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Abstract 

Let w be a nonnegative integrable weight function on [ - 1, 1) and let p,+ 1(x) = x”+l + ... be the polynomial of 
degree n + 1 orthogonal with respect to w. Furthermore, let p!,l’(x) = x” + ... denote the polynomials associated with 
pn + 1 and p,!’ -x2) (x) = x” + ... the polynomials orthogonal with respect to the weight function (1 - x’)w(x). In this paper 
we give necessary and sufficient conditions such that the zeros of py’ and p,(,’ -x2’ strictly interlace on [ - 1, l] for large n. 
In particular this problem is studied for the Jacobi weights w,,~(x) = (1 - x)a(l + x)O, CI, PE( - 1, co). In this case 
pj11-x2) = pk+J(n + 1). 

For a large class of parameters, including, e.g. the ultraspherical case c1 = p, it is shown that the interlacing property 
holds for each nE N. Also a fairly complete description of the parameters for which the interlacing property does not hold 
is given. 

Keywords: Zeros; Interlacing property; Orthogonal polynomials; Functions of the second kind; Associated polynomials; 
Jacobi weights; Jacobi polynomials; Ultraspherical polynomials 

1. Introduction and notation 

Let CJ be the distribution function of a positive measure (which will also be denoted by a) on 
[ - 1, l] whose support contains an infinite set of points. Let p,(x) = x” + ... be the manic 
polynomial of degree n orthogonal with respect to CT, i.e. 

s 

1 

Vj = 0, . . . , IZ - 1 x$,(x) do(x) = 0. (1) 
-1 
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By pi’ -‘)(x) = x” + . . . we denote the manic polynomial on [ - 1, l] orthogonal with respect to 
(1 - x2)c(dx), and, as usual, by pi’)(x) = x” + ... the manic associated polynomial (of order one) 
of pn defined by 

J&(X) 2 s 1 

do -1 

where do = o(l). It is 
of the form 

P”(X) - Pn@) 
x-t 

d&L (2) 

well known that the orthogonal polynomials P,, satisfy a recurrence relation 

Pn(4 =(x - 4I)prI-1(4 - A#n-2M POW:= 4 P-l := 0, (3) 

where a, E R and II, > 0 and that the associated polynomials satisfy the shifted recurrence relation 

p”‘(X) = (x - cc,+ r)p;” r(x) - A,+ ip$(X), II p&l’ := 1, p?‘l := 0. (4) 

Let us recall (cf. [2, pp. 86-871) that the associated polynomials pi’) are orthogonal with respect to 
a positive measure G (l) whose support is contained in [ - 1, 11. To the measure Q on [ - 1, l] we 
assign the measure 

P(cp) := 
i 

a(l) - o(cos q) if cp E [0, rc], 
a(cosq) -a(l) if VE[ - 7c,O], (5) 

on the unit circle. Obviously, if G is absolutely continuous on [- 1, l] then p is absolutely 
continuous on [- x, rc] with 

p’(q) = ~‘(~0s q) 1 sin q I. (6) 

If we denote the Stieltjes transform of c by 

’ Q(y, da) := 
s 

’ - do(x) Vy E a=\[- 1, 11, 
_ 1Y--x 

Put 

F(z, dp) := & 
s 

X e’” + z 
-dp(q) for IzI < 1, 

0 -77 elp - z 

(7) 

where co = (1/27c)s”, dp(q), and set z = y - Jm for YE @\[ - 1, 11, we get the following 
relation between Q and F (cf. e.g. [4, p. 641): 

0, 44 = f ~~Q(y&). 
0 

Moreover, assuming that p is absolutely continuous and p’ E Lp[ - 7c, 7~1, p > 1, we have (cf. [12] or 
[7, pp. 21, 1241): 

%F(e’+‘, dp) := lim tRF(re”, dp) = $ p’(q) a.e. on [ - 7c, n], (10) 
rf 1 
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$aF(eiV, d,u) := lim,t, 4F(re”, dp) exists a.e. on [ - rr, x] and 

SF(eiV, dp) 1 
=- 

sin cp 
1 B 

s 

o’(t) dt 
(11) 7cco -it-x ’ 

where x = cos cp, cp E [ - rc, rr] and cY~ denotes the principal value. Hence 

s 

I 
S!(x) := lim i(Q(x + is) + Q(x - is)) = 9 ,“-i”3, dt - . (12) 

El0 
Next denote by P,(z) = z” + ... the polynomial on [ - rc, 7~1 orthogonal with respect to dp, i.e. 

s 

x 
V’k =0, . . . , n - 1 e-ik~P,(eiV)d~(~) = 0. (13) 

