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Abstract

In this paper a detailed analysis of the eigenvalue problem under convection −(|u′|p−2u′)′−c|u′|p−2u′=�|u|p−2u; 0¡x
¡ 1; u(0) = u(1) = 0 (′=d=dx) is performed. The analysis is based on a complete study of the phase space of the family
of equations (|u′|p−2u′)′+a|u′|p−2u′+b|u|p−2u=0; a; b constants. c© 1999 Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction

In this paper we will undertake the analysis of the Dirichlet eigenvalue problem for the one-
dimensional p-Laplacian when perturbed by convection terms in the unit interval I={x : 0¡x¡ 1}.
More precisely, we will be concerned with the problem

−( p(u′))′ − c p(u′) = � p(u); 0¡x¡ 1;

u(0) = u(1) = 0;
(1)

where, for p¿ 1;  p(z):=|z|p−2z will stand for the odd extension of zp−1 while c will be assumed,
without loss of generality, positive (the change x → 1 − x reduces the case c¡ 0 to the present
one).
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A number � ∈ R such that (1) possesses a nontrivial solution u is called an eigenvalue of (1),
meanwhile any such a nontrivial solution u is said to be the associated eigenfunction. As usual in
problems concerning the p-Laplacian, solutions to (1) will be understood in the weak sense of the
Sobolev space W 1;p

0 (I), so that u satis�es:∫ 1

0
 p(u′)’′ dx − c

∫ 1

0
 p(u′)’ dx = �

∫ 1

0
 p(u)’ dx; ∀’ ∈ W 1;p

0 (I): (2)

The main objective of this work is to provide a complete and almost explicit description of the
eigenvalues and eigenfunctions to (1).
The case where convection is absent (c = 0), namely,

−( p(u′))′ = � p(u); 0¡x¡ 1;

u(0) = u(1) = 0
(3)

has been completely studied recently (cf. [5,14]). This is in strong contrast to its n-dimensional
version,

−div(|3u|p−23u) = �  p(u); x ∈ 
;

u= 0; x ∈ @
;
(4)


⊂Rn a bounded domain, where the knowledge of the complete structure of the spectrum is still
an open problem (cf. [1,3,10,11,7,8,18]) while a number of partial results (most of them concerning
the �rst eigenvalue �1) have been obtained (cf. [2,12,4–6,9,16–19]). Two speci�c works keeping
a closer relation with the present research are [3], where partial results on the spectrum of an
n-dimensional version of (1) are announced, and [20] where a complete Sturm–Liouville theory for
the radial version of (4) is developed.
A direct approach to deal with the nonperturbed problem (3) is �rst showing that all possible

eigenvalues are positive (cf. Section 2). Scaling as � = �1=px and using the homogeneity of the
equation such problem can be reduced to the study of nodal properties of the solution û= û(�) to

−( p(u′))′ =  p(u);

u(0) = 0; u′(0) = 1
(5)

with ′=d=d�. The �rst integral E(u; u′)=(p−1)|u′(x)|p+ |u(x)|p and a few of calculus can be then
used to show that the solution û to (5) is periodic with period �p = 4�(p − 1)1=p=(psin(�=p)) and
has zeros at �n = n�p=2; n ∈ Z. This shows that the eigenvalues of (3) are �n = �p

n , n ∈ N, while
all possible eigenfunctions associated with �n are multiple of un(x) = û(�nx); 0¡x¡ 1. Hence, a
complete picture of the features of (3) is obtained.
However, the convective case (1) can not be reduced to explicit integration, unlike what happens

when p = 2 and both (1) and (3) are linear. In that case, making u = e−cx=2v immediately reduces
the former to the latter (the harmonic oscillator) giving rise to the spectrum �n = n2�2 + c2=4; n ∈
N, and corresponding eigenfunctions un = e−cx=2 sin n�x. Such a reduction is not possible when
p 6= 2.
In the present paper we are proceeding to give a description as �ne as possible of the problem

(1) by showing that its main features can be read from the global structure of phase space to the
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equation

− ( p(u′))′ − 
 p(u′) =  p(u) (6)

when the parameter 
 runs the range 06
¡p.
Accordingly, the results and organization of the work rely upon a detailed analysis of (6). In

Section 1 the smoothness of weak solutions to (6) is discussed (cf. Lemma 2.1) while the existence
and uniqueness of global solutions in R+ to the Cauchy problem associated with (6) is obtained
(cf. Theorem 2.4). It is shown in Section 3 that the phase space of the natural two-dimensional system
associated with (6) exhibits, when compared with the linear situation p= 2 and with respect to the
parameter 
 and the critical value 
∗ = p, the same general features concerning structure of orbits
(center, focus, node transitions) and convergence to the trivial solution. In particular, the characteristic
equation to (6) is introduced (cf. Theorem 3.2). The eigenvalues and eigenfunctions to (1) are studied
in Section 4 where a description of the simplicity, asymptotic distribution both regarding n → +∞
and c → +∞ of the eigenvalues �n(c) and qualitative properties of the eigenfunctions �n are given
(cf. Theorem 4.1).
For later use it will be always designated by p′; p¿ 1, the H�older conjugate of p; 1=p+1=p′=1.

It is very convenient to remark that  p′ de�nes the inverse function of  p.

2. The initial value problem

In view of the proof of next Lemma 2.1 below, it will turn out that any possible eigenfunction
u ∈ W 1;p

0 (I) will be further assumed to satisfy u′;  p(u′) ∈ C1(I), verifying the equation

− ( p(u′))′ − c  p(u′) = � p(u) (7)

in a classical sense or equivalently,

− (ecx p(u′))′ = �ecx p(u): (8)

Thus, a direct integration of (8) shows that if � is an eigenvalue of (1) and u is an eigenfunction,
then ∫ 1

0
ecx|u′|p dx = �

∫ 1

0
ecx|u|p dx:

This shows that all the possible eigenvalues � to (1) are positive.
As a consequence, the initial value problem for (7) reduces, after the scale change � = �1=px, to

the corresponding one for Eq. (6), i.e.,

−( p(u′))′ − 
  p(u′) =  p(u);

where the parameter 
 = c�−1=p is positive. On the other hand, we will be interested in those
solutions to (6) partially or wholly de�ned in the interval [0;+∞). More precisely, given an interval
J ⊂ [0;+∞), the pair (u; J ) is said to be a local weak solution of (6) if u ∈ W 1;p

loc (J ) and the following
identity is ful�lled:∫

J
 p(u′)’′ dx − 


∫
J
 p(u′)’ dx =

∫
J
 p(u)’ dx; ∀’ ∈ C1

0 (J ): (9)

First of all, we have the following regularity result.
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Lemma 2.1. Let (u; J ) be a nontrivial local weak solution of (6). Then u is of class C2 for
1¡p62; and of class C2 in J\{x ∈ J : u′(x) = 0} in the case p¿ 2; where {x ∈ J : u′(x) = 0} is;
in addition; a discrete set in J . Furthermore; Eq. (6) is point-wise satis�ed in J .

