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Abstract

The purpose of this paper is to construct a class of orthogonal integrators for stochastic differential equations
(SDEs). The family of SDEs with orthogonal solutions is univocally characterized. For this, a class of orthogo-
nal integrators is introduced by imposing constraints to Runge—Kutta (RK) matrices and weights of the standard
stochastic RK schemes.The performance of the method is illustrated by means of numerical simulations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

During the last few years there has been a growing interest in the use of geometric integrators for
the numerical integration of ordinary differential equations (ODES) [E&®,3]and references therein).
These types of integrators are those that preserve some relevant geometric structure of the original solution
(symplecticness, orthogonality, isospectrality, energy-conservation, etc.), which ensure that, in most cases,
the approximate solutions have smaller long-term qualitative error than other standard integrators. They
have found a number of applications for the study of Hamiltonian sysie&jsand the computation of
the Lyapunov exponents (LEE]], for instance.
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Accordingly, interest in the geometric-preserving structure in the numerical integration of stochastic
differential equations (SDEs) has also increased. Examples are the symplectic and energy-preserving
integrators proposed if10-14] However, orthogonal stochastic integrators have not been studied so
far. This orthogonality-preserving property of the numerical integrators becomes essentialQR the
decomposition of the fundamental solution of certain multidimensional linear equations that arise in the
characterization of the Lyapunov spectr{sh and more recently in the construction of the continuous
QR methods of computing the Lyapunov exponents of SPDEsTherefore, the need for developing
orthogonal integrators for SDESs is in order.

The goal of this paper is the construction of orthogonal integrators for SDEs. First, the class of SDEs
that produce orthogonal solutions is univocally characterized. Then, for this type of equations, a class of
Runge—Kutta (RK) integrators is obtained by imposing orthogonality restrictions to the RK matrices and
weights.

The plan of the paper is as follows: In Section 2, the concepts of orthogonal stochastic solutions and
skew-symmetric SDEs are introduced, and a necessary and sufficient condition that characterizes the
orthogonality of the solutions is given. In Section 3, a sufficient condition for the orthogonality of the RK
schemes is provided. Then, in Section 4, a particular class of the orthogonal RK schemes is considered.
Some details about the numerical implementation of these automatic orthogonal schemes are presentec
in Section 5 and finally, two numerical test examples are presented in Section 6.

2. Orthogonal solutions and skew-symmetric equations

Let (2, #, P) be an underlying complete probability space d&d, ¢ >0} be an increasing right
continuous family of complete subalgebras of7. Consider the following Stratanovich SDE:

m
dX,:ZFj(t,Xt)odW{, X = Xo € R4, 1)
j=0
whereF; are nonlinear matrix functionsy = (wl, ..., W™ is anm-dimensional# ;,-adapted standard

Wiener process, and the convention?d: dz. Suppose further that the conditions for the existence and
uniqueness of the solution are satisfied.

The following definition is a straightforward extension to the SDEs case of the concept of orthogonal
solution.

Definition 1. Eg. (1) with the conditiorX ] Xo = 14 is said to generate an orthogonal solutioX ifis an
orthogonal matrix for every>ty, w.p.1.

The family of SDEs that generate orthogonal solutions is univocally characterized by the following
theorem.

Theorem 2. Eqg. (1) with the conditionxgxo = |4 generates an orthogonal solution if and only if for
eachj=0,...,m

F](ta Xl) = Gj(t9 XZ)X[,
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where the function§& ; satisfy

G,(t, X)) =—G;(t, X,).
Proof. First suppose that for eagh=0, ..., m
Fi(t, X)) =G,(t, X)X, with G;(t,X,)" = —G,(t, X,).
Then, by considering the following differentials in Stratanovich’s sense it is obtained that
d(X[ X)) = (@dX)X; + X[ ([dX))
= zm:(xtTG,-(z, X)X, 4+ X Gt X)X,) o dw!

