 1
2 ) be the µkth approximate solution generated by µkth step of CG iteration with an

initial guess ū(k) for solving the symmetric positive definite sub-system of linear equations (α̃I+D+T )ū =

(α̃ − iη)ū(k) + b of the (k + 1)th step of the HSS iteration for the linear system (3.1). Then it holds that

‖ū(k+ 1
2 ) − ū(k+ 1

2 ,∗)‖2 ≤ σh(α̃, µk)‖ū(k) − ū(k+ 1
2 ,∗)‖2,

where
ū(k+ 1

2 ,∗) = (α̃I + D + T )−1[(α̃ − iη)ū(k) + b
]

and

σh(α̃, µk) = 2
(
√

α̃+λM
α̃+λ1

− 1
√

α̃+λM
α̃+λ1

+ 1

)µk
.

In particular, when α̃ = α̃∗ =
√
λ1λM,

σh(α̃∗, µk) = 2
( 4
√
κh − 1

4
√
κh + 1

)µk
.

Based on Theorem 3.1 and Lemma 3.1, we can demonstrate the convergence theorems for the PIHSS
iteration method for the linear system (3.1).

Theorem 3.2. Let A ∈ CM×M be defined in (3.2), D + T and iηI be its Hermitian and skew-Hermitian
parts,respectively, and α̃ be a positive constant. Let {µk} be a sequence of positive integers. If the iterative
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sequence {ū(k)} is generated by the PIHSS iteration for the linear system (3.1) from an initial guess ū(0),
then it holds that

‖ū(k+1) − u∗‖2 ≤
[
cs(α̃)

(
1 + ch(α̃)

)
σh(α̃, µk) + ρ(α̃)

]
‖ū(k) − u∗‖2,

where u∗ is the exact solution of the system of linear equations (3.1). Therefore, if there exists a non-
negative constant σpihss(α̃) ∈ [0, 1) such that

cs(α̃)
(
1 + ch(α̃)

)
σh(α̃, µk) + ρ(α̃) ≤ σpihss(α̃), k = 0, 1, 2, . . . ,

then the iterative sequence {ū(k)} converges to u∗ with a convergence factor being at most σpihss(α̃).

Proof. For a fixed iterate index k, from the PIHSS iteration method for the linear system (3.1) and
Lemma 3.1 we have


ū(k+ 1

2 ,∗) = (α̃I + D + T )−1[(α̃ − iη)ū(k) + b
]
,

ū(k+1) = 1
α̃+iη

[
(α̃I − D − T )ū(k+ 1

2 ) + b
]
,

(3.3)

and

‖ū(k+ 1
2 ) − ū(k+ 1

2 ,∗)‖2 ≤ σh(α̃, µk)‖ū(k) − ū(k+ 1
2 ,∗)‖2. (3.4)

Let u∗ be the exact solution of the system of linear equations (3.1), then from (3.3), we have

ū(k) − ū(k+ 1
2 ,∗) = ū(k) − (α̃I + D + T )−1[(α̃ − iη)ū(k) + b

]

= (α̃I + D + T )−1[(α̃I + D + T )ū(k) − (α̃ − iη)ū(k) − b
]

= (α̃I + D + T )−1[(α̃I + D + T ) − (α̃I − iηI)
]
(ū(k) − u∗)

=
[
I − (α̃ − iη)(α̃I + D + T )−1](ū(k) − u∗). (3.5)

The exact solution u∗ satisfies the sub-systems of linear equations

{
(α̃I + D + T )u∗ = (α̃ − iη)u∗ + b,
u∗ = 1

α̃+iη

[
(α̃I − D − T )u∗ + b

]
.

(3.6)

After subtracting (3.6) from (3.3), we obtain


(α̃I + D + T )(ū(k+ 1

2 ,∗) − u∗) = (α̃ − iη)(ū(k) − u∗),
(ū(k+1) − u∗) = 1

α̃+iη (α̃I − D − T )(ū(k+ 1
2 ) − u∗).