Proof. Let u ∈ W 1;p
loc (J ) be a nontrivial local weak solution of (6). As u ∈ W 1;p

loc (J ), it follows that u
is absolutely continuous in J and therefore di�erentiable a.e. x ∈ J (see [13]). In fact u; u′ ∈ Lp(J ),
so  p(u);  p(u′) ∈ Lp′

(J ). On the other hand, as a consequence of (9), −
 p(u′)−  p(u) represents
the weak derivative of  p(u′), and therefore  p(u′) ∈ W 1;p′

(J ). As above,  p(u′) ∈ C(J ) and

 p(u′(x)) =  p(u′(x0))−
∫ x

x0
{
 p(u′(s)) +  p(u(s))} ds; ∀x0; x ∈ J: (10)

From the relation (10),  p(u′) ∈ C1(J ), and

u′ =  p′( p(u′)) ∈ C(J ): (11)

Since  p is di�erentiable in R for p¿2 and in R\{0} for 1¡p¡ 2, then both (11) and the fact
that  p(u′) ∈ C1(J ) imply that u ∈ C2(J ) for 1¡p62 and u ∈ C2(J\{x ∈ J : u′(x)=0}) for p¿ 2.
Let us show now that J\{x ∈ J : u′(x) = 0} is discrete. By contradiction suppose that J\{x ∈

J : u′(x) = 0} is not discrete. Then there exists a sequence {xn}∞n=1⊂ J such that u′(xn) = 0 together
with xn → x0 and x0 ∈ J . By continuity u′(x0) = 0. If we de�ne

h(x):=e
x p(u′(x));

then h ∈ C1(J ) and h(xn) = h(xn+1) = 0. By Rolle’s Theorem there exists �n ∈ (xn; xn+1) such that
h′(�n) = 0.
On the other hand,

h′(x) = 
e
x p(u′(x)) + e
x( p(u′(x)))′;

and therefore

h′(x) =−e
x p(u(x)):
In particular, h′(�n) =−e
�n p(u(�n)) = 0, which implies that u(�n) = 0 and consequently u(x0) = 0.
We are next showing that u(x0) = u′(x0) = 0 implies that u ≡ 0 in J . Indeed, from the fact that x0
is a double zero for u we obtain from (9)

u(x) =−
∫ x

x0
 p′

(∫ s

x0
e
(t−s) p(u(t)) dt

)
ds; x ∈ J: (12)

If �0¿ 0 is chosen so that {|x − x0|¡�} falls into J for 0¡�¡�0, we �nd from (12) that

|u(x)|6C(�) sup
|s−x0|¡�

|u(s)| for |x − x0|¡�;

where C(�) =O(�2) as � → 0+. Thus u ≡ 0 near x= x0. This means that {� ∈ J : u(�) = u′(�) = 0}
is nonempty, open and closed in J and therefore u ≡ 0 in J . This contradicts the fact that u is
nontrivial.
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Remark 2.2. The way in which a nontrivial solution u to (6) fails to be twice di�erentiable at a
point x0 where u′ vanishes (u(x0) = u0 6= 0) when p¿ 2 can be precisely described. In fact,

u′(x) =− p′

(∫ x

x0
e
(s−x) p(u(s)) ds

)
;

and so,

u′(x) =−u0  p′(x − x0) + o( p′(x − x0)) (13)

as x → x0, being p′ = 1=(p − 1). This clearly reveals that u can not exhibit a second derivative at
x = x0 if p¿ 2.

For later use, let us examine now in detail the uniqueness, local and global existence properties
of local weak solutions of the initial value problem:

−( p(u′))′ − 
 p(u′) =  p(u);

u(0) = u0;

u′(0) = u′0;

(14)

where u0; u′0 ∈ R. Note that the autonomous character of (14) allows setting the initial position as
x0 = 0.

Remark 2.3. Notice that it has already seen that u ≡ 0 is the only possible response of (14) to
the data u0 = u′0 = 0. On the other hand, observe that for 1¡p62 and u0 6= 0, the existence of a
unique local solution is an immediate consequence of the general ode’s theory [15]. Indeed (14) is
equivalent to the problem

u′ =  p′(v); u(0) = u0;

v′ =−
v−  p(u); u′(0) =  p(u′0);
(15)

so if 1¡p62 then p′¿2, and as u(0) = u0 6= 0, the general theory guarantees the existence of a
unique local solution of class C2 to (14). The same conclusion holds true for the complementary
case p¿2 provided u′(0) = u′0 6= 0.

A full account on (14) is contained in our next result (see [20] for an alternative approach).

Theorem 2.4. The IVP (14) admits for each u0; u′0 ∈ R a unique solution in the interval [0;+∞);
which is of class C2 for 1¡p62; meanwhile in the case p¿ 2 it is of class C2 except in the
discrete set of points where u′ vanishes.