-II: 

It is well known that the P,'s satisfy a recurrence relation of the following type: 

P,(z)=zP,_,(z)-U,_lP,*_,(Z) V'nEN, (14) 
where a, E (- 1, 1) and where P,*(z) = z"P,(z- ') denotes the reciprocal polynomial of P, (the reason 
that the parameters a, are real and have absolute value less than one consists in the fact that ~1 is 
odd and has an infinite set of increase (cf. [4, Sections 30-311 and [17]). Furthermore, let 
G!,(z) = Z” + **. be defined by the recurrence relation 

C&(z) = z&_,(z) + a,-,SZ,*_i(Z), ??EtV. (15) 

R, is called polynomial of second kind, respectively, associated polynomial of P,. As in the real case 
the system of associated polynomials Q,, is orthogonal with respect to a measure b which is defined 
in terms of p as follows (cf. e.g. [9, Lemma 21 or [l, 141): There is a unique measure ji such that for 
all lzl < 1: 

P(z, dfi)P(z, dp) = 1, (16) 

and this measure ji is the one we are looking for. If the limit functions %P(e@, dp) and %l/F(eiV, dp) 
exist a.e. on [ - rr:, rc] and belong to L, for some p > 1, then (cf. e.g. [12, Lemma 2.11 and also Cl]) 
p and ,ii are related by 

l P’(cp) 
F(e”+‘, dp) = co 1 F(eiq, dp) 1 2 a’e’ (17) 

Now let us return to the polynomials Pn. We recall the following relations (cf. [4, Sections 30-311, 
[S, pp. 90-931 and [17, pp. 294-2951): 

p,(x) = 2-“+1%(z-“+‘P&_~(z)), 

p$~“(X) = s Y(Z-“+ lPzn_ 1(z)) 
(18) 

and 

p!/&(x) =~9qz-~+‘Q2”_l(z)), (19) 
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where x = +(z + z-i), z = e”+’ and cp E [0, rc]. Putting 

fin(x) = 2-“+%(z-“+1S22n_1(Z)), (20) 

(18) and (19) immediately imply: 

pi’2 r(x) = $,1-_ix2)(x) and p”i’_‘r (x) = p!,_-l”‘)(x). (21) 

Using the relations (21), (17), (10) and (6) we conclude that the polynomials pk” are orthogonal with 
respect to the weight function: 

(o(l))‘(x) := ayx)Jc? = 2 a.(x)f’lXL(x)2 ) (22) 

if both p and b are absolutely continuous with p’, fi’~&[ - rc, rr] for some p > 1. For the 
determination of the absolutely continuous part of the distribution function o(l) by a completely 
different approach we refer to [S] and also [6]. Let us denote by Xj,n, x$!L, xj,n, Zj,‘A,j = 1, . . . , n 
the zeros of pn, pi’), fin, $), where the zeros are arranged in increasing order, i.e. 
X1.n < X2.n < *** < XII,“, etc. For the following let us also recall the well-known interlacing 
property of the zeros of p,, and pi? 1 (cf. [2]): 

- 1 < Xl,n < x(11,),-1 < ... < x&_, < x,,, < 1. (23) 

This paper is organized as follows. Stimulated by a conjecture of Ronveaux [S] we will investigate 
in Section 2 the interlacing property of the zeros of both pn and fin and of pk’) and p”:‘) = pf -xz). As it 
turns out the question whether Xj,n < ~j, ,, or Xj,, > ~j,n holds for large 12, only depends on the sign 
of Z? (2 is defined in (12)!). In Section 3 we apply this result to Jacobi weights wa,@, or more precisely 
to the manic associated Jacobi polynomials P!,!:,~ and to the derivatives p:+ l,a,P of the Jacobi 
polynomials. we get a description of the set of parameters for which Ronveaux’s conjecture: If 
V’a +/I + 1’2’0 then 

V’n Vj = 1, . . . 7 n 4!kaJ(~) Xj!L,/? 

does not hold, respectively, holds for large y1- recall that by [17] and (21) 

1 

we have 

(24) 

(25) 

Then by a different method, based on Markov’s sufficient condition for the interlacing property 
of the zeros of polynomials orthogonal with respect to different weights, a set of parameters 
is described for which (24) holds (Theorem 3.6). The remaining part of this section is devoted 
to prove the existence of an absolute constant c E [w such that for all (a, fi) E(C, co) x ( - 1, - 4) 
(24) holds (Theorem 3.7). Finally a drawing is included showing the set of pairs (a, b) for 
which (24) holds, respectively does not hold and conjectures on the remaining open cases are 
given. 
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2. Sufficient conditions for the interlacing property 