~
o

XT(Gj(t, X)) T +Gj(t, X)X, o dw/

Il
NE

0

Il
O -
' I

ThereforextTX, = ngo = |4, which implies the orthogonality of the solution.
Now suppose that the solution is orthogonal. That is,

XX, =14 Viz1.
Taking differential in the sense of Stratanovich it is obtained that
0=d(X/X,)
= (X)X, + X[ (dX,)

m
=Y (Fjt. X)X, + X[Fj(t, X)) o dw;
j=0

= Y XTI (Gt X)T + Gt X)X; 0 dw/,
j=0
whereG; (¢, X;) is defined byG; (s, X;) = F;(t, X,)X,T, for eachj =0, ..., m. Hence, from the last
equality it is obtained theb (7, X+ G;(t, X;) = 0. This concludes the proof.]

The above theorem motivates us to consider the following type of SDEs, which trivially generate
orthogonal solutions.

Definition 3. The equations of the type
dX, =Y Gt X)X 0 dw/, Xi=Xo, X{Xo=1la. ©)
j=0

whereG; (t, X) are skew-symmetric matrix functions (i@, (, X)T = -G, X)forallt e R, X €
R4*4) are called skew-symmetric SDEs.
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3. A sufficient condition for the orthogonality of the RK methods
Consider the skew-symmetric SDE
dX; = Go(r, X)X, dr + G1(z, X;)X; o dwy,
Xio = X0, X{Xo=14, (3)
whereGg and G, are differentiable matrix functions. Consider further the time discretizatipn=

{t.=to+nh:n=0,1,2,...} with step sizé: € (0, 1) and the class of-stage order 1 stochastic RK
integratorg8,1] defined by

s N
®; =Y, +h Y AiiGo(ty+Cih, ®)®;+J1 Y BiiGi(ty+Cih, ®)®;, i=1,...s, (4)
J 7 ) | j )P

j=1 j=1
S S
Yur1=Y,+h ZdeO(fn-i-th, (Dj)q’j-l-JlZ’Yle(fn-i-th, ®)H)®;, n=01..., (5
j=1 j=1

whereA = (Aij), B = (Bjj) are thes x s RK matricesa = (ag, ..., 0),y = (y1,...,7s) are thes-
dimensional RK weights; = (cy, ..., Cy) is thes-dimensional RK node andy denotes Stratanovich’s
integralfé’ odw.

Definition 4. The numerical scheme (4-5) is said to be orthogoné['i¥, = I 4, for eachn, w.p.1.

A sufficient condition for the orthogonality of the above numerical scheme is given by the following
theorem.

Theorem 5. LetM1, M2, M3 be thes x s matrices defined by
(Ml]}) =oyoj — oA —ajAj,
(M7) =ayj — 7;A; — 0By,

(MP) =vv; — 1B —vjBji.

MI=M2=M3=0, (6)
then(4-5)is an orthogonal scheme
Proof. Foreachj =1,...,s denote

Uoj = Go(t, +Cjh, ®))®; and Ui; =Gi(t, +Cjh, ®)®D;.
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From (5) it follows that

N N N N
YoiaYnr1 =Y Yu+h | YT a;Uoj+ > aUg,Yu+h ) D aya;UgUo;

Pt = I=1 j=1
+J122“J71U11U01 +| Y, ZVJUlJ + ZYJU

=1 j=1

S S ) )
+hZZ“17jU(T)1U1]' + leZW“{jULUU

1=1 j=1 I=1j=1

Now, from (4) and a suitable exchange of the summation indices it is obtained that

S S
Y Zaonl Zal(I)IUOI hZZal ZU01U0] leZajBﬂUIonj,

=1 j=1 =1 j=1
S S
Zaluo, n= ZalUOICDI —h ZZWA;,UOIUO] J1) > ayBUG U,
=1 j=1 =1 j=1
YTZ'YIUJJ—Z'YI‘DZ Ull_hZZYj zUOZUlj—leZY/ U U1,
=1 j=1 I=1j=1
S ) S S S S
> nULYa =) qUie —h Y Y yA UL Ug — J1 ) > B UL U,
=1 =1 =1 j=1 =1 j=1

which, when substituted into (7), gives

N N
YoaYns1=Y o Yu+h Z o (®] U + UG @) + /1 Z 7(® Uy + Uj @)