Proof. Local existence and uniqueness. We will proceed separately in the cases u′0 = 0 and u′0 6= 0.
Assume �rst that u′0 = 0. According to Remark 2.3 only the case p¿ 2 needs to be studied

(obviously it will be supposed that u0 6= 0). Due to the homogeneity of (14) no generality is lost if
we assume u0¿ 0. So, let u be any possible local solution of (14). Using (8), u can be written in
the integral form

u= u0 −
∫ x

0
 p′

(∫ t

0
e
(s−t) p(u(s)) ds

)
dt: (16)
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Therefore if, for a conveniently chosen �¿ 0, we consider the operator T :C([0; �]) → C([0; �])
de�ned as

T (h)(x):=u0 −
∫ x

0
 p′

(∫ t

0
e
(s−t) p(h(s)) ds

)
dt;

it is clear that the �xed points of T characterize the solutions of (14).
Let us see that T admits a unique �xed point by showing that T is a contractive operator in some

ball of C([0; �]). In fact, denoting by �B�1 (u0):={h ∈ C([0; �]): |h− u0|6�1} (|h|= sup|h(·)|) and �1
small enough, we have

|T (h)(x)− u0|6 �

1=(p−1)

(|u0|+ �1) for 06x6�;

whereby if we choose �6�1
1=(p−1)=(|u0|+ �1) then

|T (h)(x)− u0|6�1 for each 06x6�:

Hence T ( �B�1 (u0))⊂ �B�1 (u0). On the other hand, for any pair u1; u2 ∈ �B�1 (u0),

|T (u1)(x)− T (u2)(x)|=
∣∣∣∣
∫ x

0

{
 p′

(∫ t

0
e
(s−t) p(u1(s)) ds

)
−  p′

(∫ t

0
e
(s−t) p(u2(s)) ds

)}
dt
∣∣∣∣ :

Thus an application of the Mean Value Theorem shows that

|T (u1)(x)− T (u2)(x)|=
∣∣∣∣
∫ x

0

1
p− 1 |�(s)|

(2−p)=(p−1)
[∫ t

0
e
(s−t){ p(u1(s))−  p(u2(s))} ds

]
dt
∣∣∣∣ ;

where �= �(t) takes intermediate values to the integrals
∫ t
0 e


(s−t) p(ui(s)) ds; i = 1; 2.
Since p¿ 2 and u0 was chosen positive we arrive at

|T (u1)(x)− T (u2)(x)|6 �


1=(p−1)[1− e−
�]p−2=p−1

(
u0 + �1
u0 − �1

)p−2
|u1 − u2|; x ∈ [0; �]:

Hence, we achieve

|T (u1)− T (u2)|6O(�1=p)|u1 − u2|
as � → 0+. Thus taking � small enough we can conclude that T is contractive. Therefore, there
exists a unique local solution in this case.
As for the situation u′0 6= 0 the only case that need to be considered is u0 = 0 together with

1¡p¡ 2 while u′0 can be taken positive. The alternative representation

u=
∫ x

0
 p′

(
e−
t p(u′0)−

∫ t

0
e
(s−t) p(u(s)) ds

)
dt; (17)

characterizes now any possible local solution u = u(x); 06x6�; �¿ 0 small. Since the derivative
of u must be taken now into account, it is rather convenient to observe the right-hand side in (17)
as an operator T (u) acting in the space C1([0; �]). For 0¡�1¡u′0 to be �xed we introduce the
closed set X�;�1 = {u ∈ C1([0; �]): |u − h0| + |u′ − h′0|6�1; u(0) = 0; u′(0) = u′0}, where h0(x) = u′0 x.
Then, it is easily found that

(u′0 − �1)x6u(x)6(u′0 + �1)x; 06x6� (18)
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for every u ∈ X�;�1 . Thus,

|T (u)′(x)− u′0|6
1

p− 1 |�1(x)|
(2−p)=(p−1)

∣∣∣∣
∫ x

0
e
s p(u(s)) ds

∣∣∣∣+ (1− e−[
=(p−1)]x)u′0; (19)

where �1(x) =  p(u′0)− �1(x)
∫ x
0 e


s p(u(s)) ds and 0¡�1(x)¡ 1. By using (18) we obtain

�1(x)¿ p(u′0)−
e
�

p
(u′0 + �1)p−1xp¿ p(u′0)−

e
�

p
(u′0 + �1)p−1�p ¿ 0;

provided �¿ 0 is small enough. Thus,

|T (u)′(x)− u′0|6
e
��p

p(p− 1)(u
′
0)
2−p(u′0 + �1)p−1 + (1− e−[
=(p−1)]x)u′0 = O(�); (20)

as � → 0+. Thus, it follows easily from (20) that |T (u)− h0|+ |T (u)′ − u′0|=O(�) as � → 0+ and
T keeps X�;�1 invariant provided � is chosen small.
Let us check now that T is contractive in X�;�1 . In fact, for every pair u1; u2 ∈ X�;�1 we have

T (u1)′(x)− T (u2)′(x) =
1

p− 1 |�2(x)|
(2−p)=(p−1)

∫ x

0
e
(s−x)( p(u1)−  p(u2)) ds;

where �2(x) =− ∫ x
0 e


(s−x)(�2(x) p(u1)− (1− �2(x)) p(u2)) ds and 0¡�2(x)¡ 1.
From (18) we get the estimate,

|�2(x)|6 1
p
(u′0 + �1)p−1�p;

while,∣∣∣∣
∫ x

0
e
(s−x)( p(u1)−  p(u2)) ds

∣∣∣∣6
∫ x

0
e
(s−x)(p− 1)|�3(s)|p−2 ds|u1 − u2|;

being �3 an intermediate function between u1 and u2 and |u1 − u2| = sup06x6�|u1(x) − u2(x)|. By
using once again (18) we arrive at∣∣∣∣

∫ x

0
e
(s−x)( p(u1)−  p(u2)) ds

∣∣∣∣6(u′0 − �1)p−2�p−1|u1 − u2|:
Thus,

|T (u1)′ − T (u2)′|6 1
(p− 1)p(2−p)=(p−1) �

1=(p−1)|u1 − u2|:

Therefore, |T (u1)−T (u2)|16O(�1=(p−1))|u1−u2|1 as � → 0+, being |u1−u2|1= |u1−u2|+ |u′1−u′2|. A
convenient choice of � proves that T is contractive in X�;�1 . In particular, we obtain the uniqueness
of local solutions to (14).
Global existence and uniqueness. Let us prove now that every local solution can be continued

over the whole interval [0;+∞). In fact, since the nonlinearity in (15) is continuous, standard ode’s
results [15] yield a maximal continuation û of u on an interval Î = [0; !) (û ≡ u in [0; �)). On the
other hand, it is well-known that boundedness of û entails ! =+∞. Thus, we next show that any
local solution (u; J ) to (6) keeps bounded in J . In fact, due to the conclusions of Lemma 2.1 it
follows that the energy function