Lemma 2.1. Let n E N. The zeros xi,,, Zj,n, x$!: - 1, $!A _ 1, of pn, p”,,pi’l 1, p”!,? 1, satisfy the following 
relations: 

(1) Vj =I, . . . , n - 1, Xjt~-1,~~tj,-l,(Xj,n,Xj+l,.)n(~j,., gj+l,n), 

(2) vj =I, .f* 7 4 Xj,n, zj,nE(Xj- l,n, xj+ l,nIn(?j- l,n, :j+ l,nh 

where xO,n := I& := - 1 and x,+ l,n := X”,+I,n := 1. 

Proof. (1) In view of [4, 5.61 and of (18)-(20) we have 

0 < const. = ~-(~“-r) P ( 2n-1(wLl(4 - a,,-l(wLl-l(4) 

= gqz-“+l P2n-1(Z)Z-“+1~2n-1(Z)) 

= z2”- 2(P”(x)Mx) + (1 - x2)ph1’ 1 (xhz’l1 (xh 

where z = eip, x = cos cp and cp E [0, rr]. Considering the last expression at the zeros 1, n of fin and 
taking into account (23) with respect to 5, we get that x$_ 1 E(z?~,~, ~j+ 1,J. Now the assertion 
follows from (23). The proof of the second statement follows the same pattern. 

(2) If xj,n < Xlj-1,” or xj-r,n > Zj,, for some jE(2, . . . , n} then 

(xj- 1.n~ Xj,n)n(zj-l,n, zj,n) = 87 

which is a contradiction to part (1). 0 

Remark. From Lemma 2.1 we also get the more or less known interlacing property (cf. [16]) of the 
zeros of p,, and $,‘? 1 = p!,l_-l”” and of fin and p”~1_-lx2’, i.e.: 

X1.a < 8.L 1 < -** < $‘11 n_l <x ,,,,, and X1.n < xY,h- 1 < 0.. < x;‘Jl,“-l <x”,*,. (26) 

Now the question arises under which conditions the relations 

(‘) _ 
xj,n < Xj,n 

x!l)_ 1 (;)p’ 
_l.n j,n- 1 

hold. As the following theorem shows this depends on the sign of 9 only. 

Theorem 2.2. Let 0 be absolutely continuous such that 
0 (logo’(x))/Ji=7E~l [ - 1, 11. 
0 VXE[&, c2] c [ - 1, l] JE?fY(x) > 0 and crEC1[Sl, t2]. 
Then there exists an no E N such that for all n 2 no and all j E { 1, . . . , n}: 

(‘) 
xj,n < zj,n and x!‘) _ 1 (;)j$‘) J*n j,n-13 
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respectively, if Xj,“, X”j,n, ?$,‘A_ 1, $_ 1, respectively, belong to a compact subinterval of the interval 
(tl, t2) on which O’;‘S?. 

Proof. Set a = arccos ~$r and b = arccos 12. In view of the assumptions we have (cf. the proof of 
Theorem 2.1 (b) and Remark 2.1 (b) in [S]): 

uniformly on [a + 6, b - S] for all 6 > 0. It follows that there exists an ~1~ such that for all n >, no: 

= sign (9F(eiV)) (27) 

on every compact subset of (a, b) on which 9F does not have a zero. Since 

= %(z_ “+‘~,,_,(ei~))~(z-“+lPz,-l(ei’P)) - %(z-“+1Pz,_l(eiV))9(z-“+1SZzn-1(ei’P)) 

= (P”,(x)%U4 - P&)P%(x))s~~v~ (28) 

we conclude by considering (28) at the zeros of pn and pi? 1, respectively, and taking into account 
(26) and Lemma 2.1 that 

(‘) _ 
Xj,n < Xj,n and x(.1) _ 1 (2’ $1) _ J.n J.n 1, 

respectively, if (28) holds. The assertion follows from (27) in conjunction with (11) and (12). 0 

Remark. If cl = - 1 and c2 = 1, respectively, then the open interval (cl, 12) in Theorem 2.2 can be 
replaced by the half closed intervals [ - 1, t2) and (cr, 11, respectively and by [ - 1, l] if 
- 51 = 52 = 1. 

