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Abstract 

For the numerical evaluation of Cauchy principal value integrals of the form f! 1 ,f(x)/(x - i.)dx, 3. E ( - 1. l), 
f E C’[ - 1, 11, we consider a quadrature method based on spline interpolation of odd degree 2k + 1, k E N,. We show 
that these rules converge uniformly for i E ( - 1,l). In particular, we calculate the exact order of magnitude of the error 
and show that it is equal to the order of the optimal remainder in the class of functions with bounded sth derivative if 
s E { 2k + 1, 2k + 2). Finally, we compare the rule to the well-known quadrature rule of Elliott and Paget which only 
converges pointwise. 

Keywords: Cauchy principal value integrals; Quadrature formula; Spline interpolation; Optimal order of convergence; 
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1. Introduction 

In this paper, we consider a particular method for the numerical evaluation of the Cauchy 
principal value integral 

Z[j-;A]:= - s ’ 
_ 

:= lim - iT 
A--E f(X)” dx + [I .f’b)” dx 

> 
> 

c+o+\J-I x--A Ji+E x - A 

where 3, E (- 1,l) and S E cS[ - 1, 11, s 3 1. (These 
For the approximation of these integrals, we will 

hypotheses ensure the existence of I[f; A].) 
use quadrature formulae Qn of the form 

QnlIf; 21: = i: a,(~)f(xvL 
v= 1 
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(3) 
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where, in particular, the weights a, depend upon ,J but the nodes x, do not. A sequence (Q,,)Z= 1 of 
quadrature formulae will be called a quadrature rule. 

Cauchy principal value integrals appear in numerous practical applications, for example in 
various integral equations which originate from such fields as aerodynamics or fluid mechanics 
[7,9]. For the numerical solution of these equations it is very important to have a quadrature rule 
where for every suitable function f the remainder 

R,Cf;11:=ICf;~l-Q,Cf;~l (4) 

converges to zero uniformly for all /z E ( - 1,l). We will show a very simple necessary condition for 
uniform convergence in Section 4 below from which it follows that a number of frequently 
considered quadrature rules do not have the uniform convergence property (although their 
pointwise convergence is well known). 

Before we state our results, we will introduce some notation. For every p E N,, we define 
p,(x): = x~. If L is a linear functional on C’ [ - 1, 11, we define its degree of exactness deg(L) by 

deg( L)= d:e 
L[p,] =o VjE{O,l, . . ..d} 

LCPd+ll +a 

Our main tool for the comparison of the quality of quadrature formulae is the Peano constant of 
order s of R, defined as 

es(RnC.;~l):= ~uP{I&C~;~I If 6 %>, (5) 

where _xS:= {f\f’s-” is absolutely continuous and 11 f’“’ 11 < 1). Here and in the following, I( f I( 

denotes the usual sup-norm of f: 
It is well known that es(R,,[.;A]) < co if and only if deg(R,[.;A]) > s - 1. 
As an immediate consequence of (5), we have the following estimate for the quadrature error: 

IRnCf;~lI~ (/f(s)lI es(Rn[.;~l) (6) 

if deg( R,[ . ; A]) 3 s - 1, and the value QJ R,[ . ; A]) is the smallest possible in this inequality. 
This explains why Peano constants are frequently used as a quality measure for quadrature 

formulae. The theory of Peano constants is also a very important part of the classical numerical 
integration theory, see e.g. [2]. 

Finally, we introduce the interpolation operator our quadrature rule is based upon. Let s E No 
and, for every n E N, n 3 2s + 2, define x,,“: = - 1 + (2v/n) (v = 0, 1, . . . , n). Then, for every 
f E C[ - 1, 11, we define intpoli”=,’ [fl to be the uniquely determined spline of degree 2s + 1 with 
knots x s+1,%+2, ... 3 x,_,_ 1 which interpolates f at the points x0, xi, . . . , x,. These splines are 
called splines with not-a-knot-end condition (see [S] or [4] for the case s = 1). To obtain the 
quadrature formula, we simply set 