E(u(x); u′(x)):=
p− 1
p

|u′(x)|p + 1
p
|u(x)|p (21)
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is of class C1 in J if 1¡p62, meanwhile E ∈C(J ) ∩ C1(J\{x ∈ J : u′(x) = 0}) provided p¿ 2.
Since,

E′(x) = (p− 1) p(u′)u′′ +  p(u)u′ =−
|u′|p ¡ 0;

provided u′(x) 6= 0 and {u′ = 0} is discrete we conclude that E decreases in J. In particular,

E(u(x); u′(x)) =
p− 1
p

|u′(x)|p + 1
p
|u(x)|p ¡

p− 1
p

|u′(x0)|p + 1
p
|u(x0)|p; ∀x ∈ J; x¿x0;

and every local solution (u; J ) to (6) keeps bounded. Therefore, !=+∞.
Finally, the global uniqueness is an immediate consequence of the local uniqueness. In fact, if u1

and u2 are maximal solutions of (14) the set � = {x ∈ [0;+∞): u1(x) = u2(x) and u′1(x) = u′2(x)},
is nonempty and obviously closed. Suppose x0¿ 0 so that x0 ∈ �. Then, either following standard
ode’s results if u0u′0 6= 0 or otherwise using the preceeding local arguments we achieve that u1 and
u2 further coincide in |x − x0| small. Therefore � = [0;+∞).
This concludes the proof of Theorem 2.4.

3. Phase space analysis

After the scale change �= �1=px problem (1) can be written as

−( p(u′))′ − 
  p(u′) = � p(u); 0¡�¡�1=p

u(0) = u(�1=p) = 0;
(22)

where ′=d=d� and the parameter 
 takes the precise value 
= c�−1=p. Thus, the strategy to analyze
(22) consists of searching for global solutions u= u(�) to (14) corresponding to initial data u0 = 0
and u′0 6= 0 (see Theorem 2.4) that, in addition, vanish at the point � = �1=p when the parameter 

matches the exact value 
= c�−1=p.
Since we are going to proceed by geometrical arguments, it should be remarked that, in view of

Theorem 2.4, every global solution u= u(x), 06x¡+∞, to problem (14) gives rise to a solution
(u; v) = (u(x); u′(x)) to the autonomous initial value problem,

u′ = v; u(0) = u0;

v′ =
1

1− p
|v|2−p{ p(u) + 
 p(v)}; v(0) = u′0;

(23)

keeping in mind that (u; v) undergoes singularities (and so does not solve the system) at those —
discretely spread-points of x¿0 where u′ vanishes, provided p falls in the range p¿ 2. In any case,
(u; v) de�nes a piece-wise C1 curve �+ =�+(P0)= {(u(x); v(x)): x¿0}; P0 = (u0; u′0) which will be
still referred to here as the semiorbit to (23) starting at P0.

Remark 3.1. It should be stressed that the initial value problems (15) and (23) are not “completely”
equivalent. In fact, every solution (u; v) to (15) always provides the solution (u1; v1) = (u;  p′(v)) to
(23) (this indeed may be taken as a de�nition for a global solution to (23) which incorporates the
singularities arising at points x0 where u′(x0)=0 when p¿ 2). However, when 1¡p¡ 2 all points
(u0; 0) are critical for the system in (23) and do not correspond to solutions of (15). Moreover,
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Fig. 1.

every �xed solution (u; v) to (15), so that u′(x0) = 0 at some x0¿ 0, gives rise to in�nitely many
solutions (û 1; v̂1) to (23). In fact, given any l¿ 0 it is easily seen that (û 1; v̂1)= (u;  p′(v)) if x6x0,
(û 1; v̂1) = (u(x0); 0) for x06x6x0 + l while (û 1(·); v̂1(·)) = (u(· − l);  p′(v(· − l))) beyond x0 + l
de�nes a solution to (23).

Since we are dealing henceforth with Eq. (23), all possible solutions (u; v) to that equation will be
understood as coming from a unique solution (ũ; ṽ) to (15) by the relation (u; v)= (ũ;  p′(ṽ)). Thus,
such solutions (u; v) to (23) cross through points (u0; 0) without stopping if 1¡p¡ 2 or plainly
go beyond the singularities (u0; 0) provided p¿ 2.
Our next result gives a detailed description of the phase space of Eq. (6) through the associated

�rst-order system (23). As a main conclusion it will be seen that the Eq. (6) exhibits, as 
 ranges
R+, the same kind of behavior as the linear situation p= 2. Namely, a transition “stable-focus” to
“stable-node” when 
 crosses the precise value 
∗ = p (see Fig. 1).

Theorem 3.2. Let 
¿0 and P0 = (u0; v0) ∈ R2 be arbitrary. Then every semiorbit �+(P0) of (23)
is bounded. Moreover; the qualitative global behaviour of all those orbits can be depicted with
regard to 
¿0 in the following terms:

(i) If 
 = 0 all semiorbits �+(P0) are closed; (u; v) = (0; 0) is a “centre”; and such semiorbits
are parametrized by periodic solutions with common period Tp = 4�(p − 1)1=p=(p sin (�=p)) ( cf.
[5], [14]).
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(ii) For 0¡
¡
∗ = p; (u; v) = (0; 0) is a stable focus type point to (23); every semiorbit
�+(P0) exponentially decays to (0; 0); turning clockwise around (0; 0) as x → ∞; i.e.,

lim
x→+∞(u(x); v(x)) = (0; 0):

(iii) At 
 = 
∗ = p; (u; v) = (0; 0) is a stable double-node type singular point to (23); the half
lines {v=−u : u¿ 0} and {v=−u : u¡ 0} are orbits to (23) and every semiorbit �+(P0) decays
exponentially towards (0; 0) in such a way that

lim
x→+∞

v(x)
u(x)

=−1:

