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Abstract 

We consider the numerical solution of a singularly perturbed linear self-adjoint boundary value problem. Assuming 
that the coefficients of the differential equation are smooth, we construct and analyze finite difference methods that 
converge both with high order and uniformly with respect to the singular perturbation parameter. The analysis is done 
on a locally quasiuniform mesh, which permits its extension to the case of adaptive meshes which may be used to improve 
the solution. Numerical examples are presented to demonstrate the effectiveness of the method and its low computational 
cost. The convergence obtained in practice satisfies the theoretical predictions. 
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1. Introduction 

In this paper we construct and analyze numerical approximations obtained from new 
exponentially fitted finite difference schemes applied to the singularly perturbed boundary value 
problem 

L~u =- - eZu"(x) + b Z ( x ) u ( x )  =f(x),  0 < x < 1, 

u(O) = A, u(1) = B, 

(1.1a) 

(1.1b) 
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where e ~ (0, 1] is a small perturbation parameter, A and B are given constants, b and f a r e  smooth 
functions and we assume that 

b(x) >/b > O. (1.2) 

It is known that if (1.2) holds, then problem (1.1) has a unique solution (e.g. [6]). 
Numerical treatment of problem (1.1) has been widespread in recent years, for example 

[6, 11, 13, 17, 19]. The need to resolve the boundary layers has motivated the use of nonuniform 
meshes, where the majority of the mesh points are placed in fast transition zones. Examples of this 
are contained in [12, 18], where finite difference schemes on fixed nonuniform meshes are con- 
sidered. Another interesting scheme is to construct methods starting with arbitrary initial meshes 
and then improving these with the aid of adaptive techniques. A further possibility is to construct 
exponentially fitted discretizations adapted to the singularly perturbed problem. The main contri- 
bution of this paper lies in the construction of methods of this latter types (e-uniformly convergent 
methods), whose solutions converge independent of the perturbation parameter to the theoretical 
solution, with arbitrarily high order and low computational cost. 

We know of only a few papers concerned with the construction of such high order e-uniformly 
convergent methods. In [19] methods of order ~ 3 on nonuniform meshes are analyzed, but 
the technique used is difficult to generalize to other cases. [1, 5] establish e-uniform convergence 
of second order for the E1-Mistikawy-Werle method, and in [2, 3] methods of OCI-type are 
shown to give very good results. [12] analyses a fourth-order e-uniform method for a semilinear 
problem with specially designed nonuniform meshes. In [21] Shishkin obtains theoretical results 
similar to ours using different methods of proof and without numerical examples to test the 
methods in practice. [9] constructs a family of schemes (exponentially fitted HODIE  schemes) 
that are e-uniformly convergent for a non-self-adjoint problem with nonzero convective term. 
He shows moreover that the arbitrary order of the method enables accurate results to be 
obtained on a uniform mesh. In [20] Sakai and Usman use simple B-splines to construct a finite 
difference method of order two for a non-self-adjoint problem, which requires less computational 
effort. 

In this paper we construct and analyze e-uniformly convergent methods on locally quasiuniform 
meshes for a self-adjoint problem without a convective term, and we validate our theoretical results 
by sample computations. The method of proof is similar to that in [9], but it differs fundamentally 
from it in that we are able to establish that our methods are not only e-uniformly stable (as in 
Gartland) but are also e-uniformly accurate (which is not possible in general for non-self-adjoint 
problems). This enables us to simplify greatly the proofs compared with those of [21, 9]. Indeed, we 
can make use of an obvious modification of the standard convergence theorem, namely that 
e-uniform stability and e-uniform accuracy of order p imply e-uniform convergence of order p. 
Furthermore, we are able to establish the e-uniform convergence without using the results of [24], 
which are required by Gartland's proof for the non-self-adjoint case. 

Throughout  the paper C denotes a generic positive constant, independent of both the perturba- 
tion parameter e and the mesh parameter. Also, for any U -- (Uo, . . . ,  uN) ~ R N+ 1, we define the 
discrete L ~ norm 

]]UH~ = max luil. (1.3) 
O ~ i < ~ N  
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2. The continuous problem 

In this section we obtain a decomposition of the solution u(x, e) of problem (1.1), which is 
important  in the later analysis of the e-uniform convergence of our finite difference schemes. 

Theorem 2.1. Let s be a positive integer. Then for ~ sufficiently small and b and f sufficiently smooth 
functions, the solution u(x, e) of(1.1) admits the representation 

(lfx ) ( l ;  ) u(x, e) = A(x, e) + Bl(x, e)exp T b(t)dt + B2(x, e)exp T b(t)dt (2.1) 

where A, B 1, B2, are their derivatives up to order s, are bounded independently of the perturbation 
parameter e. 

