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1. Introduction

One success story of science and technology in the twentieth and twenty first centuries is the ability of mankind to
influence or control systems around them. Notable examples of such systems are household appliances, machines, auto-
mobiles, aircrafts, computers, the weather, the oceans and human societies. These diverse systems can be approximated
or modelled, at least locally, as linear time-invariant (LTI) systems. Algebraic, differential or difference Riccati equations
are then solved to construct the optimal controls. Much advances have been made in the solution of these equations in the
past few decades. It seems, for a while, that not much more can or needs to be done for algebraic Riccati equations (AREs).
This paper proposes the first algorithm for an important and unsolved special case for large-scale AREs with high-rank
constant terms.

1.1. Algebraic Riccati equations

Consider the LTI control system in continuous-time:
x(t) = Ax(t) + Bu(t), y(t) = Cx(t),
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where A € R™", B € R™™ and C € R™*" with m, | < n. The linear quadratic regulator (LQR) control minimizes the energy
or cost functional Jo(x, u) = ;7 [x(t)"Hx(t) + u(t)"Ru(t)] dt, with the constant term H = C'T~'C > 0 and R, T > 0.
Here, a symmetric matrix P > 0 (> 0) when all its eigenvalues are positive (non-negative). Also, P > Q (P > Q) if and
only if P — Q > 0 (> 0). The corresponding optimal control u(t) = F.x(t) and the feedback gain F, = —R~'BTX can then
be expressed in terms of the unique positive semidefinite stabilizing solution X of the continuous-time algebraic Riccati
equation (CARE) [1-5], with G = BR™'BT > 0:

C(X)=ATX +XA—XGX +H =0. (1)

See [6,7] on related research in parameter estimation and Kalman state filtering.
Analogously, we also consider the LTI control system in discrete-time:

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t).

The LQR control minimizes J;(x, u) = Zfioix(t)THx(t) + u(t)TRu(t)]. The corresponding optimal control u(t) = Fgx(t)
and the feedback gain F; = —(R+ B XB)~'B' XA can be expressed in terms of the unique positive semidefinite stabilizing
solution X of the discrete-time algebraic Riccati equation (DARE) [1,3,4,8]:

DX)= —-X+ATXU+GX) 'A+H
= X+A'XA—A"XBR+B'X)"'B'XA+H =0, 2)
by the Sherman-Morrison-Woodbury formula (SMWF) [9]:
M4+UuDvYy '=MT'"-MUD'+V M UVIMTL

1.2. Previous work

The solution of AREs has been an active area of research, due to its importance in optimal control and filtering.
Many practitioners in control theory and applied mathematics researched the problem, contributed dozens of methods
[2-4,8]. Classical methods made use of canonical forms, determinants and polynomial manipulation and state-of-the-art
methods solve AREs in a numerically stable manner; see [2,8] and their references for more details. One favourite approach
formulates the AREs as eigenvalue problems [10] and has been implemented in MATLAB [11] (in the commands care and
dare). The other favourite is the Newton-Kleinman method [12]. For modern numerical methods for AREs for systems
of moderate dimensions, please consult [2,8,10,13-16].

For control problems for parabolic PDEs and the balancing based model order reduction of large linear systems, large-
scale CAREs, DAREs, Lyapunov and Stein equations have to be solved [1,13,16-24]. Without solving the corresponding
AREs, alternative solutions require the invariant or deflating subspaces of the corresponding Hamiltonian matrices or
symplectic pencils which are prohibitively expensive to compute.

Benner and his collaborators have done much on large-scale AREs with low-rank structures; see [14,16,18,24,25] and
the references therein. The sub-problems of (inexact) Newton’s methods are the Lyapunov and Stein equations which
are solved with the ADI iterations. (The initialization of Newton’s method and the choice of parameters for the ADI
iterations remain challenging.) Consult [22,23,26] on the Krylov subspace methods and [27-35] on the related gradient
based iterations for Lyapunov or Sylvester equations. The structure-preserving doubling algorithm (SDA) [2,8] has been
adapted for large-scale problems [36,37], making use of the structure in A and the fact that G = BR™'BT, H = C'T~'C
are low-rank (i.e. m, | < n).

1.3. High-rank H

In many large-scale control problems, the constant term H = C' T~'C in the AREs is low-rank with C € R™" and | <« n.
A nice property in this case is that the unique positive definite stabilizing solution X can be approximated numerically
by a low-rank matrix CaT T, ¢, with €, € R}*" and I, < n. Many practitioners then employed the Newton-Galerkin-ADI
method [16,19,20] or SDA [36,37] to form C, and T, as their computation and storage were efficient.

Recently, [38-40] (all unpublished, the only known references for this problem) raised the problem associated with
a “high-rank” constant term H. It has been suggested that the (large-scale) CAREs “can be handled using algorithm ure
rules” [39, Page 62], on integrals like

o0
Ki=B'X;=B" / el ABK0)T (1 4 KKy )etA—BK0) i,
0
where Ky = B" X, is known. A variant of the Newton-Kleinman method is applied when an initial stabilizing X, is available.
Unfortunately for a large-scale CARE with a high-rank H, the solution X is no longer numerically low-rank (more
details in Sections 2.1 and 2.2). Consequently, the Newton-Galerkin-ADI method, Krylov subspace methods or SDA no
longer work. Note that even storing or outputting X are nontrivial, so are the computation of the residual or relative
errors for any approximation Hy to X and the corresponding convergence control of any iterative procedure for {H}.
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1.4. Main contributions

The efficient solution of large-scale AREs with high-rank constant terms is an important problem which has not been
solved. This paper proposes the first algorithm for the problem, which is different to the Newton-Kleinman method in [39],
without the difficult initial stabilization step.

