
JOURNAL OF 
COMPUTATIONAL AND 
APPLIED MATHEMATICS 

ELSEVIER Journal of Computational and Applied Mathematics 50 (1994) 613-623 

Spectral properties of solutions of hypergeometric-type 
differential equations 

A. Zarzo a,*y1, J.S. Dehesa b 

a Departamento de Matema’tica Aplicada, Escuela Ttknica Superior de Ingenieros Industriales, 
Uniuersidad Polittknica de Madrid, C/ Jose’ Guti&-rez Abascal2, 28006 Madrid, Spain 

b Departamento de Fisica Moderna, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain 

Received 14 August 1992; revised 6 January 1993 

Abstract 

The second-order differential equation a(x)y” + my’ + hy = 0 is usually called equation of hypergeometric 
type, provided that (+, T are polynomials of degree not higher than two and one, respectively, and h is a constant. 
Their solutions are commonly known as hypergeometric-type functions (HTFs). In this work, a study of the spectrum 
of zeros of those HTFs for which A = - VT’ - &(, - l)(+“, 1/ E [w, and (+, T are independent of v, is done within the 
so-called semiclassical (or WKB) approximation. Specifically, the semiclassical or WKE3 density of zeros of the HTFs 
is obtained analytically in a closed way in terms of the coefficients of the differential equation that they satisfy. 
Applications to the Gaussian and confluent hypergeometric functions as well as to Hermite functions are shown. 
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1. Introduction 

As is well known, many important problems of theoretical and mathematical physics (e.g., 
the study of the Laplace and Helmholtz equations in curvilinear coordinates by means of the 
method of separation of variables, or, in quantum mechanics, the nonrelativistic and relativistic 
equations for the Coulomb potential, the harmonic oscillator,. . . > lead to the differential 
equation 

u” + 
F(x) %4 
-u’+ ~ 
44 @*(XI 

u = 0, 
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where u and 6 are polynomials of degree at most two and 7’ is a polynomial of degree one. 
As Nikiforov and Uvarov [I41 pointed out, to study this differential equation, it is useful to 

reduce it to a simpler one of the form 

a(x)y” + 7(x)y’ + Ay = 0, (1) 
where (T, 7 are polynomials of degree at most two and one, respectively, and A is a constant. 

This reduction is done [14] by taking u = 4(x)y, with 

4’(x) r(x) 

4(x) a(x) ’ 

T(X) being the first-degree polynomial 

7r(x)=&T’-F)* (~(u~-;))2-G+ku. 

Notice that, since rr is a polynomial, the constant k is determined by the condition that the 
expression under the square root sign is the square of a first-degree polynomial. 

The differential equation (1) is usually known [14] as an equation of hypergeometric type and 
its solutions as functions of hypergeometric type (HTFs). Here we will restrict ourselves to the 
HTF for which 

A = -v7’ - &(V - l)C+‘, V E R. (2) 

To this class belong, e.g., the Hermite functions, some particular hypergeometric functions and 
the classical orthogonal polynomials. 

The aim of this work is to study the distribution of zeros of the aforementioned broad class 
of HTFs defined above. Denoting their zeros by {x,,~}~$, this distribution is 

&f)(x) = ; ,$ S(” _X”,i). 
I-1 

This study will be done within the so-called semiclassical (or WKB) approximation [7,10,14]. 
As described in Section 2, a recent result [3] based on this method allows us to obtain in an 
analytical way an approximation (to be called from now on semiclassical or WKB density of 
zeros) of the density function corresponding to (3) for the solutions of linear second-order 
differential equations. As a straight consequence of this result we are able to give this “WKB 
density of zeros” of the HTFs, in terms of the coefficients of the differential equation (1) that 
they satisfy (see Theorem 2). 

Section 3 contains applications of the above general result to some particular cases which 
will be chosen by taking into account the canonical forms of the HTF. As shown in [14], by 
inserting certain linear changes of variable, the differential equation (1) can be reduced to four 
canonical forms, which are Gaussian and confluent hypergeometric functions, Hermite func- 
tions and a particular case of Lommel functions which are related with Bessel functions. Here 
we will consider the first three forms because, in those cases, we will be able to show the 
goodness of our approximation, since the exact density of zeros of some of them (the classical 
orthogonal polynomials) is known [8,12,15]. 
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Finally, some concluding remarks are given. 