If the assumptions of Theorem 2.2 are fulfilled and if 0’;’ A? on (xi_ l,n - E, xj+ Z,n + E) for some 
E > 0 and sufficiently large n, then Theorem 2.2 and Lemma 2.1 imply: 

Xj,” < x”j,n C X$‘i- 1 C Zag- 1 < Xj+ l,n C Zj+ l,n, 

Xj,n < Xj,n < Zifi-1 < Xifj-1 < iZj+l,n < Xj+l,n, 

respectively. Furthermore, let us mention that if 0 is absolutely continuous and if 0’ is of the form 
v(x)/JV f x or some continuously differentiable function v > 0 on [ - 1, 11, then we only have 
to look for .the uniquely determined function F, analytic in the open unit disc, which satisfies 

Vq ??(0,n) ‘%F(eiV) = v(cos cp). 

The asymptotic interlacing behavior of Zj,n and xj,n and of 2;:: _ 1 and x$_ 1, respectively, will 
then be completely described by the behavior of sign 4F(eiq) on (0, x). Let us note that the first 
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author succeeded in analyzing the interlacing properties of the zeros of the orthogonal polynomials 
P”(x; wr), respectively P”(x; w2) for arbitrary weight functions wl, w2 for the Szegiiclass by develop- 
ing the basic idea of Theorem 2.2 in a suitable way (cf. [13]). 

3. Interlacing properties of the zeros of the derivatives and of the associated polynomials of Jacobi 
polynomials 

For CI, /3 > - 1 and x E( - 1,1) let us define 

Q(a, j, x) := +“j-’ !b@ dt, 
_ 1 t-x 

where w a,8(t) = (1 - t)“(l + t)@ is the Jacobi weight. The following nice closed formula for _5! has 
been given by Grosjean [2, (27)] 

(2% 

where 

Z(a, fi) := s l %,s(X) - w/L&) dx and C(E, p) := 2’+@+r 
T(cr + l)r(B + 1) 

0 X r(a+P+l) . 

Using this representation we obtain 

Lemma 3.1. If(a, p) E ( - 4, co)x(-4, a)~(- 1, -f)x( - 1, -t)then~~hasexactlyonezeroin 
( - 1, l), andfor the remaining values of CI and p 22 does not have a zero in ( - 1, 1). 

Proof. By (29) the function x I+ ??(a, p, x)/w,,~(x) is strictly increasing if CI + /3 + 1 < 0 and strictly 
decreasing if a + p + 1 > 0. Hence 2 has at most one zero. If o! c 0 then 

lim ~(~, B, x) = lim 1 

XT1 WCC, SW xt12%c(1 - x)” 
B 

s 
1 (1 - t)“(l + t)P dt 
-1 t-x 

2 a+1 1 
=-‘,‘;(I -x)“g s 

1 sdl(l - s)fl 
x 0 l-x-2s 

ds =+i y-V 
s 

1 s@(l - s)@ ds 
0 Y--s 

-IlimB 
7r YlO s 

liy P(1 - yt)B 
l_t dt=+’ 

s 

m t= 
- dt = cot(arr). 

0 0 l-t 

If a b 0 the limit is - co. A similar argument shows that 

lim ~(a’ P’ x, = - cot(Bn) if /I < 0, 
xl- 1 %JdX) co otherwise. 0 

(30) 

As an immediate consequence of (29) and (30) we get the following corollary. 
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Corollary 3.2. If - 1 < p < 0 then 

=sG A 4 4% PI - 
%,/r(X) 

= cot(/37c) + 71: s x 1 
_ 1 (1 - ,),+I(1 + t)p+i dt. 

Let us recall that P”,~,~(x) = x” + ..a denotes the manic Jacobi polynomial on ( - 1, 1) ortho- 
gonal with respect to w=,~, and pk’j l,or,s(x) = x”- ’ + .-. denotes its associated polynomial defined 
by (2). By [6, S] (compare (22)) the latter are orthogonal with respect to the weight function 

wL$(x) = const. WE. B(X) 
%,pW2 + =%% A x)” . (31) 

x;:/,~,~ denotes the jth zero of p!$, p and in view of (25) Z?jfj, a,P is the jth zero of p; + 1 a B. Let US also 
note for the following that ( - l)“- ‘P;,~,~ ( - x) = P~,~,~(x) and ( - l)np!&( - x) -‘&b,.(x). Obvi- 
ously, &-Swa, B satisfies the assumption of Theorem 2.2 on any interval [ - 1 + E, 1 - E] for 
arbitrary E > 0. Combining Theorem 2.2 and Lemma 3.1 we get immediately a description of those 
parameters for which conjecture (24) on the zeros of p$, B and p; + 1, a,B does not hold, respectively, 
holds for large IZ on compact subintervals of ( - 1, 1). More precisely we have the following 
corollary. 