=1 =1
S S
+ K2 Z Z (yoj — oA — cxjAjz)U(T)lUOj
=1 j=1

S S
+ thzZ (a1 — &;Bji — viA1j)Uq,Uo;
I=1 j=1

N N
+hJ1y Y (v — 1A — uB)UGU1,
=1 ;—1

+ JZ ZZ(vm — 1iBij —vjB,HUU1;.
=1 j=1

(1)
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Since
@/ Uy + UL @ = ® (Go(ty, + Cih, @) + Go(ty + G, @) )Wy,
®/ Uy + U], ®; = ®] (G1(t, + ¢h, ®)) + Gu(ty + cih, @) )y
andGg, G; are skew-symmetric matrix functions then
@ Uy + U@, =0,
@/ Uy + Uj,®, =0.

From this and the definition of the matrickE,i = 1, ..., 3itis obtained that

) S ) 1 S ) 2
YoaYar1 =Y Y, +h2> > "MEUL U +hJ1) 0> MF U Ug;

=1 j=1 =1 j=1
N N N N
2T 2 31T
+hJ1y Yy MEUGUL + I8 ) ) MUV,
I=1 j=1 I=1 j=1

which by condition (6) give¥ |, Y11 =YY,. O

The following corollary follows straightforwardly from the proof of the above theorem.

Corollary 6. LetGp, G1 be commutative matrix functions. Sche@e5)is orthogonal iftM1 = M3 =0
andM? is a skew-symmetric matrix

Remark 7. Itis not difficult to see that the last theorem reduces to Theoren@ for the particular case
of ODEs. On the other hand, Theorem 5 could be directly extended to a more general class of stochastic
Runge—Kutta integrators for SDEs with 1-dimensional Wiener process, namely, those defined by

s P s
O, =Y, +h ZA”G()(I,, + Cj/’l, (I)j)(l)j + Z Z B:(J G1(t, + th, (I)j)(l)j Ok,
j=1 k=1 \ j=1

i=1...,s,

s p s
Yuis1=Y,+h ZajGo(ln +Cjh, ®;))®; + Z Z ’Y.];G]_(l‘n +Cjh, ®;)®; | Ok,
j=1 k=1 \j=1
n=01,...

with the Butcher tableau

c A B! ... B?
o vt ... vP
whered;,i =1, ..., p are different random variabl¢$]. In a similar way, the Runge—Kutta integrators

for the general case of skew-symmetric SDE (2) could also be consideredwiitimensional Wiener
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process, which are given by

S m )
®; =Y, +hy AjGoln +cih ®)®; + Y | Y BjiGi +cjh. ®)®; | 0r.
j=1 k=1 \ j=1

i=1...,s,

) m S
Yut1=Yn+h Zdeo(ln +Cih, ®;)®; + Z Z Y];-Gk(ln +Cjh, ®;)®; | Ok,
j=1 k=1 \j=1
n=0,1,...,

with 05 = [ o dwk.

4. A class of orthogonal stochastic RK schemes

In this section a class of order 1 orthogonal RK schemes is presented. Specifically, it is defined by the
expression (4)—(5) with RK matrices, B and RK weightsy, y satisfying the orthogonality conditions
(6) and the strong global order 1 conditions

aes =1, ye, =1, aBe = %,
e=(1...,1)" (vector ofs ones

stated in2].
It is not hard to see that the above conditions are fulfilled by seBiagA andy = o, with A anda
defined by

G ot 1
o £;(€) o £i(C)

wherep(t) =[];_1(t — Ci), p; (1) = p(t)/(t — ¢;) and the RK nodes; € [0, 1],i =1, ..., s are the zeros
of the Legendre polynomiat,, linearly translated t§0, 1]. For instance,

1 1
f =1:. A=B=|( - =vy=(1 ==
or s <2> a=y=(1), c (2) 9
i 3-f 11
fors=2:A=B=( ) a=y=(—,—>,
1 3 1
e 22
1 J31 3
=(Z-2=24 2= 1
c (2 6,2+6) (10)
and so on.