Our main contributions are summarized as follows:

(1) There are some preliminary materials in [38,40] and some talks (as in [39]) presented on CAREs with high-rank H.
Our paper is the first on the numerical solution of the problem.

(2) We modify the SDA for AREs with high-rank H, revealing the high-rank form of X. Consequently, our algorithm
outputs directly the feedback gains Fy, F. € R™*", which have only m rows and are feasible to be represented and
stored.

(3) We show that large-scale AREs for high-rank H can be solved efficiently by the modified doubling algorithm,
the SDA_h, which output the feedback gains. We propose algorithms of O(con) computational complexity (with
constants involving 2¥, which is in turn O(1) for small values of k). Here c4n is the flop count required for multiplying
a vector v to A or H (or one of their transposes) for DAREs, or the flop count of one solve of the linear system
associated with A — yI (or its transpose) for CAREs, and k is the number of iterations required for our (near)
quadratically convergent algorithm and is normally small.

(4) We reveal the new difficulties associated with the computation of the residuals and relative errors, for the
convergence control, and propose remedies. These difficulties arise from the high-rank constant term H and are
not relevant previously for the solution of AREs with low-rank H in [14,16,18,24,25,36,37].

2. Discrete-time algebraic Riccati equations

Consider the DARE (2) with a high-rank constant term H > 0 but G = BR™'BT € R"™*" with rank m < n. For large-scale
DAREs, we further assume that m <« n and A, H are sparse or structured, with at most ¢, nonzero elements on each
row or column. More generally, we may assume that A, H are “sparse-like”, with multiplication to row or column vectors
realizable in O(cyn) flops. Sparse-like matrices include low-rank updates of banded or sparse matrices.

For the large-scale CARE (1) with m <« n, we need the matrices being efficiently invertible and multiplicable to vectors;
see Section 4. CAREs are mathematically equivalent to the DARE (2), through the Cayley transformation (22).

Applying the SDA [8] to the DARE in (2):

G = Ge+Ad + GH)'GAL L
Hip1 = Hi+ A Hel + GeHy) A, (3)
A1 = Al + GeHi) A,

with Ag = A, Go = G = BR™'BT, Hy = H, we obtain an efficient algorithm for the solution of the DARE with a high rank H.
Recall from [8] that H, — X, Gy — Y (the solution to the dual equation (14) of the DARE (2)) and Ay — 0, all quadratically
ignoring errors. Similar to Ay for large-scale AREs in [36,37], Hy increases in complexity with respect to k thus cannot be
evaluated or stored explicitly, but with its recursion utilized in products with vectors. For large-scale DAREs in [36], both
G and H are low-rank and the SMWF can be applied for (I + G¢Hy)™' using the structures in G or H. For our case with
a high-rank H, we rely only on the low-rank in G or B. There are complications involving the computation of residuals
and convergence control in the SDA, because the high rank of the approximate solution Hy. As elaborated in Section 3,
we output instead the approximate feedback gain which is low-rank.

2.1. SDA_h

The details of the SDA_h are described inductively as follows. Consider
G = BiRiBy, Hi = Mi+ GG/, (4)

with By = B, Ry = R™!, My = H, C; = 0 and Ty = 1. We show (4) holds for all values of k by induction. Note that we used
a different convention in [37], where Ry and T, are written as inverses to emphasize their invertibility. In this paper, Ry,
T, and S are positive definite after the truncation and compression in Section 3.1.

First, the application of the SMWF on I + GyH, implies that

_ -1
(In + GeHi) ™" = I — By (Im, + RiBy HiBk) ™ RiBy Hi. (5)
From (3) and (5), it is obvious that
-1
Gir1 = Gk + Aelln — By (Im, + RiB HkBx) ~ RiBy HilGiA, (6)
with Bes1 = [Br. AcBi] and g1 = Re @ [Rk — (I, + ReB HiBy) ™" RkB[HkBkRk]. Similarly for Ay, we have

1 2
Ak+1 = Ai - D§<_:1Sk+1 [Du]]Tv (7)
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. -1 . e . .
with Dg{lil = ABy, D;ﬁl = A{ HB and Sgiq = (Im, + ReBy HkBi) Ry With Hy = M + G/, similar argument implies

-1
Hist = Hi + ALHi [T = B (In, + ReB HiBe) ™' ReBLHi | A

= Hy + A, HiAe — D Sen D41, (8)
Mis1 = My +A{ MiAx, Gyt = [Ch, A Ci, AL HiBil,
-1
Tirt = Te® T ® [~ (I, + ReB{HiB) 'R (9)

These imply that Ay,; and H,,; inherit the same forms as Ay and H in (7) and (8) respectively. From the compression
and truncation in Section 3.1, we have By being orthogonal.

It is obvious that the full-rank Hj or M} increases in complexity with increasing k thus cannot be evaluated or stored
explicitly. The low-rank matrices Df), Df), Sk, Cr and Ty can be stored and the products of Ay, H, and M with selected
vectors can be evaluated recursively.