Q f:>‘[f;A]:= Z[intpol~:+i’ [f];n]. (7) 

The case s = 0 has been investigated in [lo]; Dagnino and Santi [4] have previously considered the 
case s = 1. In particular, Straurj [lo] and Dagnino and Santi [4] have given explicit expressions for 
the weights of the quadrature formulae or a numerically stable method for their evaluation so that 
we do not have to consider this here. 
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In our Theorem 2.1 below, we have been able to improve Dagnino and Santi’s statement on the 
order of convergence [4, Theorem 21, and our Theorems 3.1 and 3.4 below show that this new 
estimate is unimprovable. Statements on the general case have been set up in [S], whose results are 
also improved and completed by our Theorems 2.1, 3.1 and 3.4. 

2. Error estimates for the quadrature rule 

In this section, we will deduce upper bounds for some of the Peano constants of the quadrature 
rules Qzt>l. First, we note that by definition we have 

deg(Rz:+l’[.;A]) >, 2s + 1 

and hence Q,‘t> ’ has got Peano constants at least up to the order 2s + 2. For some particular 

values of A, the degree of exactness may be even higher. 
The main statement of this section is as follows. 

Theorem 2.1. For s E No, n32s+2andjE{O,l} wehave 

ez,+z-jCR,Z”,:’ [.;A]) = 0(n~2S-2+jlnn). 

In particular, the O-term holds uniformly for all L E ( - 1,l). 

(8) 

For the proof, we need the following lemma. 

Lemma 2.2. For j, k E (0, l} and f E X2s+ 2 -j, we have 

II(f - intpoli”fi’ [f])‘k’Il < Cj,k,sn-2s-2+j+k, 

where cj,k,s depends on j, k and s only. 

(9) 

For the case s = 0, i.e. piecewise linear interpolation, this is a well-known property. The case 
s = 1 has been shown in Cl, (1.7), (1.8)], and the proof of the general case can be found in [S, 
Theorem 31 (see also [S]). 

Proof of Theorem 2.1. Because of the symmetry of the problem, we can restrict ourselves to the case 
A>O.Letf~X~,+2-~andr:=f-intpol,Z”=,’ [f 1. We have to consider two cases depending on 
the distance between the singularity /z and the end point of the integration interval: 

(1) 1 + (l/n) < 1: 
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Here, we have: 

Rl G Ilrll s A-l/n dx 

- = IIrII ln(n(1 + A)) < Cj,~,s?Z-2”-2+j(ln2 + Inn), 
-1 A-x 

A+ l/n 

Rz < Is A+“n r(x) - r(A) 

X-A 
dx < Ilr’ll dx < 2Cj,i,,n-2”-2ij, 

A-l/l! I s A- I/n 

s 

1 

R3 G Ilrll dx <c - L 

#I+1/n x - 1 

j,O,s Iz -2S-2+jln(( 1 - A.)n) < Cj,~,sn-2”-2+jlIltI 

and it follows 

IR 
:“+:I C-;n3 I G 2cj,l.s + “gf:,‘_f 2cj.o,s1n n. (10) 

(2) A + (l/n) > 1: 

1 

I R,2”=,’ Cf;~ll d RI + 
‘tx) dx 

- 
2l-1x -1 

with R1 taken from part (1). In this case, we have: 

< Cjal,sn-2s-2+j - IIr’ll(l - I)ln(l -A) 

G Cj,l,sn -2S-2+j(l + Inn), 

where, for the last inequality, we can use the fact that the function g given by 
g(t) = - (1 - t) In (1 - t) decreases monotonously in [ 1 - (l/e), l] and consequently in 
[l - (l/n), l] if n 2 3. Hence, g(A) < g(l -(l/n)) = (l/n)lnn for n > 3. 