Corollary 3.3. (1) 1.(~ + i)( /I + 4) > 0 then fir n > no none of the following statements is true: 

Vl <j d n ~j,‘j,~,~ > Xi,lb,a,s or Vl <j d n x:::,~,~ < iZjt!_8. 

(2) If(a,/3)~(-1, -&x(-i, co)thenforalln>no: 

xS_,fA,ol,p < $tA,a,p ifxj,n,a,/?, gj,n,a,@E C - 1 + E9 l - &I. 

It is very likely that the interval [ - 1 + E, 1 - E] can be replaced by [ - 1, 11. Hence Ronveaux’s 
conjecture (24) has to be modified in the following way. 

Conjecture 3.4. For all n E NJ and all j = 1, . . . , n we have 

xjfl,a.,‘~)~~t:a,, on the set 0(;)2?. 

If we want to have an inequality sign for all zeros, this conjecture transforms into the following. 

Conjecture 3.5. If (LY, /?) E ( - 1, - 4) x ( - 3, cc ), th enwehaveforalln~Nandallj=l,...,n: 

$L,a < %,s* 

It is also worth mentioning that in contrast to the assumption of Ronveaux [S], the sign of 
c( + /I + 1 seems to be secondary since 

sign(cr + fi + 1) = - sign(c(a, p)) = signZ?‘(a, /I), 

but, as we have seen, the inequalities for the zeros depend only on the sign of 9(a, p). Theorem 2.2 
gives us some information for large values of n only. In order to prove Conjectures 3.4 or 3.5 we 
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have to look for a different method. One possible tool is provided by a well-known theorem of 
Markov (cf. e.g. [17]), which states the following: Suppose we are given two weight functions 
W and w on ( - 1, l), which satisfy 

(>) d W(x) 
VXE(-1,l) 0-C -- 

dx w(x) ’ 

then for all n E N and all j = 1, . . . , 
polynomial with respect to w and 

n: xj, “‘2 Xj, n and xj, n denote the jth zero of the nth orthogonal 
W, respectively. If both weight functions are even then 

(>) d W(x) 
VXE(O,l) 0 < -- =G- 

n+l 
dx w(x) 

VneNVj> 2 

[ 1 
Xj,n(;)Xj,n. 

(32) 

(33) 

In the case under consideration we set W(x) = (1 - x2)w&x) (recall that by (21) 
(1 - X2)W,J(X) = $f$(x)), w(x) = w(xl_b (x) and obtain from (29) and (31) that (32) is equivalent to 

VXE(- 1,l) - (y - 6x)%)X2(cI, fl, x)(y - 6x) + ‘(“$X;;;; x), (34) 

where 

y := /I - a, 6 := o! + /? + 1 and % p(x) X(x, /$ x) := - L 
w&x) * 

By this approach we get the following positive results (note in particular the positive result for the 
ultraspherical case). 

Theorem 3.6. (1) Let a > - 1, then for all n E N and all j = 1, . . . , C&z]: 

-(I’ (” (1) x_i,n,cc,cz < Xj,n,a,a if a’:’ - 4. 

In view of the symmetry of the zeros the converse inequality holds for all j > [fn], 
(2) For all M: > - 3, all nE N and all j = 1, . . . , n: 

X?’ .l,n,a, -l/2 > i?!” J. n,a, - 112 and x!‘) 
J.n, - 1/2,Or < ‘;;i, -l/2,@. 

If o! -C - 4 the converse inequalities hold. 
(3) If ME@, 1) thenfor all nEN and allj = 1, . . . ,n: 

XV’ .l,n,a, --tl < J!” Jn~ -a and x1’: _aor>X”yA _12cI. , , , ,. 9 91 7 

(4) If p < - 3, CI > 3 and 01 + p + 1 < 0 then for all n E N and all j = 1, . . . , n: 

Proof. (1) In this case Z(a, p) = 0 and therefore the function X reduces to 

s x 1 
o(1-t2y+’ 

& =. ‘by fi) 
x 

- I(a, x). 
* 71: 
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Therefore for a > - 3 (34) can be written equivalently 

I(4 4 
x(1 - x”) 

- (2a + l)l(cr, x)z < (2a + 1) &. 
9 

We will prove that the left-hand side is actually bounded by 1. Define 

F(a, x) := r(a, 4 
x(1 - x2) 

- (2a + l)Z(a, x)“. 

Since F(a, 0) = 1 it is enough to prove that for all x E (0,l): (a/ax) F(a, x) < 0. This is equivalent to 

I(& x) 2al(a, x) 1 (4a + 2)J(a, x) < o 
-x2(l -x”)“+(l _X2)a+l +x(l _X2)2a+i - (1 _X2)a+i ’ 

* (1 Xx2) 
< Z(a, x)(1 + (2a + 1)x2). 