2.2. Structure of M,

The structure of M}, has to be explored further because of its importance in our computation. With My = H and “l.m”.
representing low-rank matrices, we have
M; = My + Al MgAg = H + ATHA,
My = My 4+ A MiA; = (H +ATHA)+AT(I + GH)"TAT(H + ATHA)A(I + GH)™'A
3

= Z(AT)I'HA’ +1lm.,
j=0
2k_q 2k_q
M1 = M+ A M= > (ATYHA + (AT | S (ATYHA + Lm. | A% +Lm.
j=0 j=0
2k+171
= Z (ATYHA + 1.m..
j=0

The low-rank matrices are easy to handle and can be absorbed into the C,<+1T,<+1Ck11 in Hy41 (as in (4)). Consequently,
the main problem comes from the first term

ok+1_q
Mi1= Y (ATYHA. (10)
j=0
For CAREs, A has the form of a shifted inverse and the structure or sparsity in H will not be preserved even for small
values of k.

2.3. Stein equations

Consider the special case of (2) with G = 0:
SX)=—-X+ATXA+H=0. (11)

The corresponding SDA becomes the Smith method, with the approximate solution H; equal to 1\7Ik+1 in (10), increasing in
complexity. This gives rise to difficulties in convergence control and the evaluation of residuals and successive differences.

In many applications (such as the computation of Gramians in model-order reduction), we ultimately want to estimate
the singular values of the solution X of (11). In that situation, the recursion for Hj can be utilized in such an estimation
process, in the associated multiplications to some row and column vectors. Similar comments hold for the Lyapunov
equations in Section 4.3. Note that this is in the same spirit as in Section 3.3, where the approximations Hj to X are not
low-rank but the corresponding approximated feedback gains Fj in (18) and (27) are much simpler (in lower dimensions)
thus cheaper to store or output.

3. Computational issues
3.1. Truncation and compression
Now we recall an important aspect of the SDA for large-scale DAREs — the growth of B. As H, = My + CkT TkaT is not

computed explicitly and we may control the growth of C,. We choose not to, because the recursions for A, and Hy can be
applied efficiently enough with only compression on By, as seen in (7)-(9).
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Obviously, as the SDA converges, increasingly smaller but higher-rank components are added to By. Apparent from (6),
s of these iterates is potentially exponential. If the convergence is slow relative to the growth in By, the algorithm will
fail.
To reduce the dimensions of By, we compress their columns by orthogonalization. As in [36,37], consider the QR
decompositions with column pivoting:
By = QUi + QuUx, U]l < Tg.

From here on, all norms are the 2-norm. Here t; is some small tolerance controlling the compression and truncation

. . . . b
process, ny is the number of columns in B, bounded from above by mp,x and its rank satisfies r,i ) = rankB, < ng <

(b) (b)
Mmax <K N. Also Qg € Rk is unitary and Uy € R« *™ is full-rank and upper triangular. We have
BRiB, = Qi (UeR(U,') @, + O(tg), (12)

replacing respectively B, and Ry by the leaner Q; and UkRkUkT. We ignore O(t,) terms, control the growth of r,Eb) while

sacrificing a hopefully negligible bit of accuracy. We also restrict the widths of By, now relabelled m, = r,((b) after the
compression and truncation in (12), by setting a reasonable upper limit mp,x. Similar procedures have been successfully
applied in [36,37].

3.2. Residuals and differences of successive iterates
For the DARE (2) with H, = M} + CkaCkT, we have the usual relative residual for H, ~ X:

D(Hy) = —Hy + ATH, [1,1 —B(R+BHB) BTHk] A+H,
= ID(H)l (13)
 IHIl + [IHell + IATHiAll + IATHB(R + BTHB)~'BT HiA||’
analogous to (28), with the help of (2) or the SMWE. This simplifies to D(Hy) =

—Mi +A"MA+H + [-GTC; +ATGTC A — ATHiBi(I + ReB HiBi)™'RiBy HiA] .

The norms in (13) are not easy to compute, although can be estimated using the power method [9], which may be
attempted after convergence.
Next consider the differences of successive H, and G, respectively:

8Hi = Hip1 — He = (Mie1 — Mi) + (Ces1 Tir1 Gy — GTGY)
-1
= Ay MiAx + [A] Ci, A HiBil [Tk ® (Imy, — RkB;HkBk) Rk] [Ag Ck, Ay HkBil',
8Gk = Gry1 — Gi = Bry1Ri 1By — BiReBy = ABrAGBL Ay,

with 5Gy being low-rank and AGy = Ry — (I, + RkB;HkBk)_1 R¢B[ HBRy.. Both differences §Hj and §G converge to zero
quadratically while Ay — 0 as k — o0. Obviously, convergence may be controlled efficiently using 8Gy, after A;By has
been orthogonalized and G, transformed as in Section 3.1, leading to ||8Gk|| = || AGkll. Note that G, € R™" while
AGy € R™>™k with my < n.