2. The WKB method: density of zeros of the hypergeometric-type functions 

The problem of finding uniformly asymptotic solutions of differential equations of the form 

a&x)y” + a,(x)y’ + hr(x)y = 0, 

as A + +m, can be considered as one of the examples which show the transition from the 
classical physics of the late nineteenth century to the quantum mechanics of the early twentieth 
century. The initial work of Wentzel, Kramers and Brillouin on this subject, which was 
extended later on by Langer [ll] and many others, gave rise to a method (usually known as 
WKB method) to obtain such approximate solutions which are commonly called semiclassical 
solutions [7,10]. This method has been widely used in many problems of mathematical physics, 
leading to asymptotic formulas for many special functions (e.g., Bessel functions [ll], classical 
orthogonal polynomials [14], etc.). 

Here we are going to use this method in order to obtain the WKB density of zeros, which is 
an analytical approximate expression for the density of zeros of solutions of any linear 
second-order differential equation 

u,(x)y” + u,(x)y’ + u,(x)y = 0. (4) 

It should be remarked that this approximation is obtained in terms of the coefficients ai( 
i = 0, 1, 2, which characterize the above differential equation. The result is established by 
means of the following theorem [3]. 

Theorem 1. Let S and E be the functions 

S(x) = 2 {2ao(2a2 - ai) + a,(2& - a,)}, ,h 
0 

1 E(X)' 
i 

W(x)12 
4[S(x)12 4w 

-&Y(x) . 
1 

Then, the semiclassical or WKB density of zeros of the solutions of (4) is given by 

PWKB(4 = ; w)11/27 XEZGR, 

(5) 

in every interval Z where the function S is positive, provided that the condition E(X) -K 1 holds. 

Proof. Although the proof of this theorem can be found in [3], for completeness we include 
here a scheme of it. 

Firstly, insert in (4) the change of variable 

y(x) = u(x)exp - :I$$ dx) 
i 
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to obtain its Schrijdinger form 

UN + S(X)U = 0, 

where the function S is given by (5). It is then clear that the zeros of the function y exactly 
coincide with the ones of u. On the other hand, oscillation theory [5] allows us to conclude that 
when S(X) < 0, u has at most one zero. So, to calculate the density function we are interested 
in, only the case S(x) > 0 should be considered. 

Then, by taking 

4(x) = [I[s(t)]“’ dt, U(X) = [s(X)]1’4U(x) 

in the Schrodinger form of (4), we obtain the following 
V(4) (= u(x)): 

differential equation for the function 

where a(4) = E(X) and E is given by (6). 
The application of the WKEI method to this equation tells us that if the condition 6(&j +K 1 

holds, then its semiclassical solution has the expression 

V(4) = C, cos 4 + C, sin 4. 

So, the semiclassical approximation u wKB of the function u is 

UW&) = 

rsc:, I 
11,4 sin[C* + 4(417 

where Cj, i = 1, 2, are constants. 
Since 4(x) is a positive increasing function in the interval where S(x) is positive, the zeros of 

uwKB can be denoted by xi <x2 < - - * <x, < * - * . Moreover they satisfy 

4(X/J=k7T-C2, k=O, 1,2 )... . 

so, 

$#J(x,, = k + o(k). 

This latter expression allows to consider the function 

N(x) = $b(x) 
as the functional extension of the cumulative number of zeros of uwKB. Then, the construction 
of the semiclassical or WKB density of zeros is completed because, by definition [3], we have 

pwKB(x) = F = ~[qx)]‘/“. 0 
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To compare this WKB density of zeros with the true one (see (3)), one has to take into 
account that, if we denote by 5 the total number of zeros, the function N(x)/5 gives the 
proportion of zeros less than or equal to X; so p WKB(~)/t is the function which should be used 
for comparison. 

Let us consider now the hypergeometric differential equation (1) with the restriction (2). In 
this case, the WKB condition E(X) -=z 1 (E given by (6)) is 

where P(x; V) and Q<x; V> are polynomials in x and also in the parameter V. It is easy to show 
that, if we consider P and Q as functions of V, these two polynomials are such that 
deg(P(x; v)l< dedQ( x; v)}. So, for the HTFs, the WKB condition holds if we choose v large 
enough. 

On the other hand, the function S given by (51, which specifies the interval where the WKB 
density of zeros is defined, has the expression 

1 
S(x; V) = 

w41 
*+; v), 

where R is the following polynomial of second degree in the variable X: 

R(x; V) = 2a(x)[2h -T’(X)] + T(x)[2a’(x) -T(X)]. (8) 

Or, taking into account that (T and T are polynomials of degree at most two and one, 
respectively, one has 

R(x; V) = c&)x2 + C~(V)X + co(v), (9) 

with 

C2(V) = -Tr2 + T’fY + 2a”( -(VT’) - ;( - 1 + V)z&), 

Cl(V) = -27(0)7’ + 27(O)& + 4a’(O)( -(VT’) - ;( -1+ V)V(T”), 

C,,(V) = -T(0)2 + 27(0)U’(0) - 2U(0)T’ + 4U(0)( - (VT’) - ;( - 1 + I+“(0)). 