Proof. We give an outline of the proof (see [4] for details). Let v(x, ~) and w(x, e) be the solutions of 
the problems 

-- e2V"(X) + b 2 ( x ) v ( x )  =f(x) ,  0 < x < 1, 

- e Z w " ( x ) + b Z ( x ) w ( x ) = O ,  O < x < l, 

w(O) = A - v(O, e), w(1) = B - v(1, e), 

respectively. Then, it is obvious that 

u(x, ~) = v(x, e) + w(x, ~). 

If we write v(x, e) in the form 

v(x, e) = Vo(X) + ~vl(x) + ... + e S - l v ~ - i  + e~Vs(x, e) 

and take 

y(x, e) = exp b(t)dt [yo(X) + eyl(x) + ... + e s - l y~ - i  + esY~(x, ~)], 

z ( x , e ) = e x p  b(t)dt [Zo(X)+~Zl(X)+ ... + e ~ - l z s - 1  + e~Z~(x,e)], 

to be two linearly independent solutions of the differential equation LEw = O, where the functions 
for j = 1, ... ,s - 1, vs(x ), y~(x), zs(x ), and V~(x, e), Y~(x, e) and Zs(x, e) are chosen appropriately, 
then we can prove that for k = O, ... ,s 

Iv}k)(x)l <. C, ly}k)(x)l ~ C, Iz}k)(x)l <. C, j = 0 . . . .  , s -- 1 

and 

I V ~ ( x ,  ~)1 = o(~-k) ,  I Y ~k~(x, e) l = o(e -~) ,  IZ~(x, ~)1 = o(~-~) .  

The result follows when we impose the boundary  conditions. []  

The decomposition given in the last theorem leads to the following inequality. 
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Corollary 2.2. Let  f2 = (0, 1) and k be a nonnegative integer which depends on the smoothness o f  the 
coefficients o f  differential equation (1.1a). Assume that u ~ C*(O). Then,  for  all x ~ f2 and e e (0, 1] 

lu(kI(x, e)l ~< C(1 + e-k(e  -bx/" + e -ba-x)/~)) 

where C is independent o f  e. 

This inequality is used in the analysis of the local t runcat ion error of the finite difference schemes 
(see for example [12]). 

3. Construction and properties of the finite difference scheme 

We part i t ion [0, 1] with the mesh points 0 = Xo < xl < ... < xN = 1 taking hi = xi - xi-  1, 
1 ~<i~<N, ] i i = ( h i + h i + l ) / 2 ,  1 ~ < i ~ < N - 1 ,  H = m a x i h i ,  a i=h i+x /h i ,  1 <<. i <<. N - 1 ,  P i=h f f e ,  
1 ~< i ~< N. We assume that  this mesh is locally quasiuniform, i.e. that  there is a constant  ). > 0 such 
that  

) ~ - l  <~ O~i <~ )c , l ~ i ~ N - 1 .  (3.1) 

For  problem (1.1) we consider the discretization 

I 

L~,h(Uh)j -- r f  g j _  1 + r~Uj + r f  Uj+ 1 = 2 q}f(~}), 
i=1  

1 ~< j ~< N - 1, (3.2a) 

Uo = A, UN = B, (3.2b) 

where the r's and q's are determined later and the ~} are chosen to be distinct points  of the interval 
[xj_ 1, xj+ 1], called H O D I E  points [16]. 

Schemes of type (3.2), called exponentially fitted H O D I E  schemes, were first suggested in I-9] for 
a singular per turbat ion problem with positive convective term on a uniform mesh and were later 
generalized in [4] to locally quansiuniform meshes for the same problem. 

The coefficients of (3.2) are determined by imposing condi t ions that  permit  us to analyse easily 
the local t runcat ion error and then the e-uniform convergence of the scheme. Thus  we require that  
the local t runcat ion error vanishes on a set of functions that  we choose according to the splitting 
given in (2.1), i.e. on a set of functions of polynomial  and exponential  type. 