Putting this together, we have, for IZ 2 3, 

R,2”=,l Cf; n, d Cj,o,sln 2 + 3cj.;;,~!~0.s + cj.l,s) In n. (11) 

The statement of the theorem follows readily from (10) and (11). q 
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Remark. It has been shown in [l] that, for the special case s = 1, the statement of Lemma 2.2 also 
holds for j E {2,3). Using this and proceeding exactly as in the proof of Theorem 2.1, one can also 
show that for j E (0, 1,2,3}, 

@4-j(Rz+1 [*;A]) = 0(K4+jlnn) 

holds uniformly for 2 E ( - 1, l), i.e. for (Q,“+ l)FY I not only the third and fourth but also the first 
and second Peano constants are of optimal order. 

3. A lower bound for Peano constants 

Having shown the order of magnitude of the Peano constants, we will now show that there do 
not exist any quadrature rules whose Peano constants are of a smaller order. 

Theorem 3.1. Let s E N be$xed. There exists a positive constant c, depending on s only such that the 
following statement holds: 

Let Qn+I be a quadratureformula with nodes - 1 d x0 < x1 < e.1 < x, d 1, and let Rnfl be its 
remainder. Then, there exist 1 E ( - 1,1) and f E -X, such that 

IR,+l [f;n]l 2 c,n-“inn. (12) 

This immediately yields the following corollary. 

Corollary 3.2. For every quadrature formula Q,,, we have 

sup eJR,,[.;A]) 2 c,n-Slnn, 
Is(- 1.1) 

with a constant c, which is independent of Q,,. 

Adding a further hypothesis on the quadrature formula, we can obtain even more. 

Definition 3.3. Let a quadrature rule (Q,JF= 1 be given with nodes - 1 =: x0,” -C 

x1,n < ... < X”,, . . = 1. We say that the quadrature rule is of almost equidistant type if there exist 
absolute constants A > 0 and B > 0 such that for all n E N and all v E (0, 1, . . . , n - 1 > we have 

A B 
-<X”+l,n-Xv,n<-. 
n n 

Theorem 3.4. Let s E N bejxed. There exists a positive constant d, depending on s only such that the 
following statement holds: 

If (Q&% 1 is a quadrature rule of almost equidistant type, then for all 1 E ( - 1,1) we have 
s+1 

e,W.C~;/.lP~ d,n-“(ln n - In 3B) (13) 

where A and B are as in Definition 3.3. 
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Corollary 3.5. Under the hypotheses of Theorem 3.4, we have 

inf Qs(R,[.;A]) >, J,n-‘inn. 
le(- 1,l) 

For the proof of Theorem 3.1, we need the following lemma directly deduced from [ 10, Lemma 

21. 

Lemma3.6. Let -l<x,<x,< ... <x,<lbegiven.ForO<j<2n+2deJinetj:= -l+ 
j/(n + l), and for 1 < j < 2n + 2 set Aj: = (tj- 1, tj). Then, the following statement holds: 

ThereexistmintervaZs(A~~i=1,2,...,m}~{A~~j=1,2,...,2n+2)and~~[-1,1] with 
the following properties: 

(1) x&ATfir k = O,l, . . . , n and i = 1,2, . . . , m, 
(2) m >,d(n + 1) and 
(3) 0 < t - 5 < 3i/(n + 1) for t E Ai and i = 1,2, . . . , L i(n + l)]. 

Proof of Theorem 3.1. Let B, be the basic spline with knots 0, 1, . . . , s + 1, and define 
M, : = ess su~~~[~,~+ 1~ 1 Bp)( x) 1, the derivative being understood in the generalized sense. We have to 
show the existence of il and f with the desired properties. Let us first consider the number c from 
Lemma 3.6. We will assume 5 > - 1, the case 5 = - 1 requires only minor modifications. Now, 
set i : = < and define (using the notation of Lemma 3.6) 

B,((s+3)(n+l)(X-tj-1)-1) 
M,(n + l)“(s + 3)” 

for xECt,_l tj if t._ ,A 
, 10, 

f(x):= and (tjtl,;jjE {A:}, 

Using this definition, we have f E X, and f (x,) = 0 for all v. Consequently, Q,,+ 1 [f; A] = 0. Using 
Lemma 3.6, parts (2) and (3), we have 