It is then clear that S is positive in every interval where R is. So, the result stated in Theorem 1 
can be summarized for HTFs in the following theorem. 

Theorem 2. The semiclassical or WKB density of zeros of the HTF solutions of (1) with the 
restriction given by (2) is 

Pw&; 4 = 2V;(x) v’R(x;7 (10) 

in every interval where the function R (given by (8) or (9)) is positive, provided that v x=- 1. 

From the general expression (lo), many particular cases of interest could be deduced. But, 
before describing them (this will be done in the next section), it should be pointed out that, 
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obviously, the density of zeros (7) is not invariant under any change of variable. So, if we take 
x =x(t) in the general linear second-order differential equation (41, the WKB density of zeros 
of the solutions of the new equation cannot be obtained by replacing x by x(t) in (7). However, 
if the change is linear, say x(t) = c,t + c2, then one has the relation 

PWKBP) = I Cl I PWKd.4 I x=x(l)7 

as can be easily deduced. 

(11) 

3. Applications: canonical forms of the hypergeometric-type differential equation 

In this section we will apply the general result stated in Theorem 2 to some particular cases 
of interest. As pointed out in the Introduction, in doing this, the canonical forms of the 
hypergeometric-type differential equation (1) will be considered. 

These canonical forms are obtained from (1) by means of certain linear changes of variable 
[14] and they are closely related with the concrete degrees of the polynomials c and 7. For 
illustration, we consider three of these forms: Gaussian and confluent hypergeometric equa- 
tions and Hermite equations. 

3.1. Gaussian hypergeometric functions 

If u is a second-degree polynomial with two different roots, say (T(X) = (x - a)(b -x>, the 
change of variable x = a + (b - a>t transforms (1) into 

t(1 - t)y”(t) + jj--&T[a +(b-a)t]y’(t)+hy(t)=O. 

Then, it is always possible to choose parameters CY, p and y so that this equation can be written 
in the form 

t(l-t)yl(t)+ [y-(cr+p+l)t]y’(t)-c$y(t)=O, 

which is the Gaussian hypergeometric equation [l], whose solutions are usually represented by 
F[ LY, p; y; t]. In this case, the restriction given by (2) becomes CY = - V, and the application of 
Theorem 2 gives rise to the following corollary. 

Corollary 3. The semiclassical or WKL? density of zeros of the hypergeometric functions 
F[-v, j3; y; t], vE [w, is 

1 

PWKLk 4 = 27it(; _ t) U’Rdt; 4 ’ 

where 

Rl(t;u)=[1-(p-v)2-44yp]t2+[2Y(P-u-1)+4vP]t+y(2-y), 

in every interval where the second-degree polynomial R, is positive, provided that v >> 1. 

(12) 
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Fig. 1. WKB density of zeros (see (13)) of Legendre polynomials P,,(x) for n = 1000, 1500, 2000, 2500, 3000. 

Fig. 2. WKB density of zeros (see (16)) of Laguerre polynomials L’$(x) for II = 1000, 2000, 3000,4000,5000. 

As a specific example, let us consider now the Legendre polynomials (P,(x)),~~. These 
polynomials can be expressed in terms of the Gaussian hypergeometric functions [2,14] as 

P,(x) =F[ -n, n + 1; 1; ;<1 -X)1. 

So, putting v = 12 E N, p = n + 1, y = 1 in (12) and taking into account the relation (11) (notice 
that P,(X) and the corresponding hypergeometric function are connected by a linear change of 
variable), we obtain the following WKB density of zeros for the Legendre polynomials: 

(13) 

x0 being 1 + l/(n* + n) , provided that II B 1. The density function (13) is plotted in Fig. 1 
for several values of II. 

On the other hand, it is known [6,12,15] that in the asymptotic limit (n + a) the exact density 
of zeros of Legendre polynomials is given by the inverted semicircular law 

p(x) = i(l -x2)-“*, XE (-1, 1). 

Then, we can compare our approximation with (14) by dividing (13) by it (total number of zeros 
of the nth-degree Legendre polynomial) and taking that limit in the resulting expression. This 
gives 

lim 
PwKHFi n) = ;(l _x,)-l/*, 

XE (-1, l), 
n-m 

which exactly coincides with (14). Notice that due to the fact that limn+m~O = 1, we have 
XE(-1, 1). 
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3.2. Confluent hypergeometric functions 

Let u and 7 be two polynomials of degree one: (T(X) = (x -a>, T(X) = T’X + T(O), T’ # 0. 
Taking x = a - (t/T’) in (11, one has 

t)‘“(t) +T[U +bt]y’(t) - ;y(f) =o. 