3.2.1. Convergence control and accuracy of H

From the previous section, it is obvious that the computation of residuals for H, and the similar quantities is nontrivial
and costly. In this section, we describe an alternative of convergence control which bypasses these difficulties. First we
quote the following theorem for the SDA:
Theorem 3.1 ([41, Theorem 3.1]). Assume that X, Y > 0 satisfy the DARE (1) and its dual:

Dy(Y)= —Y +AY(I + HY) 'AT + G =0, (14)

and let S = (I + GX) 'Aand T = (I + HY)"'A". Then the matrix sequences {A}, {Gx} and {Hy} generated by the SDA satisfy

(a) A = (I + GX)S%; k

(b) H<Hy <Heq <X and X —He = (ST)” (X +XGX)s% < (ST)” (X + xvx)s%;

k k k
(€) G<Gi<Geyr <YandY — Gy = (TT)" (Y + YHY)TZ < (TT)* (Y 4 yxv)12"

2’<(

Theorem 3.2. implies that the relative accuracy of Hy and Gy are bounded as below:

) _ IIHe = XI| v _ G —YI

(x 2k+1 2k+1
r <ISIZ I +XY|, <|ITI*" |1+ XY]. (15)
k IX I k Y|l
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It is well-known [41] that the spectral radii p(S) = p(T).
With Theorem 3.2, we can control the convergence of the SDA_h in the following fashion:

(i) Within an iterative step, compute the (dual) residual r, = || D4(Gy)|| in O(n) complexity, using the low-rank structure
of Gi. Terminate iteration when ry is small within some tolerance, relative to the data in the dual DARE (as in (28)).
This is not that controversial, comparing to the use of ||Ai|| in [2,8]. The accuracy achieved in Hy is further guaranteed
in (ii) and (iii) below.

(ii) The relative error of Hy is bounded as in (15) with ||S|| = ||(I + GX)~'A|| estimated (with power method [9]). This
ignores the effects of any truncation and compression of G, and Hy, thus underestimates the error.

(iii) Further indication of the accuracy of Hy can be obtained by applying the power method [9] to estimate §H, although
only reflecting the relative error of Hy_ (thus overestimating the relative error for Hy). This can be costly and should
be attempted only after convergence (m the sense of ry in (i) above).

(iv) The relative residual 7 in (13) is expensive to evaluate. We have applied the power method to estimate the residual
after convergence for Example 3 (in Section 5) with n = 1357. We estimated 75 = 4.12 x 10~'4, consistent with
the accuracy of other estimates dHs = 8.70 x 107° and ¢ = 3.72 x 10~?’. However, this estimation costed more
than 4 times the CPU time for the solution of the CARE. The estimation of the relative residuals for higher values
of n are even more expensive.

Note that residuals do not reflect directly on the accuracy of the approximate solutions, without the knowledge of
the corresponding condition numbers.

(v) For CAREs, the theorem and similar techniques can be applied after the Cayley transform.

3.2.2. Estimation of ||S|| andxgll + XY||
After convergence, for r;” in (15), we have
I+ XYl ~ [II +HGeell = [T+ GeHell, 1S1 = (I + GH) Al
With the help of the SMWF, we have
IT+ XY 1> & I + GeHell> = |l + BeRiBy Hill®
= p (I + BcRiBy Hi + HiBcRiB; + BiRiB, H2BRiB} ) = 1+ p (BcRiBy ) . (16)
with

~ _~ T2
By = [By, HBrl, Ry = |:RkBk HkBkRk Rl<i| i

Ry 0
ISI? ~ II(I + GH) " 'AlI* = |[A— B (I + R”BTH,Ja)’1 RTIBTHA|?
= p (AT —B(1+R'BTHB) ' R'BTHAMT
—AATHBR (I + B"HBR 1)"'BT
+B (I + R”BTH,(B)*1 R'BTHAATHBR™Y(I + BTHkBR’l)’]BT}
—p (AAT n ékkké,j) , (17)
where Ry = (I, + R'BTHB)"'R™", B = [B, AATH,B] and

. [ReBTHAATHBR]  —Ry
Rk = _’I‘é—r O .
k

Consequently, after orthogonalizing Bk in (16) and modifying Rk, we have ||[I +XY|? ~ |[I + GiHi|> = 1+ p(Rk) We
also have ||S|| ~ ||(I + GH,C) 1Al = [p(AAT + BkRkBT)]V2 involving the spectral radius of a symmetric low-rank update
of the sparse matrix AAT. The right hand side of (15) can be estimated using the power method [9].

3.3. Feedback gains

When solving large-scale problems, it is impossible to output the high-rank approximate solution H, € R™" explicitly.
For large-scale AREs and (non-)linear matrix equations in [36,37,42], for instance, the solutions can be represented
approximately as numerically low-rank matrices. These can then be stored in an O(n) memory requirement. For our
large-scale ARE with a high-rank H, the approximate solution Hy is represented recursively as in (4) and (9) in a nontrivial
manner. These difficulties can be bypassed by outputting the estimated feedback gain F, = —(R+B"HB)"'BTH,A € R™*",
approximating the feedback gain F; = —(R 4+ BTXB)~'BT XA, for the associated LQR control.

From (4), (7) and (9), we have

Fip1 = —(R+ B"Hgy1B) " 'BTHy 1A, (18)
with Fg = —(R + BTHB)~'BTHA. Expanding (18) in terms of F, does not lead to a more efficient updating formula.



136 B. Yu, H.-Y. Fan and E.K.-w. Chu / Journal of Computational and Applied Mathematics 361 (2019) 130-143

For convergence control, we may utilize
OF, = Fep1 — Fe
—(R+ B"Hi1B) 'B"Hy41A + (R + BTHyB) 'BTH,A
= —(R+ B"Hy11B)"'B"8Hy [I, — B(R + B"H,B)"'B"H,] A.