Let p >~ 1 be a positive integer. We construct  our  scheme by requiring it to be exact for each 
function in the set 

{ 1, x, ... , x p - l ,  E(x), xE(x) ,  ... , x v - I E ( x ) ,  e(x), xe(x),  ... , x p - l e ( x )  }, 

where 

(3.3) 

( fo) E ( x ) = e x p  b( t )d t  , e(x) = l /E(x) ,  (3.4) 
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and subject to the normalization condition 

3p-2 
q ( = l , j  I < ~ j < ~ N - 1 .  (3.5) 

i=1 

These conditions lead to a local linear algebraic system for the r's and q's, once the auxiliary 
~} are chosen. In our case we take ~ < ¢~ if r < s and 

~1 y3. p/2 3p-2 = xj_l ,  -~ = x~, ~ = Xj+l, if p is even, (3.6a) 

~1 ~ 3 p -  I)/2 c~ 3p- 2 = Xj-1, = xj, ,,j = xj+l, if p is odd, (3.6b) 

- = ~j • (3.6c) 

Remark 3.1. Condit ion (3.6c) is used later in estimates of the r's and q's. We conjecture however 
that it is not a necessary condition. This is consistent with the observation that the numerical 
results do not depend on it. 

Theorem 3.2. Let p be a positive integer. Suppose that the functions b and f a r e  sufficiently smooth, 
that the local truncation error is zero for the functions (3.3), (3.4), and that the normalization condition 
(3.5) and the distribution requirements (3.6) hold. Then for all H sufficiently small and independent ore, 
the finite difference scheme (3.2) is uniquely determined. 

Moreover, for 1 <<, j <<, N - 1 the coefficients satisfy the following inequalities 

0 < r f  + r ~ + r  + <. C, 

r f  < 0 ,  r f  < 0 ,  

and the inequalities 

Ce 
Irf l  ~< p--~/ Ir~l ~< - -  

Irf e ( -  hj)l ~< C, 

and 

Irf e(hj+OI <~ C, 

Iq}e(¢} - x~)l ~< Cp~, 

(3.7a) 

(3.7b) 

C~ 
Pj+I~j '  Iq}] ~ C, /fpj ~ 1, (3.8a) 

[r + E( - hj)] ~ C, (3.8b) 

if pj>~ 1, 

for l <<. i <<. 3p - 2. 

Ir+ E(h~+ l)[ ~ C, 

[q}E(~} - xj)[ <~ Cpj+l, 

Proof. For simplicity we transform the interval [Xj -1 ,  Xj+I] to 
(analogously for p odd) and ¢) = - hi, ~3p/2 = v,O ~jyap-2 = hi+ 1. 
subscript j. In the proof we use the following notation 

[ -  h~, hi+ 1]. Let p be even 
For simplicity we drop the 

Ei = E(¢i), ei = e(~i), bi = b2(~i), b~ = b'(~i), qi = ~  
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for 1 ~< i ~< 3p - 2. Then  the linear algebraic  system for the r's and q's in (3.2) is 

r -  + r  c + r  + - Z q i b i = O ,  

E l r -  + r ~ + E3p-2r + -- y, q i E i ( -  b~e) = 0, 

e l r -  + r ~ + e3p-2r  + - Y~qiei(b~e) = 0, 

~ q i =  1, 

( 1)kr-  + ~kr+ ~ q i ( _  k(k - 2  k-2 - - - 1 ) p j  r/i + b i t / k ) = 0 ,  k = l , . . . , p - 1 ,  (3.9a) 

n + ( - -  1)npjElr - + otjpjE3p-2r 

- y .qiEi(--  n (n - -  1)p f l r / 7  -2  - (2nbirl7 -~ + b~rl~-l~i)) = O, n = 1, ... , p -  1, 

( -  1)Spjelr  - + o:']'Pie3p_2 r+ 

- y . q i E z ( -  m ( m - 1 ) p f  l~/?-2 -(2mb~rlr/'-~ + b~rlT'-~ ¢~)) =O, m = l , . . . , p - 1 ,  

which we can write in the form 

Qq = b, (3.9b) 

where  

q = ( r - ,  r ~, r +, ql,  ... , q 3 p - 2 ) t ,  b = (0,0,0,  1 ,0 ,  . . . ,  0) t. (3.9c) 

W e  have to p rove  that  this system has a unique  solu t ion  for any  value o f p j , j  = 1, . . . ,  N. To  do  
this we divide the p r o o f  into three parts ,  accord ing  in each case to the size of  pj.  

Case 1: pj ~ oo. F r o m  (3.4) we k n o w  that  E~ --, oo and ei ~ 0, for i = a2p + 1, . . . ,  3p - 2 and also 
e~ --, oo and  E~ --, 0, for i = 1, . . . ,  ~2P - 1. The  technique in 1-9] now requires us to change  variables  
and to el iminate the u n b o u n d e d  coefficients. But  we wou ld  then have bo th  posi t ive and negat ive 
exponentials .  Fu r the rmore ,  the result ing system would  have less equa t ions  than u n k n o w n s  and  so 
its so lu t ion  wou ld  not  be unique.  It is necessary therefore to analyze this case more  carefully. 