Since a 2 - 1 this comes down to 

J-(4 x) := (1 _ x2)“(1 ; pa + Qx2) G r(4 4, 

which in turn follows from 

Simplifying one gets that this inequality holds as long as for all x ~(0, 1): - ax2 d 1. This 
completes the proof of the first assertion. 

(2) Since 

s x 

J(a, x) := 
1 

_ 1 (1 - t)’ +,(l + t)‘12 
dt = 21’2-‘V(cr, x), 

we obtain the inequality 

J 
(1 _ x)“(l + 41/2 - J2b + 3) d 4-“, 

which proves part (2). This could also be proved by using well-known relations between 
P~,~, * 1~ and PZ~,~,~ and pzn+ l,a,a, respectively (cf. C17, 4.151). 

(3) In this case we have 

1 1+x a 
X(a, - a, x) = - cot(a7c) + - - 

( > sin(ax) 1 - x ’ 

and (34) translates to 

1+x 2rr 
VXE( -1,1) - 

( > 

1+x a 
l-x 

x - 2 cos(ax) l_x 
( > 

(x + CC) + x + 2a > 0. 
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Since cos(arr) < 0 the inequality trivally holds if x 2 0. If - a d x 6 0 then the left-hand side is 
bounded from below by 

It remains to prove the inequality in the case - 1 d x < - CI: Putting x = - Y, z = (1 - y)/(l + y) 
and C = - cos(arr) we obtain the inequality 

Since (a + b)2 < 2(a2 + b2) this inequality follows from 

2z2@ + c2 1 - a 
( > 

2 2a-y 
< 

Y ’ Y . 

For 3 < o! < y d 1 we have 

YU - Y) < a@ - Y) 
l+y ’ lscr * 

Therefore (35) holds 

V+<a<y<l 

Now the right-hand 

provided 

C2 < 1 - fx Y(2a -Y) 
’ 1 + fY. (y - a)’ * 

side of this inequality is bounded from below by 

2a - 1 
1 - a2 

(35) 

(36) 

Hence (36) immediately follows from sin2(ftx < t/(1 - t), which is true for all 0 < t < 1. 
(4) Since y + 6 < 0 and y - 6 d 0 we conclude that for all - 1 < x < 1: y - 6x < 0. Also, by 

Lemma 3.1, cX( 1) d 0 and since J is an increasing function of x, the left-hand side of (34) is always 
negative; on the other hand the right-hand side is positive. 0 

For Theorem 3.6 (4) and (1) in the case a < - 3, cf. [ 113. 
The remaining part of this section is devoted to the proof of the following. 

Theorem 3.7. There exists an absolute constant co E R such that for all (a, /?) E (co, co) x ( - 1, - f), 
ulln~Nundullj=1,...,n: 

(1) 
Xj,n,or,p "$tA,a,~ and x$,‘:,~,~ < Z$fl,a,,. 

In what follows we assume fl < - t and a + /I + 1 > 0; in this case - y > 6 < 0 and therefore 
y - 6x < 0 for all x E ( - 1,. l), also X( - 1) > 0. Putting 5 = - y/6 > 1 then by Conjecture 3.4 (34) 
is equivalent to 

4% PI 
X2(a9 BT x) - x(1 + a + /?)(x + &v&) 

X(a, /I, x) + 1 > 0. (37) 
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Putting q: = - p - ~E(O, f), Co(q) := (l/rc) cos(rrr)r(4 - q) and 

$(a, r, x) := ‘(” ‘) 
Ul + B) s 

x1 w1 +.,‘, +B(t) dt, 
- 

$(a, q, x) := t#@, q, x) - c(ay p) 1 
r(l + B) (1 + a + B)(x + &%J?(x)’ 

(37) translates to 

C,2411/ + Co sin(yn)(4 + II/) + 1 > 0. 

Putting x = 2y/(l + a) - 1 it is easily checked that 

lim ~(cx, q, x) = 
oL+a, s 

Y 

e’t”- ij2 dt =: &,(q, y) 
0 

and 

s ’ e’tV 112 dt _ e 
Y 4+1/2 

lim $(a, ~j, x) = y I y t-r 
a+m 0 Y + r = 2 s 

~ erts-1/2 dt =: tio(q, y). 
0 (t + rl)2 

Moreover, for all compact subsets K of lR$ and all F > 0 we have 

lim inf 6(a, Y, Y)$- (6 vl> Y) - (1 + &)40(% Y)$O (% Y) 2 09 
.+cc h,Y)E[0,1/2lxK 

where $- := min(+, 0). In the limit CI + cc we therefore obtain the following inequality: 

C,” 40*o + CO sin(v) (40 + tie) + 1 > 0. 