(iv) If 
¿
∗ = p then (u; v) = (0; 0) is a stable node type singular point in the sense that the
four half lines �i;+(−) = {v=mi u : u¿ 0 (respectively; u¡ 0)}; i= 1; 2; where m1¡m2¡ 0 are
the unique roots of

(p− 1)|m|p + 
 p(m) + 1 = 0; (24)

are orbits to (23). Moreover; every semiorbit �+(P0) di�erent from �1;+ and �1;− exponentially
decays to (0; 0) as em2x so that it remains either tangent to �2;+ or to �2;− when x → +∞; i.e.;

lim
x→+∞

v(x)
u(x)

= m2: (25)

Remark 3.3. Eq. (24) is the generalization to p 6= 2 of the characteristic equation in the linear case
p= 2. A possible way to arrive at (24) is to look for explicit solutions of the form u= emx to (6),

( p(u′))′ + 
 p(u′) +  p(u) = 0:

A second way to produce (24) is by looking for straight-line solutions v=m u to the orbital equation,

dv
du
=− 1

p− 1{ p(u=v) + 
}v
associated with (23).

As for the discussion of solutions of (24), setting h(m) = (p − 1)|m|p + 
 p(m) + 1 one �nds
that h′(m) = p(p − 1)|m|p−2(m + 
=p); so m = −
=p is an absolute minimum with h(−
=p) =
1 − (
=p)p, and since h → +∞ as |m| → +∞, (24) has exactly two simple zeros m1¡m2¡ 0
(respectively, the single solution m = −1, no solutions) provided 
¿p (
 = p, 06
¡p). In
particular, when 
¿p, h¿ 0 either if m¡m1 or m¿m2 while h¡ 0 between m1 and m2. Since
m1¡− 
=p¡m2¡ 0; h′(m1)¡ 0; h′(m2)¿ 0.

Proof of Theorem 3.2. As has been pointed out, every semiorbit �+(P0) is parametrized by a
unique bounded and piece-wise C1 (fully C1 if 1¡p62) solution (u(x); v(x)) to (23) such that
(u(0); v(0)) = (u0; u′0) and 06x¡ +∞ (cf. Theorem 2.4 and Remark 3.1). Thus, if �0¿ 0 and
06’0¡ 2� are chosen so that u0 = �0 cos’0, v0 = �0 sin’0 then unique piece-wise C1 functions
(repectively, C1 if 1¡p62) �= �(x) and ’= ’(x) can be found such that

u(x) = �(x) cos’(x);

v(x) = �(x) sin’(x)
(26)
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for 06x¡ +∞ and verifying �(0) = �0; ’(0) = ’0. The polar coordinates expression (26) for
the solution (u; v) (often termed in ode’s circles as Pr�ufer’s transformation, cf. [15]) leads to the
corresponding equations for � and ’ which have the form

�′ = � �1(’);

’′ =−�2(’);
(27)

where the functions �i, i = 1; 2 are given by

�1(’) = sin
2 ’{cot’− (p′ − 1){ p(cot’) + 
}};

�2(’) = sin
2 ’{1 + (p′ − 1)cot’{ p(cot’) + 
}}

with p′=p=(p−1). It should be observed that points (�; n�), n ∈ Z are critical points to (27) when
1¡p¡ 2 while giving rise to the singularities in the solutions to (15) and (23), when p¿ 2, as
already pointed out in Section 2 and Remark 3.1.
Let us consider �rst the points (i) and (ii) and so 06
¡p. Since �2 can be written as

�2(’) = (p′ − 1)sin2 ’|cot’|p{(p− 1)|tan’|p +  p(tan’) + 1}
= (p′ − 1)sin2 ’|cot’|ph(tan’); (28)

we see from the analysis of h in Remark 3.3 that �2(’)¿ 0 for ’ 6= n�, n ∈ Z. Let us study now
the behaviour of �+ = �+(P0), P0 = (u0; v0). No generality is lost if we assume v0 6= 0. Otherwise,
expression (13) for v= v(x),

v(x) =−u0  p′(x) + o( p′(x)); x ∼ 0+; (29)

ensures that �+ exhibits a point P̃0 = (ũ 0; ṽ0) close to P0 with ṽ0 6= 0 and then P̃0 can be used
instead P0.
Assume that v0¿ 0 (the reasoning is the same if v0¡ 0) so that 0¡’0¡ �. Then, the equation

’′ = −�2(’) shows that �+ meets a �rst point P1 = (u1; 0), u1¿ 0, then meets a second point of
the form P2 = (0; v2); v2¡ 0, to arrive at a point P3 = (0; v3); v3¿ 0. The three arcs P0P1; P1P2 and
P2P3 are run by �+ in �nite “times” x , respectively, T1; T2 and T3. To compute the Ti’s observe
that �+ reaches, after a time x, the position ’(x) given by

x = (p− 1)
∫ ’0

’(x)

ds

sin2 s|cot s|ph(tan s) ;

where h(m) = (p− 1)|m|p + 
 p(m) + 1, so

x = (p− 1)
∫ cot ’(x)

cot ’0

dt
|t|ph(1=t) = (p− 1)

∫ cot ’(x)

cot ’0

dt
|t|p + 
t + (p− 1) ;

where it must be remarked that since 06
¡p, the function |t|ph(1=t) = |t|p + 
t + (p − 1) never
vanishes. So, the values for Ti, i = 1; 2; 3 are provided by the convergent integrals,

T1 = (p− 1)
∫ ∞

cot ’0

dt
|t|p + 
t + (p− 1) ;

T2 = (p− 1)
∫ ∞

0

dt
|t|p − 
t + (p− 1) ;
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and

T3 = (p− 1)
∫ ∞

0

dt
|t|p + 
t + (p− 1) + (p− 1)

∫ ∞

0

dt
|t|p − 
t + (p− 1)

= 2(p− 1)
∫ ∞

0

tp + p− 1
(tp + p− 1)2 − 
2t2

dt: (30)

For later use let us de�ne now the function

Tp(
) = 2(p− 1)
∫ ∞

0

tp + p− 1
(tp + p− 1)2 − 
2t2

: (31)