Using the first three equa t ions  of  (3.9), it can be shown that  

r +  = 

where  

T l = Eqibi, 

and 

--  ( T I ( E 3 p _ 2  --  e3v_2)  + T 2 ( e 3 p _ 2  --  1) + T 3 ( 1  - E 3 p _ 2 ) ) / D  , 

- -  ( T l ( e l  - -  E ~ )  + T 2 ( 1  - -  e l )  + T 3 ( E 1  - -  1))/D, 

T 2 = ~ , q i E i ( -  b~e), T 3 = y~qiei(b~e) 

D = ( E 3 p _  2 - -  1)(el -- 1) + (1 -- E1)(e3p-2 -- 1). 

Subst i tu t ing  these values into the o ther  equa t ions  we ob ta in  the system 

(3.10a) 

(3.lOb) 

(3.11a) 

(3.11b) 

(3.12) 
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where 

c~ = (ql, ... , q3p-2)t, 

and the matrix Q is given by 

* * *  

both + O(hj)  + O ( p ;  1) . . .  

borl~ - ~ + O(hj )  + O ( p ;  ') ... 

(E1Al ,1  + B l ,1 ) /E3p-2  "'" 

( E 1 A I , p - 1  + BI .p -1 ) /E2p  "" 

(el C1, 1 -[- D1, 1)/el "'" 

(e lCl ,p -1  + D l , p - 1 ) / e v - 1  
, . .  

with 

Ai.n = 2nbotl~ -~ + O(hj )  + O(pj-1), 

Bi, n = -- aTbip j + O(hj )  + O ( p ; ' ) ,  

C~,,~ = 2robot/7 ' -1 + O(hj)  + O ( p ; ~ ) ,  

b = (1,0, ... , 0)' 

1 

bor/3p_2 + O(h~) + O ( p f  1) 

p-1 I) bo~3p_ 2 q- O ( h j )  q- O ( p ]  

( E a p _ E A 3 p _ 2 ,  1 -}- B a p _ 2 , 1 ) / E a p _  2 

( E 3 p - 2 A 3 p - 2 , p -  1 + B 3 p - 2 , p -  1 ) /E2p  

( e 3 p -  2 C 3 p - 2 ,  1 -[- D 3 p -  2, 1)/el 

(e3p - 2 Cap - 2, p - 1 -[- D3p - 2, p - 1) /ep - 1 

n = l , . . . , p - 1 ,  

n = l , . . . , p - 1 ,  

m = l , . . . , p - 1 ,  

Di,  m = ( - -  1)m-lbiPj  + O(hj )  + O(p]-l) ,  m = 1, ... , p  - 1. 

We now 

Q __ 

(3.13a) 

(3.13b) 

prove that  for hj sufficiently small and pj sufficiently large, we have det Q 4: 0. Writing 

0,, / 
021 ~22 0 2 3 ] ,  

Q33/ 

where Q 12 
Q given in 

det Q = det Q12 det Q23 det Q31 + O(hj)  + O(pj 1). 

Fur the rmore  

Q12 = Q*2 + L, Q23 = Q*3 + M, Q31 = Q~'I + N, 

is of order  p and Q23 and Q31 are of order (p - 1), and using the form of the matrix 
(3.13b), we see that  
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where 

Q*z = 

1 . . .  1 \ 

) borlp "'" borl2p - 1 
. . , . " 

borlg -1 ... bot/~;_11 

Q~3 = 

2bo ... 2bo 1 

4b°rl2P :i" 4boq.ap-2 ) 

2 ( p -  1)boq~; 2 -.-" 2 ( p -  l ibot/~,22/ 

Q~I = 

2bo "-" 2bo / 

4both ... 4botlp- 1 

/ . . , . " 

2 ( p -  1)bor/~ -2 ... 2 ( p -  1)botl~,-_2/ 

and L = O(h~) + O ( p f  1), M = O(hj) + O ( p f  1), N = O(hj) + O ( p ;  i). 
Since Q*2, Q*3 and Q~I are Vandermonde matrices, it follows that det Q # 0, which completes 

the proof in this case. 
Case 2: pj ~ O. In this case we have Ei ~ 1 and ei ~ 1, for i = 1, . . . ,  3p - 2. In the limit the 

resulting system is consistent but it is also singular. Despite this the coefficients have finite limits. 
To see this we use the same technique as in [9]. We choose the following set of functions equivalent 
to (3.2) 