3.4. Algorithm and operation counts

We summarize the SDA_h below. We only truncate and compress By, but with M1, Tiy1 and Gy in (9) implicitly
containing Hys+1 = He+A] HiAx — Dﬁzlskﬁ [Dﬁzl]T. Practically, we only update Si1, Ais1Bir1, Hir 1Bt and Al {Hi 1 Vierr
with Vi1 = Biy1 OF Ag1Bir -

Recall that the maximum number of nonzero elements in any row or column in A is bounded from above by c,, for
flop counts in the second column in Table 1. In the third column, the number of variables is recorded. Only the dominant
operations or memory requirements are included. Most of the work occurs in computing By 1, for which AyBy has to be
calculated recursively, as A, and Hy are not available explicitly. We use the notation Ny = Z]k:] m; and a QR decomposition
of an n x r matrix requires 4nr? flops [9, p. 250].

For the details, let s, and s;, be the numbers of flops for the products of an arbitrary row or column vectors to A, and
Hy, respectively. After some tedious counting, we deduce that

Se| 2 21| sk=1 +n 14 5my_q
sp| T |24+mer 2] |sp 0.5m2 | +4m_q +2|

Consequently, for k > 1, we have s, s, < ¥n, with so, s; < 2c,mn and

k

1 )
Y < 22+ mmax)kcam + Z(m?nax + 18Mpax + 6) 2(2 + Mmax)
j=0

k+1
<2+ mmax)’< |:2Cam + 2 (mfnax + 18Mpax + 6):| . (19)

Algorithm 1 (SDA_h for DAREs with High-Rank H)
Input: A, H € R™" and orthogonal B € R™™ R~ T =R~ T € R™™,
positive tolerances 7, and €, and Myay;
Output: B, € R™ ™M R, € RM*™Me feedback gain F, € R™*",
dual residual 7. and estimated relative error ré");
SetAg =A, D’ =Dy =0 e R™, Sy =1, B =B, Ry =R,
My=H,Co=0and Tp = 1; my =m, 7y = 2¢ and k = 0;
Do until convergence:
|f?;< <€, Set B. = B, Re = Ry and?‘; :?k;
Estimate r® as in (15); Exit; End If
Compute By1 = [By, ArBxl,
Rt = Re® [Re— (I + RiB{ HiB) ™' RiB] HiBiRi |

(1) _ (2) _ AT
D¢y = AkBi, Diiy = Ay HiBr,

Skpr = (Im, + ReB[HiBi) ™' Ri;

with the recursions:
T

A1 = Ai - Dgigls’“rl [DgchZl ,

Hir1 = Hi + Al HiAy — DS [DE 7.
Compute By, by truncating Byyq W.I.L. 7g;
Set Ri1 < Ri, s Miy1 < rankByq;

If Mgy1 > Mmax, Set Myiq <= Mpax;
Compute riy1 = [ Da(Big1Rir 1B, )lls
Compute i = [|GI| + (|G [l + AGK(T + HG)'AT;
Compute Tyy1 = Tkt1/qk; End If

Set k < k—+ 1.

End Do

Recall that my is controlled by the truncation in Section 3.1. In our numerical examples in Section 5, the flop count at
the end of Algorithm 1 dominates. This corresponds to the (2 + mpyay)* factor in the upper bound of the total flop count.
With respect to k, this exponentially growing factor looks menacing. Nonetheless, it behaves as a constant with respect
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Table 1
Operation and memory counts for the kth iteration in Algorithm 1 (SDA_h).
Computation Flops Memory
§k+1 MySk Ni1n
Rest ms; + 3mZn o(m2)
D§<1431' Dﬁ:l My [(Sk + S;() + 2m,<n] -
Sk41 my(sy, + Myg1n) _
Bt 4min —
Rit1 o(my) -
Tt 1 8m?n _
Total [(muc + mugr)si + (2my + myq)s, Ni1n

+3my(5my + myy1)n)

to n, especially with the fast (near) quadratic convergence of the SDA without (with) truncation. This is evident for the
examples in Section 5, requiring only 5 to 6 iterations to machine accuracy.

Note that we have not included, in Table 1, the workload for the estimation of ¢ (in (30)), ||8H|l (in (29)) or ||l
(in (13)) by power method. As elaborated later, the associated computation is relatively expensive and should only be
conducted selectively after convergence; see Examples 3 and 4 for the corresponding CPU times.

3.5. Error analysis

A detailed error analysis for the SDA can be found in [36, Section 3]. Here, we just repeat an abbreviated error analysis
for completeness, as from [37, Section 2.4].

Let 8Gi, 8H, and S§A; be the errors in G, Hy and Ay, respectively, from round-off or the truncation process. Let
8, = max{||8Gell, lI6Hkll, lI6Ak]l} and T = max{t,, 73}. From the SDA_h in (3) and the truncation process in Section 3.1, we
can show that

Skt < (14 )k + ) + O((8 + 1)), (20)

with a = ||Acll, x = |(I+GeH) |, B = max{||Gll, |Hkll} and ¢ < a,<ak(2,3k+2akozk/3,f+ak). When the SDA_h converges,
we have oy, By converging to constants and ay to zero as k — oo. This indicates that the error §j is not magnified through
(3). After N iterations, we have

N
Sgr < M8+ | Y MM | T4 HOTs < M((8 + N7) + HOTS, (21)
j=1

with the error magnifying factors M](-N) = ]_[f:j(l + c). Here HOTs denote the higher order terms in 8, (k =0, ..., N) and

7. With the SDA_h converges reasonably quickly and ¢, — 0, ME)N) will not be too far away from unity. These indicate
that the errors in SDA_h behave well and Algorithm 1 is stable in the sense of (20) or (21).