The previous argument also shows that every semiorbit �+ starting at P0 = (0; v0) ∈ ov+:={(0; v) :
v¿ 0} returns to a point P̃0 = (0; ṽ0) ∈ ov+ after describing an arc P0P̃0 around (0; 0), and always
delaying the same time 2Tp(
) (the function v0 → ṽ0 de�nes a Poincar�e’s mapping). In fact, the �
periodicity of �2 in ’ implies that every orbit to (23) needs the same time x for travelling from
ov+ to ov−:={(0; v) : v¡ 0} as in travelling from ov− to ov+. Therefore, the semiorbit �+(P0) will
produce after P3 a sequence intersections Pn to ov+; Pn=(0; vn) with the vn’s recursively de�ned by

vn+1 = vneF(
); (32)

where

F(
) =
∫ �=2

−�=2

cot’− (p′ − 1){ p(cot’) + 
}
1 + (p′ − 1)cot’{ p(cot’) + 
} d’: (33)

The existence of the sequence {vn} explains the vortex like behaviour of all orbits around (0; 0)
when 06
¡p.
For later use, it is now very convenient to state some few properties of the functions Tp(
) and

F(
). Namely,

(a) T = Tp(
) is a C∞ mapping on 06
¡p such that Tp(0) = 2�(p− 1)1=p=(p sin (�=p)).
(b) T = Tp(
) is increasing in 06
¡p.
(c) lim
→p− Tp(
) = +∞. Moreover,

T (p− �2) ∼ �√
p′
1
�

(34)

as � → 0+, with p′ = p=(p− 1).
(d) F = F(
) is C∞ and decreasing in 06
¡p while F(0) = 0.
Therefore, by setting F(0) = 0 in (32) it follows that all orbits to (23) are closed and 2Tp(0) =

4�(p−1)1=p=(p sin (�=p)) periodic if 
=0 (cf. [5,14]), and hence (i). Similarly, the fact that F(
)¡ 0
for 0¡
¡p together with (32) entails that all orbits exponentially decay towards (0; 0) turning
around the origin when 0¡
¡p and (ii) is proved.
Let us sketch now the proof of the announced properties of T and F . For (a) notice that a

few variable changes lead to Tp(0) = (2=p)(p− 1)1=p B(1− (1=p); (1=p)), with B the eulerian beta
function, that implies the result. On the other hand,

T ′(
) = 2(p− 1)
∫ ∞

0

2t(tp + p− 1)

[(tp + p− 1)2 − 
2t2]2

dt
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is a convergent integral since the denominator never vanishes if 06
¡p. Thus T is increasing. As
for (34) notice that

(p′ − 1)Tp(
) =
∫ ∞

0

dt
tp + 
t + (p− 1) +

∫ ∞

0

dt
tp − 
t + (p− 1) = I1(
) + I2(
):

It is easily seen that I1(
) is convergent and decreasing for 
¿ 0, in particular is O(1) as 
 → ∞.
As for I2(
), given any �xed �¿ 0 small enough and setting 
= p− �2 we �nd that

�I2(p− �2) ∼ �

{∫ 1

1−�
+

∫ 1+�

1

}
dt

tp − (p− �2)t + (p− 1)
as � → 0+. To show (c) it su�ces to prove that �I2(p− �2) ∼ �=√p(p− 1).
Now observe that tp − pt + p− 1 = (p(p− 1) + o(1))(t − 1)2 as t → 1. This implies

(p(p− 1)− �)(t − 1)26tp − pt + p− 16(p(p− 1) + �)(t − 1)2;
if |t − 1|¡� where �= o(1) as � → 0+. Hence,{∫ 1

1−�
+

∫ 1+�

1

}
dt

tp − (p− �2)t + (p− 1)

¿

{∫ 1

1−�
+

∫ 1+�

1

}
dt

[(p(p− 1) + �](t − 1)2 + �2(1 + �)
:

Thus, for �¿ 0 �xed we get,

�

{∫ 1

1−�
+

∫ 1+�

1

}
dt

tp − (p− �2)t + (p− 1)¿
2√

1 + �
√
p(p− 1) + �

arctan
�
√
p(p− 1) + �

�
√
1 + �

:

Therefore,

lim inf
�→0+

�I2(p− �2)¿
�√

1 + �
√
p(p− 1) + �

;

which, as � → 0+, implies

lim inf
�→0+

�I2(p− �2)¿
�√

p(p− 1) :

In the same way, from{∫ 1

1−�
+

∫ 1+�

1

}
dt

tp − (p− �2)t + (p− 1)

6

{∫ 1

1−�
+

∫ 1+�

1

}
dt

[(p(p− 1)− �](t − 1)2 + �2(1− �)
;

we get the complementary estimate,

lim sup
�→0+

�I2(p− �2)6
�√

1− �
√
p(p− 1)− �

:

By making � → 0+ it follows that lim�→0+ �I2(p− �2) = �=
√
p(p− 1), which implies (34).
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To show (d) notice that F(0) = 0 follows easily from the fact that the integral in (33) is odd in
cot’ as 
= 0. Observe also that F can be written as

F(
) =−
∫ ∞

−∞

g(z)
h(z)

dz
1 + z2

;

with h as in Remark 3.3 and g(z) = 
|z|p − (p − 1) p(z) + z. Since h never vanishes if 06
¡p
then the integral converges while it is immediately seen that

F ′(
) =−(p− 1)
∫ ∞

−∞

|z|2p−2
h(z)2

dz; (35)

and so F decreases in 06
¡p.
Finally let us undertake the proof of (iii) and (iv). It su�ces to proceed with (iv) (an entirely

similar argument leads to (iii)). Thus, let (�(x); ’(x)) be the polar parametrization (26) of an
arbitrary semiorbit �+ = �+(P0). First observe that the angular part of Eq. (27) can be written as

( p(tan’))′ =−h(tan’): (36)