At this point, it is opportune to remark that for ODEs the above scheme reduces to the well-known
Gauss—Legendre—RK schenié$. Therefore, the schemes constructed in this section could be called
stochastic Gauss—Legendre—RK schemes.
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5. Computational aspects

Note that condition (6) in Theorem 5 implies that the orthogonal stochastic RK integrators (4-5)
are implicit schemes. Thus, a matrix equation must be solved at each step. In this section, two explicit
expressions for the stochastic Gauss—Legendre—RK schemes are obtained by considering either the exac
or approximate solution of the above-mentioned matrix equation.

For the skew-symmetric linear SDE

dX[ = Go(t)Xt dl + Gl(t)Xl o dw,,

Xio = X0, X¢Xo=14, (11)
the numerical scheme (4-5) can be rewritten as

O=¢®Y,+Q1,)0, (12)

Yu+1=Yn + o), (13)

where® = (®], ..., ®NHT,
Q1) = h(A ® 1g) diagGo1(?), - - ., Gos (1)) + J1(B ® 14) diagG11(2), - . ., G1s(2)),
o(t) =h(@® ly) diagGoi(t), . . ., Gos (1)) + J1(y ® 14) diag(Gaa (), . . ., Gi(1)),
Goj(t) =Go(t +cjh), G1j(t) =Ga(t+cjh), j=1,...,5,

the symbolkg denotes the Kronecker product and for any square matfiges ., Ag,

Ay --- 0

diag(A1, ..., A= + .

0 --- A,

Solving explicitly the linear equation (12), the following numerical scheme is obtained:
Yoi1 =Y, + o) (a5 — tn) & @ Y), (14)

which could be easily implemented.
In the case of nonlinear skew-symmetric SDE like (3) the numerical scheme (4-5) can be rewritten as

P=6® Yn + Q(ty, (D)(Da (15)
Yn+l =Y, + o, ®)D, (16)
where

Q(t, ®) =h(A R ly) diag(Gos(r, @), ..., Go(t, D))
+ J1(B ® ly) diag(G1(t, @), ..., Gy (1, D)),

o, ®) =h(a® ly) diagGo1(t, @), ..., Gz, D))
+ J1(y ® lg) diag(G1(t, @), ..., Gy (1, D)),

Goj(t, ®) =Go(t +Cjh, ®;), Gy, ®)=G1(t +Cjh, ;).
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As in the deterministic case, the nonlinear equation (15) must be solved numerically by some kind of
iterative process. The natural choice to do this is the well-known Newton’s method. However, as it was
pointed out in[6], a large number of iterations should be performed in order to retain the orthogonality
property of the solution. So, the use of the Newton’s method seems to be a quite expensive choice.
Alternatively, by following the approach introduced[8], let us consider the implicit iteration

o Y =g @Y, + Q@ ©)o*+D,

Y,(ffll) =Y, + o, ®o*tD =012, ...

with initial value®©@ = ¢, ® Y,,, which corresponds to the RK discretization of a linear SDE of the type
(11). Therefore,

4 = (145 — Qt, @) M @ Y1) (17)
and so the following explicit scheme is obtained:
YED Z ¥, 4 o, ®F) (14 — Q0 ©0) e ® Y,), (18)

which could be easily implemented. The iteration stops when

10® —e @Y, — Q@ ®)d® | <, (19)
for a givens > 0.
Remark 8. At this point it is worth noting that the iteratio‘n,(f) converges to/, w.p.1, for all fixedn.

To see this one should realize that (17) is just an usual fixed-point iteration corresponding to the problem
® = F(®), where

F(®) = (lgs — Q(tn, ®) (&, ® Y.

It is well-known that| %((D)H <1 is a sufficient condition to assure the contractivity property=and
so, the convergence of the iteration (17). Since
H dF | 66 (. @]

do” 7l gy — Q. )2

for sufficiently smallh then the convergence follows. Therefore, icands small enough the theoretical
order 1 of the RK schemes is guaranteed.