{1, . . . ,  x p - i ,  xP(1 + ~bl), . . . ,  xZP-l(1 + ~bp), x2p(1 + ~bl), . . . ,  x3p-l(1 + ~bp)}, (3.14) 

where 

1 
Ix)  - (de  + i X + dp+2 X2 + ...), 

1 
I/It(X ) = ~2p(d2p+i X + d2p+ 2X 2 + . . . ) ,  

1 
ckl(x) =f~p+l( f2p+2X + f2v+aX 2 + ... ), 

(3.15) 

1 
=fT(A +lx + k , + 2 x  2 + .-. ). 
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Here di and./] are the coefficients of the Taylor expansions of E(x) and e(x), respectively. Imposing 
conditions (3.15) on the system (3.14), the matrix of the linear algebraic system is given in this case 
by 

Q = A ~  + M ,  

where M = O ( & )  and A1 is the matrix associated with the system 

{1, x . . . .  , x3p-1}.  

In [5] Doedel shows that A1 is nonsingular. It follows that, for Ps sufficiently small, Q is also 
nonsingular. 

Case 3:0 < 1/C <<. ps <<. C < 0% where C is any sufficiently large positive constant. We make the 
following change of variables: 

(~-, ~c, ~+)' = ( r -  -~j,rC, h---~+~/, r+ I t 

The resulting system is 

Al1 a12~ (i"*) = fb~ 
A21 A22J q* \b* ]' 

where 

r* = ( r - ,  ~c, ~+)t, q,  = ( q l ,  . . .  , q 3 p - 2 ) t ,  

- b o ,  - 
b** = O, ~. hT ] b~ =(1,  . . . ,0) ' .  

Furthermore, A12 = 0(1), Azl = O(hj), AgE is a matrix which is row equivalent to an interpolation 
matrix for the Chebyshev system 

{1, ... , x p- 1, ebox/e, .. .  , XP-  2, ebO,,/E, e-bOX/E, ... , xP- 2, e-box~E} 

and thus it is nonsingular. Finally we can write 

o t A l 1 =  E l - 1  0 ~ j (Eap -2 -1 )  +O(h j )  

e l - 1  0 ~j(eap-2 1) 

and it can be shown easily that All  is also a nonsingular matrix. 
We have shown that for all h s sufficiently small, the matrix Q of system (3.9) is nonsingular as 

required. We now show that inequalities (3.7) and (3.8) also hold in all three cases. We first establish 
the bounds on the q}, i = 1 . . . .  ,3p - 2. In cases 2 and 3 it is obvious that Iq}l ~< C. We now analyze 
what happens in case 1. We do this only for qJ. The proof is similar for the other quantities. 

Examining system (3.9), we see that it suffices to consider only the dominant terms in the 
corresponding minor of the determinant. It is then a straightforward, though tedious, calculation to 
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show tha t  
C e. C 
et E2p el 

us ing hypothes i s  (3.6c) on  the choice of  the auxil iary po in t s  ~ .  
We next  establish b o u n d s  on  the coefficients rf ,  r f  and  r~. In case 1, us ing the  express ions  (3.10) 

for r f  and  r f ,  we easily ob ta in  

r f  = bo(1 + O ( h i ) ) ( 1  + 
el \ 

bo(1 + O(hj)){1 + 
E3p- 2 

r + =  O ( E ~ p _  2 ) ) ,  

and  (3.8b) follows. In case 2, us ing 

~i b' e" (~i)2 
E i = l + b o - - e  + ( b ° +  o ) - ~ - + O ( P ~ ) ,  

e i  = 1 - bo-- + (bo - b'oe) (~i)2 
7 -  + 

we deduce  tha t  

r -  = - (1 + O(hj))(1 + O(ps)  ), 
pjr, j 

r + pj+,~.i(l_ +O(hj+l))(1 +O(pi+,)), 

and (3.8a) follows. Finally, in case 3, from 

E(x) = eb°X/'(1 + O(x)), e(x) = e-b°x/'(1 + O(x)),  

we ob ta in  

r -  = -- bo(1 + O(hs)) D1 , 

eboPj _ e - b o P j  

r + = -- bo(1 + O(hs)) D1 ' 

where  

e b°p j+ l  - -  e - b ° p J + l  

D1 = (¢boaj+, _ 1) (e b°m -- 1) + (1 -- e-b°P 9 (e -b°aj÷l -- 1) > 0, 

which  gives the  requi red  results  in this case. 
Lastly, 

r -  + r c + r + = ~,q ib i  = Xqibo(1 + O ( h j ) )  > O, 

r -  + r c + r + = ~,q ib i  <, IIbllooy:q i <~ C,  

and (3.7a) follows. This completes the proof of Theorem 3.2. [-]. 
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4. Uniform convergence of the finite difference scheme 

In the previous section we proved that the finite difference scheme (3.2) has a unique solution. We 
prove now that it is s-uniformly convergent in the discrete L ~ norm (1.3). To do this, we use the 
e-uniform accuracy and the t-uniform stability of the method. 