(38) 

(39) 

(40) 

By “blowing up” y + qx this transforms into 

sin(q7c) 

where 

s x 

@(q, x) := t”-“‘eq’dt and Y(q, x) := s x t-l 
~ t’l- iI2 eWdt. 

0 0 (t + u2 

Putting K,(n) = Co(n)ns we get that (41) is equivalent to 

vx >o -y<1 c cos2(u/7q 
K. Ko@ + MvWJi 

+ J;; sin(q7c) 
> 

. (42) 

Let us make a few simple observations: 
??If (42) holds for some K 2 K. then it also holds for K. instead of K. 
??If (42) holds for some upper bound & of @ instead of @, then it also holds for @. This follows 
immediately from the fact that the left-hand side is a decreasing function of @. 
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??Since - Y and @ are increasing on (0, 1) it suffices to prove (42) for x > 1. 
The following lemma gives some more information than will actually be needed. 

Lemma 3.8. Let 0 < q < 4 and let x(v) be the zero of the function - Y(y, x). Then the following 
holds: 

(1) For q < 4 we have x(q) < l/q + log l/r. 
(2) There exists a constant c > 0 such that for all q: c-l > qx(q) > c. 
(3) For q < $j and x 2 1 we have 

- Y(q, x) < Z(l - r/x + q logx). 

Proof. (1) For x > 1 define 

s x-l 

f h, 4 := es9(1 + s)” ds and g(q) := 
s 

l-s 
esV ds 

0 bn ) sl+s2 * 

Then - Y(q, x) = - eqf (x - 1, q) + g(q). Since all partial derivatives off with respect to q are 
positive, we obtain by Taylor’s theorem 

f ($5 x) 2f (0, xl + if (0, x) 

=1_2d= +Y ( -4+ 
2Ji-G 

2+x 
2 + x (4 + x - log(1 + x)) 

> 
. 

Since the third derivative of g is negative on the whole interval (0, f) we get 

g(q) < g(0) + g’(O)?j + +g”(0)r2 = 1 - 3Yj + yq2. 

Combining these with the estimate eq 2 1 + y + fr” we conclude that - e”f (q, x - 1) + g(q) is 
bounded from above by 

S(l -vlx+~logx-2q)+$ 
32 2& 
~-I+x(~+x-logx) 

> 
. (43) 

For x 2 x0 the coefficient of q2 is smaller or equal than zero and for x > l/r + log l/q the first term 
is bounded from above by 

ye log l+qlogyl -2 dq(log(l+e-‘)-2)<0. 
(( ‘>> 

Hence x(y) < l/y + log l/q. Setting a = 3 log(1 + e-r) and b = 1 - a we can determine x0 to be 
the zero of the function 

32 2& 
- - =($ + x - log x + 2bx); 3 

i.e. x0 < 5. Thus, if q d 3 then y - Z&/(1 + x)(2 + x - log x + 2b/q) is negative for all x 2 5. 
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(2) The upper bound is a consequence of part (1). As for the lower we get by Kimball’s inequality: 

$Ohy)dey - 
Y tl 112 ( l-ewY 1 

___-- 
yl+i > Y+r * 

This implies x(q)y > log 2. 
(3) We note that (43) can be written as 

and for q d 5 the coefficient of ye’ is negative for all 

Remark. Actually yx(q) converges to the first positive zero of the function 

s 

X 
t- ‘/2,tdt _ exx- 112, 

0 

which is easily shown to be smaller than 1. 

Lemma 3.9. For all x > 0 and all q E CO,+] the following inequalities hold: 

@(q, x) < 2x112-qeqX(1 - e-X/2)2V and - Y(q, 1) d (2 - &)2V. 

Proof. First of all we consider the two extremal cases q = 0, i.e. /I = - 3 and q = 3, i.e. /I = - 1; 
though the second case is excluded (42) is still defined! 
??If q = 0 then Q, = 2&, - Y = 2,&l + x) (and (42) holds provided K d l/d). 
??If q = 4 then @ = 2(e”‘2 - 1) and - Y = 2 - 2e”12/(1 + x), (in this case (42) holds provided 
K < $/(Je - 1). 

By Holder’s inequality both the function t H @(t, x) and t I+ - Y(t, 1) are log-convex. Hence 
the assertions follows by considering the extremal cases. ??