4. Continuous-time algebraic Riccati equations

For CAREs, we assume that linear systems associated with A — yI and its transpose are efficiently solvable in ¢;n flops.
In other words we assume that G, is not large. For A being banded, for example, we have ¢, = 0(1) when Gaussian
elimination with partial pivoting is applied.

4.1. Cayley transform

From [2], the matrices A, G and H in the CARE (1) are first treated with the Cayley transform:
Ao =1+2yA,, Go=2yA'GA,, Ho=2yA,HA}" (22)
with 4, = (4, + GA;TH)”, A, =A—yl and y > 0. The SMWF implies
A, =A'—A'B- (In+R'BTA;THA'B) 'R -BTA THA . (23)
With the above initial Ag, Gop and Hg, the SDA_h still works, again with exactly the same forms and updating formulae

for Ay, By, Dg(l), Df) and the kernels R, and Si. One relevant difference for CAREs is that Ay # A but satisfies, from
(22) and (23),

A — (I +2va-1) — pDs. [p@]" a1
0= (ln+2yA;") —Dy’So Dy’ | . Bo=A,'B. (24)
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The corresponding rank m perturbed update has the form
_ _ -1 __
Dy’ =By, DY =A; HBy, So=2y (Im+R'BJHBy) R (25)
Note that all computations can be realized efficiently, with A} 1B computed in O(C;mn) flops.

Similarly, we have Cp = 0, To = 1 and

Ro =2y [R’l — R™'BJ HBo (I -+ R"'B] HBo) " R’]] . (26)

4.2. Algorithm and operation counts

The initial Ag, Gy and Hp in (22) are different for CAREs, as compared to (3) for DAREs, because of the Cayley transform.
These create some differences in the SDA_h for CAREs, which are summarized in this section.

Residuals
For the CARE (1), we have the residual for Hy:
fi = C(Hy) = C(My) + [C(GTiC ) — H] — MiBR™'BT G Ty G — Ty G BR™'B™ M,
(M) = AT My + MyA — MBR™'B" M + H,
C(GTC ) — H = ATGTC + GeTiCl A — GeTiCy BR™'BT G Ty G/ .

As for DAREs in Section 3.2, the norm of the residual is not easy to compute, although may be estimated using the power
method [9] with high additional costs after convergence.

Feedback gain
For continuous-time, we have the simpler update for the approximate feedback gain:
Fes1 = —R7'B"Hip1 = —R7'BT (Mis1 + Cer1Tir1 Gl )
= —R'B" [(My + A{ MiA) + Cer1 Tes1 Gy |
= Fe— R7'BT(A{ MiA + G T Gy, (27)

with Gt = [A] Co, AT HiBil, Teyr = T ® [— (Iny, + RiBY HiBy) ™' Rk] and F; = —R~'BTH. The computation in (18) and
(27) can be realized in O(n) complexity.
As for the differences of successive iterates, we have

8Fc = —R™'B"(Af MiAx + Cir1 Tk 1 Gl )

Finally, recall that H, cannot be explicitly stored or output except in terms of G, Ty and the implicit recursion in M.
These can be used to retrieve the approximate feedback gain Fy.

Operation counts

The operation counts in Table 1 are still valid for CAREs, with cn replaced by ¢;n, the flop count for one solve of the
linear system associated with A — yI or its transpose. There will be an additional start-up cost associated with Ay, By and
Ro in (22), (24), (25) and (26). This amounts to 4¢,mn flops. As for the different costs when Ag and Hy are multiplied to
row or column vectors, we have to replace ¢, in (19) and Table 1 by 2¢, + ¢, +4m; + 2. Qualitatively, the operation counts
are of similar orders for both DAREs and CAREs, with ¢, playing a part for CAREs because of the linear systems associated
with A, or its transpose.

4.3. Lyapunov equations

Consider a special case of (1) with G = 0, the Lyapunov equation:
CoX)=ATX +XA+H =0.

As in Section 2.3 for Stein equations, the singular values of X may be required. Multiplications of the approximate solution
(in recursion form) to given vectors can then be realized efficiently.
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Table 2

Example 1 (n = 10,000, y = 1, 7 = 107"°, mpax = 50).

k dHy ex [ Tk T my Sty t
1 1.70e—02 2.42e—02 3.13e—02 3.38e—02 3.58e—02 1 0.022 0.022
2 2.48e—02 5.83e—03 1.24e—03 2.19e—03 2.19e—03 2 1.332 1.354
3 4.44e—04 2.28e—05 1.58e—06 8.58e—06 8.58e—06 2 1.331 2.685
4 1.09e—07 1.25e—10 2.49e—12 1.30e—10 1.30e—10 2 3.605 6.290
5 6.52e—15 0.00e—00 6.14e—24 5.75e—17 5.75e—17 2 4.821 11.482

Table 3

Example 1 (n = 100,000, y = 1, g = 10715, mpax = 50).
k dHy ex [ Tk i my Stk t
1 1.70e—02 2.42e—02 3.27e—02 3.38e—02 3.58e—02 1 0.232 0.232
2 2.48e—02 5.83e—03 1.35e—03 2.19e—03 2.19e—03 2 14.702 14.934
3 4.44e—04 2.28e—05 1.88e—06 8.58e—06 8.58e—06 2 14.390 29.324
4 1.09e—07 1.71e—10 3.55e—12 1.30e—10 1.30e—10 2 40.495 69.819
5 6.52e—15 0.00e—00 1.25e—23 5.75e—17 5.75e—17 2 91.299 163.574