IJL+lCf;~ll = I~Cf;~l - Qn+l Cf;nll 

n + 1 L(n+l)bJ1 
= 1 :j f(x)dx 

j=l J A: 

1 

= 3M,(s + 3),+’ (s + l)! (n + 1)” 

lnLi(n + 7)1 
’ 3M,(s + 3),+’ (s + l)! (n + 1)” 

which is the statement of the theorem. 0 

Remark. Straul3 [lo] has claimed this for the cases s = 1 and s = 2, but there is an error in his 
proof because he constructs a function cpo which is not in Xs as he claims. 
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The proof of Theorem 3.4 can be done in a very similar manner using the additional assumption 
on the nodes instead of Lemma 3.6. 

Remark. The function f defined in the proof of Theorem 3.1 also fulfills f’(x,) = 0 for all v and 
f(j)(1) = 0 for allj. Hence, the statement of Theorem 3.1 (and the statement of Theorem 3.4) still 
holds if the definition of the quadrature formula is extended to include derivatives and a free node 
of arbitrary order, i.e. if formulae of the type 

QnCf;J~l = jI (av(~).I”(xv) + U~).f’(xv)) + i ~Mf”‘(4 (14) 
v=l 

are used rather than those from (3). 

4. Uniform convergence 

We have now seen that there exists a uniformly convergent optimal order quadrature rule for 
Cauchy principal value integrals. The uniform convergence property is very important in the 
solution of Cauchy-type integral equations, but not all quadrature rules have got this property. As 
a counterexample, we will now consider the rule ( QzP) of Elliott and Paget [6] which is character- 
ized by its nodes being the zeroes of the nth Legendre polynomial and its degree of exactness being 
> II - 1. It is well known that for this rule, we also have 

~,(R:‘[.;nl) = O(n-“Inn) 

for every fixed s (see [3, Theorem 2.3]), but this only holds pointwise and not uniformly. This can 
easily be seen from the following statement. 

Theorem 4.1. Let Qn be a quadratureformula which does not have a node at the point x = - 1. Then, 
for all s E N, 

Remark. For reasons of symmetry, an analoguous result holds if x = + 1 is not a node of Q,,. 

Corollary 4.2. Zff or every n E N one ofthe poznts + 1 is not a node ofQ,,, then @JR, [. ; ,I]) does not 
converge to zero uniformly for A E ( - 1,l). 

Proof of Theorem 4.1. Let x1 be the smallest node of Q,, and let 6 : = x1 + 1. Define 

if x2x1, 

f(x):= 
-(x+1+6) 
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where B, and M, are defined as in the proof of Theorem 3.1. Obviously, Q,,[ f; A] = 0 and f E X,. 
Thus, 

Hence, 

since 

f(-1,=(-$)+(~)>0. rJ 

In order to illustrate this behaviour, using suitably adapted methods from standard Peano 
kernel theory, we have computed some Peano constants for the Elliott-Paget rule as well as for 
Qi+ 1 (the simplest rule of those under consideration in this paper) and different values of i. For the 
computation, we have used the MATHEMATICA software package [ll] which guarantees the 
required accuracy. The results are given in Tables 1 and 2. 

Table 1 
~,(Rj,[.;i]) for WIG {5,50,15Oj and 3,~ {0,0.5,0.9,0.999,0.999999} 

1 5 nodes 50 nodes 150 nodes 

0 0.906205689 0.106280442 0.042522716 

0.5 0.871377865 0.095630046 0.039022727 

0.9 0.665255668 0.084301498 0.035949679 

0.999 0.541480654 0.071257879 0.028124487 

0.999999 0.539359575 0.069588031 0.026618531 

Table 2 
Q~(RF’[.;I]) for nc{5,50,150} and AE (0,0.5,0.9,0.999,0.999999} 

i 5 nodes 50 nodes 150 nodes 

0 0.712324122 0.148469902 0.061214677 
0.5 0.997568219 0.221382703 0.057030160 
0.9 1.121191341 0.084807772 0.063762076 
0.999 15.007892409 0.347592935 0.042810338 
0.999999 31.800253774 28.777635487 28.029703245 
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