Then it is always possible to choose parameters (Y and y so that this equation can be written in 
the form 

o”(t) + [r-t]y’(t) -aY(t) =o, 

which is the confluent hypergeometric equation [ll, whose solutions are usually represented by 
F[cr, y; t]. In this case, the restriction (2) reduces again to (Y = -v, and the application of 
Theorem 2 gives rise to the following corollary. 

Corollary 4. The semiclassical or WKB density of zeros of the confluent hypergeometric functions 
F[ -v, y; t], v E R, is 

PWI& v) = 
\/2y - y* + (2y + 4v)t - t* 

2,Kt 
3 (15) 

in every interval where the polynomial under the square root is positive, provided that v >> 1. 

A special case of confluent hypergeometric functions are the generalized Laguerre polynomi- 
als {L(“)(t)} nE N’, a > - 1, ru41: 

Li)(t)=F[-n, a + 1; t]. 

So, taking v = IZ E N and y = a + 1 in (15) we get the WKI3 density of zeros for this polynomial 
sequence: 

PWKB(t; n)= d1ea2+2(~T~a+1)t-t2 , tE(tl, t2), nB1, 

where 

(16) 

i J 1 -a* 
t,=(2n+a+l) l- l+ 

(2n + a + l)* 
1 

’ 

i : 

1 -a* 
t,=(2n+a+l) l+ l+ 

(2n + a + l)* 
I 

’ 

The density function (16) is plotted in Fig. 2 for several values of n. 
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WKE3 (Eq. (16)) and random matrices (Eq. (17)) density of zeros of the generalized Laguerre polynomial 

WIU3 density of zeros (see (18) with II = v) of Hermite polynomials H,(x) for n = 1000, 1500, 2000, 2500, 

BY using a technique based on random matrices, Bronk [4] has also calculated an approxi- 
mate density of zeros for the generalized Laguerre polynomials. His expression is 

P(t n)= \/(1-a)2+2(2n+a-1)t-t2 
1 ; 27Tt 

z<x<4n+2a 

’ 4n 
7 (17) 

provided that the condition 12 x=- a x== 1 holds. It is then clear that if this last condition is 
considered, both expressions (161, (17) are practically the same, as shown in Fig. 3 where both 
functions have been plotted for a = lo3 and 12 = 106. 

3.3. Hermite functions 

When (T is a constant (a(x) = 1) and the degree of r is exactly one, the hypergeometric-type 
differential equation can be reduced to the Hermite one 

y’,(t) - 2ty’( t) + 2Cly(t) = 0, 

by means of a linear change of variable. Here condition (2) implies (Y = V. 
Then, from Theorem 2 one has the following corollary. 

Corollary 5. The semiclassical or WKB density of zeros of the Hermite functions is 

provided that v x=- 1. 
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When v = YI E IV, the Hermite functions become the Hermite polynomials [H,(t)), EN whose 
asymptotic density of zeros contracted to the interval [ - 1, l] and normalized to unity is known 
[6,8,9,13,15] and which is given by the semicircular law 

p(x) = ;m, 
It is easy to show that 

zeros. Just taking t = (2n 

XE [-l,l]. (19) 

our approximation (18) gives rise to the same contracted density of 
+ 1)“2x in (181, x E (- 1, l), we obtain 

P(-G 4 = (2n + l) \/l _xL 
I 

7 XE [-Ll], 
Tr 

and then 

P WKB 
lim - 
n-m n 

=k-T, XE[-l,l], 
r 

which exactly coincides with (19). Fig. 4, where the WKB density function (18) is plotted for 
several values of ~1, shows the abovementioned semicircular behaviour. Notice that in this 
figure, the lines corresponding to the values of t near the end points of the interval have been 
omitted, because in that region taking y1 B- 1 is not enough to ensure that the WKB condition 
(E K 1) given by (6) of Theorem 1 holds. Hence, when t tends to the end points of the interval, 
the WKB approximation is not a good one. 

Of course, many other particular functions can be considered, whose density of zeros can be 
deduced from the general one given in Theorem 2. More details will be given elsewhere. 

4. Concluding remarks 

In summary, the WKB method has been used to obtain an analytical, but approximate, 
expression of a broad class of functions, the so-called hypergeometric-type functions, defined 
by (1) and (2). The resulting semiclassical or WKB density of zeros is given by (10). Moreover, 
this spectral density has been explicitly particularized for the Gaussian and confluent hypergeo- 
metric functions as well as for the Hermite functions (see (121, (15) and (181, respectively). 

Finally, it is important to remark that, in the asymptotic limit, the WKI3 density of zeros of 
the Legendre and Hermite polynomials gives the exact density of zeros. To the best of our 
knowledge, there is no other method which allows to obtain this kind of property starting from 
the differential equation that the polynomials satisfy. 
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