5. Numerical examples

Here we illustrate the effectiveness of the SDA_h. Only numerical examples with CAREs, which are obviously more
difficult to solve because of the Cayley transform involved, are presented here. Algorithm 1 was coded in MATLAB
2010b [11] on a 64-bit PC with 3.4 GHz Intel Core i3 processor and 8G RAM in the Hunan University of Technology.
The machine error is reflected by eps = 2.22 x 1016 in MATLAB. Recall that ry = || Dg(Gy)|| is the residual for Gy for the
dual equation (14). The stopping criterion in terms of the relative residual 7 for Gy is

~ Tk
'y = S €, (28)
Gl + NGkl + IAGK(I + HG)~'AT|
for a small tolerance € > 0. We also compute the estimated relative error for Hy_1:
_ I8Hkll _ IIHk—1 — Hell

dHy—1 = = (29)
([ Hic I I[H |

the upper bound of the relative error r,(f) in (15):

_ k+1
= 10+ GH) A" - I + GeHil. (30)

and the normalized residual 7 in (13), estimated by the power method [9] (after convergence). We add the symbol “x"
when the power method is terminated prematurely after 150 iterations.

Design of numerical examples

Because of the high-rank structure in H (thus Hy and X), the convergence control in (28) is performed making use of
the low-rank Gy. For the accuracy of the approximate solution Hy for Examples 3 and 4, we have estimated dHy and ¢y, for
the relative errors, as well as the normalized residual 7, using the power method. Examples 1 and 2 are designed with
known explicit solutions. Example 2 shows that SDA_h produces approximate solutions at almost the same accuracy as the
original SDA in (3) and various estimates of relative errors and residuals are reasonably consistent. Similarly, Examples 2-4,
modifying real-life applications, illustrate the accuracy and efficiency of the SDA_h.

Example 1. We first tested SDA_h on a simple system withA = —I,, B=(1,0,...,0,1)",R=1and H = 2I,+ BB" with
n = 10,000, 100,000, 1,000,000. The solution of CARE is X = I, and the feedback gain F = —B'. We set the truncation
tolerance 7, = 10~ for By and its maximum width my,x = 50. We stopped when 7 < € = 10~1. The results are listed
in Tables 2-4, where e, = ||H, — I,|| evaluates the true relative accuracy at iteration k, t, = Zf.‘:] §t; is the sub-total CPU
time and §t; is the CPU-time required for the ith iteration. The relative errors, known exactly, reflect the accuracies of Hy
accurately.

Example 2. We use the real steel profile data from [18], replacing the original matrix A by A — I,,. We assign H =
BBT —AT —Afor X =I,. We construct explicitly A,y and Hyy 1 from Dgl, Skt Dﬁzl, Ay and Hy, (see also (7) and (8)). As a
comparison, we also computed Hy.1 by the original SDA in (3). Note that only (n = 1357, m =7) and (n = 5177, m =7)
are considered as the SDA fails for larger n. The accumulated CPU times of iterations for various dimensions is plotted in
Fig. 1 and the relative errors E;, = |Hy — I||; and E; = ||H, — I||; are listed in Table 5.

The ranks of the approximate solutions were recorded as m; and SDA_h stopped when the relative residual 7, <
5.0 x 101>, We see from Fig. 1 that SDA_h beats the original SDA in CPU time. Table 5 shows that SDA_h attained almost
the same accuracy as the SDA and ¢s (for n = 1357) or ¢ (for n = 5177) were good estimates of the relative errors.
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Table 4
Example 1 (n = 1,000,000, y = 1, g = 10715, mpax = 50).
k dHy e Dx Ik Tk my Sty ti
1 1.70e—02 2.42e—02 3.31e—02 3.38e—02 3.58e—02 1 2.232 2232
2 2.48e—02 5.83e—03 1.39e—03 2.19e—03 2.19e—03 2 219.000 221.232
3 4.44e—04 2.28e—05 1.99e—06 8.58e—06 8.58e—06 2 220.473 441.669
4 1.09e—07 2.08e—10 3.96e—12 1.30e—10 1.30e—10 2 616.191 1057.860
5 6.52e—15 0.00e—00 1.57e—23 5.75e—17 5.75e—17 2 1599.382 2695.124
Table 5
Relative error for SDA and SDA_h in Example 2.
n=1357, y =435 1,=10"0 mpy =190
k Ep Eq my Tk i
1 3.65e—02 3.65e—02 14 2.24e—08 3.15e—03
2 1.33e—03 1.33e—03 28 4.05e—10 5.67e—05
3 1.78e—06 1.78e—06 56 2.49e—13 3.49e—08
4 3.19e—12 3.19e—12 112 2.56e—19 3.59e—14
5 1.88e—15 1.88e—15 190 1.06e—20 1.48e—15
dHy = 3.19e—12 ¢s = 5.15e—22
n=>5177, y =435, 1,=10"0 mpy =190
k Ejy Eg my Tk i
1 4.12e—01 4.12e—01 14 7.93e—07 2.31e—02
2 1.70e—01 1.70e—01 28 1.58e—07 4.54e—03
3 2.89e—02 2.89e—02 56 1.06e—08 3.02e—04
4 8.37e—04 8.37e—04 112 9.06e—11 2.58e—06
5 7.01e—07 7.01e—07 190 4.01e—14 1.14e—09
6 491e—14 491e—14 190 7.36e—20 2.09e—15
dHs = 4.43e—11 ¢ = 1.19e—23
2 35
15F 3y
Sg § 25
g | 2
= = 2+
2 2
S 05 S
= ® 151
e e
& of &
@ 2 1
—+— SDA
—0.5x . s 1 05k
4
1 . . . o
1 2 3 4 5
Iteration Iteration

Fig. 1. Sub-total CPU time with log for SDA and SDA_h in Example 2.