In the following definitions u denotes the solution of the boundary  problem (1.1) and U the 
solution of the finite difference scheme (3.2). 

Definition 4.1. A finite difference operator  Lh, E determined by the coefficients r f ,  r~ and r~ +, is of 
positive type if 

r / <  o, r / <  o, r ;  + + r ;  >1 o. 

Definition 4.2. A finite difference operator  Lh,, satisfies a discrete maximum principle if the 
inequalities Uo >t O, UN >>- 0 and Lh, e(Uh) j >1 0, 1 ~<j ~< N - 1, imply that Uj >/0, 0 ~<j ~< N. 

Definition 4.3. Let -c denote the local truncation error for a finite difference operator  Lh, ~. Then 
Lh,~ is e-uniformly accurate of order p with respect to the discrete norm II I1", if there are some 
constants C1 and Ho independent of h and e such that for all 0 < H < Ho 

Ilzll* ~ C1 HÈ. 

Definition 4.4. A finite difference operator  Lh, ~ is e-uniformly stable with respect to the discrete 
norms II II and II I1", if there is a constant Ca independent of e such that 

Ilvhll ~< C211Lh,~(Vh)[l* 

for all mesh functions vh in the domain of Lh,,. 

Theorem 4.5. Let II II and II I1" be two discrete norms. Let Lh, ~ be a finite difference operator which is 
e-uniformly stable with respect to those norms and e-uniformly accurate of order p with respect to the 
I111" norm. Then, the finite difference scheme 

Lh, ~ Uh = fh 

is e-uniformly convergent of  order p with respect to the [I I[ norm. 

Proof. The proof is an obvious modification of the standard proof that accuracy of order p and 
stability are sufficient conditions for convergence of order p. []  

We know that the local truncation error for the finite difference operator  (3.2) at the node xj is 
given by 

3 p - 2  

zj = Lh, ,(u(xj, e)) -- ~, q}L~(u(x~, e)). 
i = 1  

We establish in the following lemma that z i is e-uniformly accurate of order p - 1 in the discrete L ~ 
norm. 
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Lemm a  4.6. Let p >>. 2 be a positive integer and u(x, ~) the theoretical solution of(1.1). Then the local 
truncation error satisfies 

xj - 1 1 
[zjl <~ Ch~]-lmax{e, hj} ( l  + e x p ( ~  fo b(t)dt) +exp(- - -~  f l jb(t)dt)) ,  (4.1) 

where C is a positive constant independent of e and the mesh parameter. 

Proof. The decomposi t ion  (2.1) of the solut ion u(x, e) of problem (1.1) and the choice of the set of 
functions (3.3), (3.4) permit  us to write 

I~jl ~< C l z j [ (  x -- Xj)P-][ 

+ - p - I  x 
C e x p ( ~  f2Jb(t)dt)rj((x xj) exp(---~ fxb( t )d t ) )  

+ p 1 x 
Cexp(--~el fxljb(t)dt) z j ( ( x - x j )  exp(-~ f~jb(t)dt)) . (4.2, 

We now examine the local t runcat ion error for each of the three terms on the r ight-hand side. We 
distinguish two cases depending on p j, and we transform the interval [x j_ 1, x j+ 1] to [ - hi, hi+ 1]. 

Case A: pj ~< 1. A direct examinat ion of the local t runcat ion error will not  yield inequality (4.1), 
so we must  proceed in a more  careful way. Using Taylor 's  expansion for the exponential  function, 
we have 

E(x) = 1 + dl x + d2 X2 -~ "" q- d p x  p -t- d'p+ l Xp+ I 

with di = O(e-i), i = 1, ... , p and d~+l = O(e-tP+ lJ). It follows that  

1 1 , x p=~p[E(x ) - (1  + d l X +  ... + d p - l x  p- +dp+lXP+l)] 

and from the construct ion of the finite difference scheme we deduce that  

~< Id~+ll C /tp+ 1 irTi ] ITj(xP)[ ,--:-7-:-, IT (xP+I)I ~<-[-hje+llrj-I +-2+1  
lapl 8 

+ CEIq]I I-~21~il p-1 + I~il p+I]  

<~ Ch]- 1 e, (4.3a) 

where we have used the bounds  in (3.7a). Then it is easy to see that  

xP(E(x) + e(x)) = 2x p + d'l X p+ I 

and so 

I zj[xP(E(x) + e(x))][ ~< Izj(xP)l <<. Chy-le. (4.3b) 