(3.7)

The equalities in (3.7) straightforwardly yield

ū(k+1) − u∗ =
1

α̃ + iη
(α̃I − D − T )(ū(k+ 1

2 ) − u∗)

=
1

α̃ + iη
(α̃I − D − T )(ū(k+ 1

2 ) − ū(k+ 1
2 ,∗)) +

1
α̃ + iη

(α̃I − D − T )(ū(k+ 1
2 ,∗) − u∗) (3.8)

=
1

α̃ + iη
(α̃I − D − T )(ū(k+ 1

2 ) − ū(k+ 1
2 ,∗)) +

α̃ − iη
α̃ + iη

(α̃I − D − T )(α̃I + D + T )−1(ū(k) − u∗).
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From (3.8), (3.4) and (3.5) it then follows that

‖ū(k+1) − u∗‖2 ≤ ‖ 1
α̃ + iη

(α̃I − D − T )‖2‖ū(k+ 1
2 ) − ū(k+ 1

2 ,∗)‖2

+‖ α̃ − iη
α̃ + iη

(α̃I − D − T )(α̃I + D + T )−1‖2‖ū(k) − u∗‖2

≤ cs(α̃)σh(α̃, µk)‖ū(k) − ū(k+ 1
2 ,∗)‖2 + ρ(α̃)‖ū(k) − u∗‖2

≤ cs(α̃)σh(α̃, µk)
(
1 + ch(α̃)

)‖ū(k) − u∗‖2 + ρ(α̃)‖ū(k) − u∗‖2
≤ [

cs(α̃)σh(α̃, µk)
(
1 + ch(α̃)

)
+ ρ(α̃)

]‖ū(k) − u∗‖2.

�

Theorem 3.2 presents an estimate for the contraction factor of the PIHSS iteration for the linear system
(3.1). Moreover, we can take α̃ = α̃∗ which is the optimal parameter to further minimize the contraction
factor and consequently, accelerate the convergence speed of the PIHSS iteration for solving the linear
system (3.1). More precisely, we have the following theorem.

Theorem 3.3. Let A ∈ CM×M be defined in (3.2), D + T and iηI be its Hermitian and skew-Hermitian
parts, respectively, and α̃ = α̃∗ =

√
λ1λM. Let {µk} be a sequence of positive integers. If the iterative

sequence {ū(k)} is generated by the PIHSS for the linear system (3.1) from an initial guess ū(0), then it
holds that

‖ū(k+1) − u∗‖2 ≤
[
2
√
κh − 1√
κhκh,s

(
1 +

√
κhκh,s√
κh + 1

)( 4
√
κh − 1

4
√
κh + 1

)µk +

√
κh − 1√
κh + 1

]
‖ū(k) − u∗‖2.

Therefore, if µk is chosen such that

2
√
κh − 1√
κhκh,s

(
1 +

√
κhκh,s√
κh + 1

)( 4
√
κh − 1

4
√
κh + 1

)µk <
2√
κh + 1

, k = 0, 1, 2, . . . ,

then the iterative sequence {ū(k)} converges to the exact solution u∗ of the system of linear equations (3.1).

We only substitute cs(α̃), ch(α̃), ρ(α̃), σh(α̃, µk) by cs(α̃∗), ch(α̃∗), ρ(α̃∗), σh(α̃∗, µk) and then easily ob-
tain Theorem 3.3.

The contraction factor of the PIHSS iteration method for the linear system (3.1) is bounded by

2
√
κh − 1√
κhκh,s

(1 +

√
κhκh,s√
κh + 1

)(
4
√
κh − 1

4
√
κh + 1

)µk +

√
κh − 1√
κh + 1

(3.9)

whose dominant term
√
κh−1√
κh+1 is approximately equal to the contraction factor of CG applied to symmetric

definite system of linear equations (D + T )y = b. Evidently, the best possible bound of the contraction

factor of the PIHSS iteration method for the linear system (3.1) is
√
κh−1√
κh+1 . To make the bound of the

contraction factor (3.9) approach to
√
κh−1√
κh+1 quickly and economically with increasing of µk, we should

choose the inner CG iteration step µk at the kth outer iterate such that the factor (
4√κh−1
4√κh+1