Since (36) is � periodic in ’ it is enough to study the behaviour of �+ in, say v¿ 0. So, let
m1¡m2¡ 0 be the zeros of h with mi= tan ’̃i; i=1; 2; −�=2¡’̃1¡’̃2¡ 0. As already seen (cf.
Remark 3.3) the stationary solutions ’ = ’̃i; i = 1; 2 to (36) give rise to the orbits �i;+; i = 1; 2.
Thus, assume that the initial position −�=2¡’0¡ �=2 veri�es ’0 6∈ {’̃1; ’̃2}. According to the
pro�le of h (cf. Remark 3.3) it follows that ’(x) → ’̃2 as x → ∞ in a decreasing (respectively,
increasing) way according to whether ’0¿’̃2 or ’̃1¡’0¡’̃2. If, otherwise, −�=2¡’0¡’̃1 then
�+ reaches the value ’=−�=2 after x0 units of “time” with

x0 = (p− 1)
∫ tan ’0

−∞

|z|p−2
h(z)

dz:

Then, ’¡ − �=2 for x¿x0 close to x0 and by the previous discussion ’ decreases to ’̃2 − � as
x → ∞. In both cases the asymptotic rate (25) is satis�ed.
As for the behaviour of the radial part �(x) assume, say that ’̃2¡’0¡ �=2 (so ’(x) ↓ ’̃2 as

x ↑ ∞). Then, by integrating (27) we �nd,

�(x) = �0 exp

{
−

∫ ’(x)

’0

cot’− (p′ − 1){ p(cot’) + 
}
(p′ − 1)|cot’|ph(tan’) d’

}
;

or, equivalently,

�(x) = �0 exp

{
−

∫ tan ’(x)

tan ’0

g(z)
(1 + z2)h(z)

dz

}
; (37)

where, as previously introduced, g(z) = z{
 p(z) + 1} − (p − 1) p(z). Observe now that g(m2) =
−(p − 1)( p+2(m2) +  p(m2))¿ 0 since h(m2) = 0 with m2¡ 0. On the other hand, the integral in
(37) can be estimated as,∫ tan ’(x)

tan ’0

g(z)
(1 + z2)h(z)

dz ∼ − g(m2)
(1 + m2

2)h′(m2)
log(tan’(x)− m2); (38)

as x → ∞. Finally, tan’ ↓ m2 as x ↑ ∞. From (36) we achieve,

(tan’)′ =− 1
p− 1

h(tan’)
|tan’|p−2 ;
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which implies that

tan’− m2 ∼ C0 e−[1=(p−1)]h
′(m2)=|m2|p−2

;

as x → ∞, being C0 a certain constant. Therefore,

� ∼ �0C1 em2x as x → ∞; (39)

where C1 = C(p−1)|m2|p−1=h′(m2)
0 , and � exponentially decays toward 0 as x → ∞, as desired. This

concludes the proof of Theorem 3.2.

Remark 3.4. (a) Estimate (39) shows that the leading root m= m2 of the “characteristic” equation
(6), h(m)= 0, plays the same role as in the linear case, regarding the asymptotic decay of solutions
in the stable node case 
¿p.
(b) The arguments in the proof of Theorem 3.2 shows that the variation,

( p(u′))′ + 
 p(u′)−  p(u) = 0;

of Eq. (6) exhibits with regard to the singular point (0; 0) the behaviour of a global saddle point,
whose stable and unstable manifolds are given, respectively, by the lines v=m1u and v=m2u; m1¡ 0
¡m2 the roots of the characteristic equation,

(p− 1)|m|p + 
 p(m)− 1 = 0:
Therefore, our phase space analysis applies to the whole class of equations,

( p(u′))′ + a p(u′) + b p(u) = 0;

a; b ∈ R.

4. The eigenvalue problem

The main features concerning the eigenvalues of (1) are next depicted in the following result.

Theorem 4.1. For every c ∈ R+ the eigenvalue problem (1);

−( p(u′))′ − c p(u′) = � p(u); 0¡x¡ 1;

u(0) = u(1) = 0;

admits as a whole set of eigenvalues an unbounded increasing sequence {�n = �n(c)} of positive
numbers such that;(

c
p

)p

¡�1¡ · · ·¡�n ¡ · · · : (40)

In addition; the following properties are satis�ed;
(i) Every �n is simple in the sense that every eigenfunction un corresponding to (1) for �= �n

is a multiple of a �xed (normalized) eigenfunction �n.
(ii) Each eigenfunction un corresponding to � = �n exhibits n − 1 equally spaced zeros in the

interval 0¡x¡ 1.
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(iii) �n = �n(c; p) is a smooth function of c and p. Moreover; �n is increasing in c¿ 0 while
�n(c) ∼ (c=p)p as c → +∞. In a more accurate way the following asymptotic estimate holds;

�n(c) ∼ 1
(1− (p− 1)�2n2(1=c2))p

(
c
p

)p

=
(
1 + p(p− 1)�2n2 1

c2
+ o

(
1
c2

))(
c
p

)p

; (41)

as c → +∞. On the other hand; the asymptotic behaviour of �n for n large is dictated by;

�n(c) ∼ (p− 1)
{

2�
p sin �=p

}p

np; (42)

as n → +∞.
(iv) Let �̃n be the nth eigenfunction normalized so that

�−1=pn �̃
′
n(0) = 1

(
′ =

d
dx

)
: (43)

In addition; let (n − 1)=n¡�n ¡ 1 be the maximum critical point of �̃n in 0¡x¡ 1. Then; the
following estimate holds true:

(−1)n+1�̃n(�n) ∼ e
− c

p (44)

as n → +∞.

Remark 4.2. (a) Estimate (41) should be compared with the explicit expression for �n provided in
the linear case p= 2 by the formula �n = c2=4 + n2�2. Notice also that the right-hand side of (42)
is the nth eigenvalue of (3), i.e. c= 0 in (1). Thus (42) asserts that the eigenvalues of (1) become
arbitrarily close to those of (3) as n → +∞.
(b) Estimate (44) asserts that in some sense, eigenfunctions �n do not diminish in amplitude as

n → +∞. In the linear situation p= 2 the normalized eigenfunction �̃n is explicitly given by

�̃n(x) =
1
n�

√
c2

4
+ n2�2e−cx=2sin n�x:

Thus one immediately �nds that (44) obtained. In fact,

(−1)n+1�̃n(�n) = (−1)n+1
√
1 +

c2

4�2n2 e
−(c=2)�nsin n��n ∼ e−c=2 as n → ∞;

since sin n��n = (−1)n+12�n=
√
c2 + 4�2n2.