Example 3. We apply SDA_h on the steel profile example from [18], with A modified to A — (||A||/2)I, and H = I, for
n = 1357, 5177, 20209, 79841 and m = 7.

The rank my was capped at 190 and SDA_h was terminated when T, < € = 5.0 x 10~ The accuracy of the approximate
solution Hg achieve high relative residuals of O(10~'%) efficiently. Adjusting the values of y (the shift in the Cayley
transform from CAREs to DARES), 7, and the maximum rank mmax may improve the accuracy of the approximate solution
or the speed of convergence further. In our experiments, higher accuracy could also be obtained by setting m,, to a larger
positive integer greater than 190, with higher CPU-times and RAM requirements.

The corresponding results are plotted in Fig. 2, where the left and the right vertical axes (in log,, scale) in each subplot
are for the residuals (ry, or 7, with the latter represented by Rry in the legend) and CPU Time’s (8t or ty), and the horizontal
axis records the iteration number and the corresponding truncated rank. The graphs show the residuals decline gently at
first and then decrease sharply. Also, §t; and t; rose exponentially as predicted. The SDA_h attains good accuracy, with
Te = 4.76 x 1071°,4.12 x 107'4,5.80 x 10712, 2.95 x 10~'° (represented by Hry in Figs. 2 and 3) for n = 1357, 5177,
20,209, 79,841 respectively. The iterations have been terminated after 6 iterations (with mpy., = 190 reached), with 7
less than O(10~ ). We have not iterated further because of costs.
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Fig. 2. Residual and CPU time (in log,y) for SDA_h in Example 3.

The additional CPU-times for the estimation of dHs (or Tg) for n = 1357, 5177, 20,209, 79,841 are respectively around
4, 35, 178, 842 (or 5, 38, 182, 854) minutes, with the last two calculations failing to converge within 150 iterations in the
power method [9] (starred but still producing reasonably accurate estimates). This illustrates the difficulties mentioned
before, in the computation associated with Hy because of its high-rank and recursive structure.

The computation has been controlled by mp,x = 190 and not the truncation tolerance t, (set artificially small). As for
Example 1, we conclude that dHy over-estimates the exact relative error e, while ¢, under-estimates. Thus Hg is probably
an approximation to an accuracy of 0(1071%) to 0(10~'%), bounded by the maximum of 75 and ¢, as indicated by Tg
(0(10~1%) to 0(10~19)). The linear progression of t; with respect to n indicates an O(n) computational complexity.

Example 4. We considered the 2D unsteady Navier-Stokes problem [38-40]. We applied the finite element method for
flow problems [43,44], which led to the Riccati equation in X:

I+A+o)"X+XA+wl)—XBB'X =0,

with w > 0, A being the discrete Navier-Stokes operator and B the input matrix derived from the gradient operator. For
different numbers of finite elements, we tested the cases n = 1922, 3362, 7442, 10082 and y was 0.35, 0.21, 0.136 and
0.118 respectively. Also, m = 7, = 10.1, 7y = 1073 and mmax = 800. In this example, SDA_h was terminated when
Tk < € = 9.0 x 1071 or mma > 800. The corresponding results are plotted in Fig. 3, similar to Fig. 2 for Example 3
and showing similar behaviour. The residuals show a gentle decline at first and then decrease sharply. Also, §t; and ¢
rose exponentially as predicted. In our experiments, the SDA_h attains the accuracy of O(10~'%) (in terms of relative
residual) for n = 1357, 3362. It has been terminated after 8 iterations (with mp,x = 800 reached) for n = 7742, 10,082,
respectively with relative residual 0(10~'2) and 0(10~'"). We have not iterated further because 4899 s for n = 7742 and
7542 s for n = 10,082 have already been consumed. The expensive quantities dH; (0(107%) to 0(107%)), 75 (0(10~'%) to
0(107?)) and ¢ (less than 107'°) are presented in Fig. 3, illustrating the efficiency of the SDA_h. Recall that the actual
relative error of the approximate solution is likely to be bounded between dH; and ¢s.

6. Conclusions

Large-scale AREs with low-rank constant terms were solved efficiently by the SDA in [36,37] via the numerically
low-rank of the solution X. When the constant terms of AREs are high-rank in some applications [38-40], calculation
of the residual and relative error at each step of the SDA becomes difficult because of the high rank of X. With careful
estimation of relative residuals and errors, we have proposed the SDA_h for large-scale AREs with high-rank constant
terms. Efficient control of convergence and economical output of the feedback gain make the SDA_h feasible for CAREs
and DAREs. Numerical experiments have validated the effectiveness of the SDA_h.
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Fig. 3. Residual and CPU time (in log,,) for SDA_h in Example 4.

For future work, we may investigate the possibility of solving large-scale differential and difference equations in X
with high-rank constant terms. We propose to output the feedback gains F4, F. € R™", which are much smaller than X
when m <« n. We do not know how to tackle the case when m & n when n is large. It may well be too greedy, wanting to
control a large system with many controls and outputs optimally. After all, we need some simplifying structures to build
an efficient algorithm.
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