Case B: p~ >~ 1. In this case using (3.8b) it follows that  

Ivj(xP)l <<. [h•lrf l + hej+l [r+l -] + CEIq~l [e2l¢il p-2 + I¢~IP] 

<~ Chej (4.4a) 



C. Clavero et al./Journal of Computational and Applied Mathematics 59 (1995) 155-171 167 

and by using pj >I 1 

I~j [xP(E(x) + e(x))]l 

<<. [ht](Ex + el)lrf  l + hel+l(E3p-2 q- e3p-2)lr+l] 

+ Cy(Ei + e3lq~l[e2l~l v-2 + e(l~l p-1 + I~IP)] 

<<. Che. (4.4b) 

Then (4.2)-(4.4) give the required result. [] 

Remark 4.7. We note that when p = 1, the last theorem does not imply the e-uniform accuracy of 
the difference scheme. In this case, however, we compute the coefficients of the method explicitly 
and use them to prove the result [4]. 

Using the inequalities of Theorem 3.2 the following lemma is immediate. 

Lemma 4.8. Assuming the hypotheses of Theorem 3.2, the finite difference scheme (3.2) (i) is of positive 
type, (ii) satisfies a discrete maximum principle and (iii) is e-uniformly stable in the discrete L °° norm. 

Theorem 4.9. Let u(x, e) be the exact solution of problem (1.1) and Uh its restriction to the mesh. Let 
Uh = (Uo, ... , UN) t e ~N+ 1 be the solution of the finite difference scheme (3.2). Then, there exists 
a positive constant C, independent of e and the mesh parameter, such that for p >f 2 

Iluh - Uhll <~ CH p- ~ max{e, H} (4.5) 

and so the difference scheme is e-uniformly convergent. 

Proof. This follows at once from Lemma 4.6 and Lemma 4.8. [] 

Remark 4.10. In practice, we normally take e ~< H and the e-uniform convergence of order p of the 
difference method is given by (4.5). 

An alternative approach to the proof of e-uniform convergence is the comparison function 
technique [14]. This approach involves using the comparison functions 

q~l,g(fl) = 1, q~2, j(fl) = e -gxj/`, ~b3,/(fl) = e gxj/~, 

where 13 is a positive constant, satisfying 13 < minx b:(x). We then obtain estimates of Ln, ~(dPk, j(13)), 
for k = 1, 2, 3, using the discrete maximum principle for the difference operator Lh, ~ and we can 
deduce that 

( ( - - ~ o  j ) )  ( l fxjb(t)dt ) [u(xj, e ) -  Us[ <<, Ch~.-lmax{e, hj} 1 + e x p  b(t)dt + e x p  - ~  . (4.6) 
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5. Numerical examples 

In this section we present numerical solutions of several problems, using the finite difference 
methods described in previous sections. The theoretical order p of z-uniform convergence depends 
on both the problem and the chosen difference method. The computat ions show that in all cases 
the numerical order of e-uniform convergence is in good agreement with the theoretical predictions. 

We determine the numerical order of uniform convergence in the following way. If we know the 
exact solution u,, we denote by EN the maximum nodal error where 

EN=maxlu~(x~) - -Uj [ ,  j = 0 , . . . , N .  
J 

We then define the numerical order p*, using two successive values EN and E2N, by 

p* = (log (EN) - - log  (EEN))/log 2. (5.1) 

On the other hand, if we do now know the exact solution, we define the numerical order p* by 

p* = (log (E~v) - l o g  (E~s))/log 2, (5.2) 

where 

E~v = maxlu*(xj)  - U~f, j = 0, ... , S 
J 

and, for each fixed 5, u* is the numerical solution on the finest available mesh. 
In all of the examples we begin the integration with an initial mesh. We then modify this mesh, 

using the algorithm of equidistribution of arclength with piecewise linear interpolation of the initial 
discrete solution [4, 23]. Similar results may be obtained using the equidistribution of other 
quantities involving derivatives of the solution. 

In the tables we show the maximum nodal error for each mesh and the numerical order of 
e-uniform convergence for different values of the parameter  p. The computat ional  cost increases 
with p and so, in practice, we should use the method for small p only. 

In Problem 5.3 we do not know the exact solution and, for a non uniform mesh, linear 
interpolation is used to determine the approximate error E~v. This is not satisfactory, however, 
because the accuracy of this linear interpolation is less than the accuracy of the method,  and overall 
accuracy of the method is thus reduced unnecessarily. For  this reason we give the numerical results 
for this problem only on uniform meshes. The finest available mesh in this case has 160 points in 
the integration interval. 