(D)

6. Numerical experiments

In this section, the performance of the orthogonal stochastic integrators is illustrated with two examples.
With this purpose, both the orthogonality preservation and integration errors are analyzed. Specifically,
for the time discretizationir), = {t, =10 +nh : n =0,1, 2, ..., N}, the uniform mean orthogonality
error

Oe(h) =E< max [|YTY, — |d||>

0<n<N
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Table 1
Values of the mean convergence error and the uniform mean orthogonality error for the linear test example
h Stages=1 Stages=2

Se Ogx10~14) Se(x10~%) Oe(x10~14)
28 0.1805 0.1365 0.9043 0.1359
279 0.0888 0.1422 0.4456 0.1433
2-10 0.0451 0.1477 0.2217 0.1489
2-11 0.0227 0.1532 0.1238 0.1517

and the mean convergence error atty
Seh) = E(IIXy — YN,

are computed. Herd; (.) denotes the mathematical expectation.
6.1. Example 1 (Linear case)

Consider the following skew-symmetric linear equation:

dX[ :GOX[ dt+G1Xt o dw,, Oétélo,

Xo=ls,
with the skew-symmetric matrices
0 3 -1 0 -3 3
G0=<—3 0 —2) and Gi=| 3 0 1
1 2 0 1 _1 0

2
By Theorem 2, the above equation has an orthogonal solution, which due to the commuta®¢tgraf
Gy is given byX, = gCor+G1wr

For eachh = 278,279 2710 2-11thjs equation was solved numerically by using the scheme (14) for
the stages=1, 2, whose RK matrices, RK weights and RK nodes are given by (9) and (10), respectively.
For eachs andh, 1000 simulations were carried out for estimating the error&iDand Sé¢h). Table 1
shows these estimated values. Note that, in contrast to the mean convergence errors, the uniform mear
orthogonality errors are very similar in both cases.

6.2. Example 2 (Nonlinear case)

The deterministic version of skew-symmetric SDEs (i.e. no stochastic component) has arisen in a
number of applications (sgé] and references therein). The stability analysis of nonlinear dynamical
systems via the computation of the Lyapunov expongfits perhaps one of the most interesting of such
applications. In fact, the skew-symmetric systems constitute the main component of the confRuous
method for computing the Lyapunov exponents of ODEs. More recently a contif@iRusethod for
computing the Lyapunov exponents of SDEs was proposé4] it holds that, as in the deterministic
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Table 2
Values of the mean convergence error and the uniform mean orthogonality error for the nonlinear test example
h Stages=1 Stages=2

Se Ogx10-15) Se(x107°) Oe(x10715)
2-8 0.0171 0.8693 0.1922 0.8594
279 0.0084 0.8958 0.0798 0.8971
2-10 0.0042 0.9169 0.0431 0.9061
-1l 0.0021 0.9312 0.0202 0.9211

case, the numerical integration of skew-symmetric SDEs becomes a crucial element for such stochastic
continuousQR method. Thus, the following skew-symmetric cubic SDE is a very interesting example
from that application point of view.

dX[ = GO(X[)X; dr + G]_(xt)xt o) dw;, 0§t§ 10,
Xo=l2, (20)

where

_ 0 —(XTCX)z1 _
GO(X) = ((XTCX)ZI 0 ) , C= <

_ 0 ~(XTDX)z1 (0 1
Gl(x)_<(XTDX)21 0 ) D—<—1 0)'

As in Example 1, 1000 simulations were carried out for dagt2—8,27°, 2710 2=l gnds =1, 2 by
means of the scheme (18) with RK matrices, RK weights and RK nodes given by (9) and (10), respectively,
and the stop condition (19) with= 10-°. These approximated solutions were compared with the exact
solution of Eq. (20), namely, the fact@qin the QR decomposition of &P (see details ifj4]). The
values of the mean convergence errors and the uniform mean orthogonality errors are shalwa ih
Note that, in this nonlinear example, the orthogonal integrator on consideration also performs well.

N NN
N————

and
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