)µk approach
to zero quickly. Then µk needs to be larger in theory, but this will lead to large computation increase
actually. Thus, these two factors should be well balanced.
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If µk is chosen so that

2
√
κh − 1√
κhκh,s

(
1 +

√
κhκh,s√
κh + 1

)( 4
√
κh − 1

4
√
κh + 1

)inf
k≥0
{µk}

+

√
κh − 1√
κh + 1

< 1,

or in other words

µk ≥
ln

( √
κhκh,s

(
√
κh−1)(

√
κh+1+

√
κhκh,s)

)

ln(
4√κh−1
4√κh+1

)
,

then the PIHSS iteration method converges to the exact solution u∗ of the system of linear equations
(3.1).

4 Numerical results

In this section, we carry out numerical experiments to study the performances of the HSS and the PIHSS
iteration methods. We employ the BiCGSTAB method, the SSOR iteration method, the HSS iteration
method and the PIHSS iteration method to solve the linear system (3.1). The parameters involved in
the SSOR, the HSS and the PIHSS iteration methods are set to be the experimentally optimal ones. All
numerical experiments are started from the zero vector, performed in MATLAB with machine precision
10−16. The outer PIHSS iteration for the linear system (3.1) are terminated when the current iterate
satisfies

‖r(k)‖2
‖r(0)‖2

< 10−6,

where r(k) is the residual vector of the kth outer PIHSS iterate and r(0) is the initial residual vector. That
is, r(k) = b − Aū(k) and r(0) = b − Aū(0), where ū(0) and ū(k) are the initial guess and the approximate
solution of the kth outer PIHSS iterate, respectively.

Example 1. Let γ = 1, ρ = 2, β = 0, 1 < α < 2, then the system (1.1) is decoupled and becomes

iut + (−∆)
α
2 u + 2|u|2u = 0, −20 ≤ x ≤ 20, 0 < t ≤ 2,

subjected to the initial boundary value conditions

u(x, 0) = sech(x) · exp(2ix), u(−20, t) = u(20, t) = 0.

Example 2. For the following coupled system with γ = 1, ρ = 2, β = 1, 1 < α < 2,


iut + (−∆)
α
2 u + 2(|u|2 + |v|2)u = 0,

−20 ≤ x ≤ 20, 0 < t ≤ 2,
ivt + (−∆)

α
2 v + 2(|v|2 + |u|2)v = 0,

we take the initial boundary value conditions in the form
{

u(x, 0) = sech(x + 1) · exp(2ix), v(x, 0) = sech(x − 1) · exp(−2ix),
u(−20, t) = u(20, t) = 0, v(−20, t) = v(20, t) = 0.

In our implementations, the inner CG iteration for the first linear sub-system in the PIHSS method are
terminated if the current residuals of the inner iterate satisfy

‖p(k−1, j)‖2
‖r(k−1)‖2

< 10−δ,
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Table 1: Numerical results for Example 1 when α = 1.2

BiCGSTAB SSOR HSS PIHSS
M δ = 2 δ = 3

Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU
800 46 0.27 21 0.54 47 0.40 54 0.24 48 0.28
1600 70 1.76 36 3.67 39 1.50 42 0.69 39 0.76
3200 141 14.37 55 30.28 28 4.54 38 2.72 29 3.22
5000 186 46.86 71 93.46 23 11.36 27 8.16 24 10.71

Table 2: Numerical results for Example 1 when α = 1.7

BiCGSTAB SSOR HSS PIHSS
M δ = 2 δ = 3

Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU
800 49 0.30 30 0.77 54 0.46 59 0.30 56 0.36
1600 101 2.53 55 5.65 45 1.68 48 0.86 43 0.91
3200 187 19.09 96 50.84 32 5.09 40 3.89 34 4.35
5000 236 34.64 108 148.37 26 12.16 34 10.20 25 11.09

where p(k−1, j) is the residual of the jth inner CG iterate in the kth outer PIHSS iterate. In other words,
p(k−1, j) = (α̃− iη)ū(k−1) + b− (α̃I + D + T )ū(k+ 1

2 , j), where ū(k+ 1
2 , j) is the jth iteration approximate solution

of the first linear sub-system in the PIHSS iteration by the CG method. Here δ is the control tolerances
for the CG iteration about the first linear sub-problem in the PIHSS method. δ should be chosen as
large as possible in theory. However, the good convergence properties of the PIHSS iteration method are
preserved even when the inner solves are performed to rather low accuracy, we take δ to be 2 and 3 in
our tests.