Problem 5.1 (Herceg [12]). 

- e2u"(x) + u(x) = - cos 2 (rex) - 2(en) 2 cos(21rx), 

u(0) = 0, u(1) = 0. 

The exact solution is 

u~(x) = (exp( -- x/e) + exp( -- (1 -- x)/e))/(1 + exp( -- l/z)) -- cos 2 (nx). 
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P r o b l e m  5 . 2  ( C l a v e r o  [ 4 1 ) .  

- e2u"(x )  + u (x )  = - 7 2 8 2 x  7 + x 9, 

u ( -  1) = 0, u(1)  = 0. 

T h e  e x a c t  s o l u t i o n  i s  

u,(x)  = ( e x p ( -  (1 + x)/g) -- e x p (  - (1 - -  x)/g)) / (1 - e x p ( -  2 /~ ) )  + x 9. 

Problem 5.3. 
1 

- e2u"(x )  + 1 + x - - - - q  u(x)  = x 2 + 1, 

u ( O ) =  1, u ( 1 ) = O .  

I f  w e  c o m p a r e  t h e  r e s u l t s  i n  T a b l e s  1 - 3  w i t h  t h e  n u m e r i c a l  r e s u l t s  g i v e n  i n  [ 1 2 ]  w e  s e e  t h a t  t h e  

v a l u e  o f  t h e  m a x i m u m  e r r o r  i n  a l l  c a s e s  i s  l e s s  u s i n g  o u r  m e t h o d ,  a n d  t h a t  w e  d o  n o t  n e e d  t o  u s e  

Table  1 

M a x i m u m  noda l  e r ro r  EN and  numer ica l  o rde r  p* for  P r o b l e m  5.1 

p = 4 N =  8 N =  16 N =  32 N =  64 Average  

82 = 2 -4  0.630E - 10 0.254E - 12 0.247E - 14 0.185E - 14 5.017 

7.950 6.687 0.415 

82 = 2 -8 0.550E - 7 0.818E - 9 0.666E - 11 0.233E - 13 7.056 

6.071 6.940 8.156 
e 2 = 2-12  0.129E - 4 0.497E - 6 0.639E - 8 0.323E - 9 5.096 

4.705 6.280 4.305 

e 2 = 2 -16  0.358E - 5 0.140E - 5 0.434E - 6 0.476E - 7 2.077 

1.351 1.692 3.189 

e 2 = 2 -20 0.188E - 4 0.101E - 6 0.399E -- 7 0.138E - 7 3.470 

7.540 1.339 1.532 

Table  2 

M a x i m u m  noda l  e r ro r  EN and  numer ica l  o rde r  p* for P r o b l e m  5.2 

p = 3 N = 25 N = 50 N = 100 N = 200 Average  

82 = 10 -1 0.881E - 10 0.32E - 12 0.251E - 14 0.111E - 14 5.442 

8.103 6.992 1.1712 

82 = 10 -2  0.120E - 9 0.396E - 12 0.199E - 14 0.108E - 16 7.801 

8.25 7.63 7.525 

8 2 = 1 0  - 3  0.701E - 6 0.559E -- 8 0.704E -- 10 0.144E -- 12 7.404 

6.969 6.311 8.933 

82 = 10 -4  0.407E - 4 0.168E - 5 0.232E - 7 0.165E - 9 5.969 

4.597 6.176 7.135 

82 = 10 -5 0.102E - 5 0.246E - 5 0.397E -- 6 0.140E - 8 3.171 

2.056 2.632 4.825 
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Table 3 
Maximum nodal error EN and numerical order p* for Problem 5.3 

p = 3 N =  10 N =  20 N =  40 N =  80 Average 

e 2 = 10 -1 0.412E - 11 0.723E - 13 0.115E - 14 0.177E - 16 5.941 
5.832 5.975 6.016 

e 2 = 10 -2 0.227E - 9  0.103E - 11 0.531E - 14 0.341E - 16 7.491 
7.776 7.611 7.086 

e 2 = 10 -3 0.158E - 7 0.103E - 9 0.467E - 12 0.188E - 14 7.667 
7.269 7.785 7.949 

e 2 = 10 -4  0.115E - 6 0.322E - 8 0.315E -- 10 0.170E - 12 6.456 
5.167 6.675 7.526 

e 2 = 10 -5 0.207E - 7 0.744E - 8 0.404E - 9 0.941E - 11 3.700 
1.475 4.201 5.425 

a special mesh to obtain good results in the boundary layers. Better results, for the maximum error 
and for the numerical order of uniform convergence, have been obtained using more points in the 
integration mesh, in particular for N = 25, 50, 100, 200. 
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