Proof of Theorem 4.1. Let ũ = ũ(x) be any possible eigenfunction to (1) corresponding to some
eigenvalue � which must be positive (cf. Section 2). Then, by making the scaling �=�1=px; u=u(�)
obtained as u(�)= ũ(�−1=p�) de�nes a solution of (22) corresponding to the precise value 
=c�−1=p.
Consider now such a possible eigenfunction u= u(�) as the solution to the initial value problem,

( p(u′))′ + 
 p(u′) +  p(u) = 0;

u(0) = 0; u′(0) = u′0
(45)

with ′ = d=d� and a certain u′0 6= 0. As has been shown, u = u(�) is de�ned and bounded in the
whole of R+ (cf. Theorem 2.4).
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Now observe that from (iii)–(iv) of Theorem 3.2 we already know that every nontrivial solution
u=u(�) to (45) keeps its sign so that u′0u(�)¿ 0 in �¿ 0 while decays to 0 as em2� when � → +∞
provided that 
¿p. This means that any possible eigenvalue � must satisfy 0¡
= c�−1=p ¡p. In
other words, the following inequality holds:(

c
p

)p

¡�: (46)

On the other hand, if 06
¡p we infer from the proof of Theorem 3.2 that every nontrivial solution
u to (45) vanishes in R+ exactly at the points �n=nTp(
); n ∈ N. Therefore �¿ 0 is an eigenvalue
to (1) if and only if � satis�es the equation

nTp

(
c

�1=p

)
= �1=p (47)

for some positive integer n ∈ N. Next we show that (47) admits, for each n ∈ N and each c¿0, a
unique solution �= �n(c).
Before that, observe that it follows from the uniqueness statement in Theorem 2.4 and the ho-

mogeneity of (45) that the solution u to (45) can be written as u = u′0� being � the solution
corresponding to u′0 = 1. From this remark and Eq. (47) we conclude that inserting 
= c�n(c)−1=p in
(45) all of its solutions are multiples of � while vanishing in the interval 06�6�1=pn (c) exactly at the
points �k=kTp(c�n(c)−1=p); 06k6n. In other words, we achieve the points (i), (ii) of Theorem 4.1.
Let us show now the existence and uniqueness of solutions to (47) for each n ∈ N and c¿0.

The case c=0 is immediate since (47) directly implies that �n|c=0 = n1=pTp(0)1=p (cf. Section 1). As
for c¿ 0 by setting �= c�−1=p, Eq. (47) can be read as

n�Tp(�) = c: (48)

From (46) solutions to (48) need only be searched for in the interval 0¡�¡p. However, the
existence and uniqueness to (48) easily follows from the fact that the function �Tp(�) increases
from 0 to +∞ as � increases from 0 to p.
Thus, let �= �n(c) be the unique solution to (48). It is then clear that �n → 0 as n → +∞. It also

follows from (48) that �n is smooth and increases in c from 0 to p as c increases from 0 to +∞.
Since �n(c)1=p = nTp(�n(c)) and Tp is increasing, the same holds true for �n with regard to c. That
representation for �n together with the fact �n → 0 lead to �n(c) ∼ npTp(0)p as n → +∞, which
proves (42). On the other hand, the fact that �n(c) ↑ p as c ↑ +∞ entails

�n(c) =
(

c
�n(c)

)p

∼
(

c
p

)p

as c → +∞:

This partially proves (iii). To show (41) observe that (48) can be written as

Tp(p− (
√

p− �n(c))2) =
c

n�n(c)
:

Taking into account the fact that �n(c)→ p as c → +∞ and estimate (34) for Tp we arrive at,
�√

p′√p− �n
∼ c

np

as c → +∞. Thus,
�n ∼ p− p(p− 1)n2�2c−2
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as c → ∞. In other words,

�1=pn ∼ 1
1− (p− 1)n2�2c−2

(
c
p

)
c ↑ +∞;

which proves (34).
Finally, let us show (44). First, observe that if �̃n stands for the nth eigenfunction, normalized

according to (43), then �n(�) = �̃n(�
−1=p
n �) is the solution to (45) corresponding to u′0 = 1 and


= c�−1=pn .
If �n is observed as the solution (u; v) = (�n; �′

n) to system (23), after representing it under the
polar coordinates form (�; ’) (26) we obtain,

(−1)n+1�̃n(�n) = (−1)n+1�n(�n�1=pn ) = �(−(n− 1)�);
where �= �(’) is explicitly given by �(’) = exp{∫ �=2’ �1=�2 d’}. So de�ne �n= �(−(n− 1)�). By
using de�nition (33) of F(
) together with the � periodicity of �1=�2 we �nd the expression,

log �n =

{∫ �=2

�=2−(n−1)�
+

∫ �=2−(n−1)�

−(n−1)�

}
�1(’)
�2(’)

d’= (n− 1)F(�n(c)) + J;

where J =
∫ �=2
0 �1=�2 d’. Since �n → 0 and n�n ∼ (n − 1)�n as n → +∞ we conclude that

(n− 1)�n ∼ c=Tp(0). Taking into account that F(0) = 0 (cf. the proof of Theorem 3.2) we infer that

log �n = (n− 1)
(
F(�n) +

1
n− 1J

)
∼ c

F ′(0)
Tp(0)

:

From expression (35) for the derivative of F we obtain,

F ′(0) =−2(p′ − 1)
∫ +∞

0

dt
[1 + (p′ − 1)tp]2 :

Some calculus leads to

F ′(0) =−
(
2
p

)
(p′ − 1)1−1=pB

(
2− 1

p
;
1
p

)
:

Since, as already shown Tp(0) = (2=p)(p′ − 1)−1=pB(1 − 1=p; 1=p) (see the proof of Theorem 3.2)
we achieve

F ′(0)
Tp(0)

=−(p′ − 1)B(2− 1=p; 1=p)
B(1− 1=p; 1=p)

=−(p′ − 1)�(2− 1=p)�(1=p)
�(1− 1=p)�(1=p) =−p′ − 1

p′ =− 1
p
:

This shows that

log �n ∼ − c
p

as n → ∞, which shows (44). Thus, the proof of Theorem 4.1 is concluded.
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