The numerical results are listed in Tables 1−4, where “M” denotes the number of spatial grid points,
“Iter” denotes the iteration steps of the BiCGSTAB method, the SSOR iteration method and the HSS
iteration method, and the outer iteration step of the PIHSS iterate, and “CPU” denotes the total CPU
time in seconds for solving the discretized system, and “α” denotes the order of the space fractional
CNLS equations.

In Tables 1−2 and Tables 3−4 we list the iteration steps and the CPU time in seconds for the BiCGSTAB
method, the SSOR iteration method, the HSS iteration method and the PIHSS iteration method for Ex-
amples 1 and 2 when α = 1.2 and α = 1.7 with respect to different spatial grids. The time step sizes for
Examples 1 and 2 are all set to be 0.05. Because the numerical results for different values of α are similar,
we only gave the numerical results for α = 1.2 and α = 1.7. The GMRES method are not convergent
when solving the Examples 1 and 2, so its numerical results are not listed in the tables.

From these tables we can see that the iteration steps of the BiCGSTAB and SSOR methods are increas-
ing quickly as the spatial grid points increases, but those of the HSS and PIHSS iteration methods are
decreasing. The HSS and the PIHSS iteration methods which exhibit excellent performance outperform
the BiCGSTAB and SSOR methods in terms of both iteration step and CPU time. The numerical results
for the BiCGSTAB and SSOR methods are unsatisfactory which may be caused by the bad condition
number of the coefficient matrix of the discretized linear system. To achieve the prescribed convergence
criterion, the HSS iteration method requires less iteration step but more computing time than the PIHSS
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Table 3: Numerical results for Example 2 when α = 1.2

BiCGSTAB SSOR HSS PIHSS
M δ = 2 δ = 3

Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU
800 44 0.26 21 0.56 43 0.37 48 0.18 45 0.18
1600 72 1.82 36 3.73 36 1.35 45 0.79 39 0.82
3200 96 10.07 55 32.71 27 5.22 42 3.75 35 4.43
5000 226 58.17 71 78.76 22 11.27 39 7.39 32 9.12

Table 4: Numerical results for Example 2 when α = 1.7

BiCGSTAB SSOR HSS PIHSS
M δ = 2 δ = 3

Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU
800 73 0.45 30 0.78 49 0.42 56 0.29 51 0.38
1600 80 2.01 55 5.91 42 1.56 52 1.05 45 1.11
3200 115 12.22 96 54.36 31 5.95 46 4.79 37 5.39
5000 243 62.35 108 151.40 25 12.03 38 8.45 29 10.25

iteration method, and the PIHSS iteration method with δ = 3 requires less iteration step but more com-
puting time than the PIHSS iteration method with δ = 2. Therefore, among all the iterations, the HSS
iteration method is the most effective in terms of the iteration step, and the PIHSS iteration method with
δ = 2 is the most effective in terms of the CPU time.

5 Concluding remarks

In this paper, the HSS iteration method and the PIHSS iteration method are employed to solve the com-
plex symmetric linear systems arising from the discretization of the space fractional CNLS equations.
The coefficient matrix of the linear system is equal to the sum of the complex scaled identity matrix
and the symmetric positive definite diagonal-plus-Toeplitz matrix. In the inner iteration processes of the
PIHSS iteration method, the shifted Hermitian sub-systems are solved by the CG method. Both theo-
retical analyses and numerical experiments demonstrate that the HSS iteration and the PIHSS iteration
for solving the linear system (3.1) are feasible and efficient. Moreover, we can also employ the precon-
ditioned CG methods [13–15, 17] to solve the shifted Hermitian sub-system at each step of the PIHSS
iteration, and give the same convergence theory. We remark that, instead of HSS method and PIHSS
method, the preconditioned HSS iterations to speed up the convergence rate of the HSS method have
been studied in [7, 8].
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