Proof of Theorem 3.7. First we will prove the following claim. 

Claim. (42) holds for 

K(q) := e- 1/2cos2(?&+ l/4$ and T&V, x) := 2x’/2-~e”” 

instead of K. and @ (by Lemma 3.9, 6 is an upper bound for @!). 

A lower bound for the expression on the right-hand side of (42) can be obtained as follows: 
the elementary inequality eX 2 1 + x and the inequality between the geometric and the 
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arithmetic mean imply: 

2 

( 

COG (?jK) 

z K6 + sin(yx)/J;; 
+ Asin ),&(exp(-~)cos’(nn)+EJ$sin2(~rr)) > 

~~(e~p(-~))cos2’~~‘(~~“z’~n’~~e~p(sin2(~~)-~). 

Thus (42) holds if 

- Y* < f exp 
( 

sin(qrc) 
sin2(qrc) - - 

> K&A . 

For q < 8 and x 2 1 we get by Lemma 3.8: 

- Y(q, x)@q, x) d 2x1/2-qeq" 2& 1+x(1 - rjx + r logx) = &xPqeqX(l - qx + qlogx). 

Since for all t 2 0: (1 - t)e’ d eetz12 we conclude that the above expression is bounded by 

4x 
1+x 

e - 92 (X - 1og.x)~‘~ 

Combining this with the estimate (44) we see that the inequality 

sin2(y7c) + +q2(x - logx)2 + log (---&)+log(l +~)-~xp1~2+qepqx>0 

implies (42) for all x > 1 and all q < $. Since q > 0 and x > 1 we have 

x- W+Ve-W < x- ‘12e-V. , 

though its enough to prove 

In order to show this we first notice that for all q < $ 

A(q) := ~ Sin(~~)e-q+(cos*qn)/2-q2'4 

2& 
is smaller than 1. Now define 

(44) 

(45) 

f,(x,:=log(;(l +i))-7. 
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If& has a local minimum at Y, then 2/(1 + Y) = A(n)/& Th e value off, at the point y is therefore given by 

Since_&(l) = 1 - A(n) > 0 andf,( co) > 0 it suffices to prove that for all y Z 1: h(y) > 0. But h(l) = 0 and 
h’(Y) 2 0 for all Y 2 1. Thus finishing the proof of our claim in the case n < 9 2. But by Lemma 3.9, (42) trivially 
holds for 

and for r] > $ this is greater than the value of K(q) in our claim. It can be checked easily that K(n) is strictly 
greater than K,(g); this is important for the following argument. 

It remains to prove (38) for sufficiently large values of c(. This inequality holds trivially if II/ > 0 and on 
compact subsets of [l, co ) x [0, :],+(a, q, 2y/(l + a) - 1) converges uniformly to $&, Y) as CI converges to 
co; by Lemma 3.8 there exist absolute constants c1 and c2 such that for all y Z c2: ll/0(y) > ci . Differentiation 
of $(cc, yl, x) with respect to x yields another constant c3 such that for all y > cj: 

By uniform convergence we conclude that there exist constants cq and c5 such that for all y 2 cq, c1 2 c5 and 
all 0 < rl d *: 

,(A&- l)>O. 
Since K is strictly greater than K, the theorem follows from (39). 0 

To conclude this paper we summarize the results in Fig. 1 (the right one illustrates our conjecture). The 
meaning of the symbols is declared by 

+ : Vn Vj <n: 2~‘~ d p < xi’! a 8, 3 . 3 * 1 3 

- : Vn Vj <n: ,?j’i a B > xi’: oL B, 1 , 1 . 1 , 

0: In, b’n >nO 3j, k <n: X”if!_p < x~~~,~,~ and ~$t,_~ > x~‘~,,,~. 

Let us also recall our general Conjecture 3.4. 

Conjecture. For all nE N and all j = 1, . . . , n we have 

x:tl,,.a(~‘~lfl.,,a on the set O(2)?&,. 
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/ 0 ..,’ 
y .::“& :. 1: : ,:‘I::; ,#. 

0=-l 1 
.‘. 

,.:: .. :. 
. ..’ ;.,. :..: 

ilk=-l cy=-l/2 Q=CO 0 cu=-1 a=-l/2 ” (Y 

Fig. 1. 

Added in proof. As one of the referees informed us, A. Elbert and A. Laforgia [3] also proved 
Ronveaux’s conjecture (24) in the ultraspherical case (compare Theorem 3.6(l) of this paper). Yet 
we have not seen their manuscript nor do we know about their method of proof. 
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