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Abstract

The purpose of this paper is to construct a class of orthogonal integrators for stochastic differential equations
(SDEs). The family of SDEs with orthogonal solutions is univocally characterized. For this, a class of orthogo-
nal integrators is introduced by imposing constraints to Runge–Kutta (RK) matrices and weights of the standard
stochastic RK schemes.The performance of the method is illustrated by means of numerical simulations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

During the last few years there has been a growing interest in the use of geometric integrators for
the numerical integration of ordinary differential equations (ODEs) (see[15,6,3]and references therein).
These types of integrators are those that preserve some relevant geometric structure of the original solution
(symplecticness, orthogonality, isospectrality, energy-conservation, etc.), which ensure that, in most cases,
the approximate solutions have smaller long-term qualitative error than other standard integrators. They
have found a number of applications for the study of Hamiltonian systems[16] and the computation of
the Lyapunov exponents (LEs)[7], for instance.
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Accordingly, interest in the geometric-preserving structure in the numerical integration of stochastic
differential equations (SDEs) has also increased. Examples are the symplectic and energy-preserving
integrators proposed in[10–14]. However, orthogonal stochastic integrators have not been studied so
far. This orthogonality-preserving property of the numerical integrators becomes essential in theQR
decomposition of the fundamental solution of certain multidimensional linear equations that arise in the
characterization of the Lyapunov spectrum[5] and more recently in the construction of the continuous
QR methods of computing the Lyapunov exponents of SDEs[4]. Therefore, the need for developing
orthogonal integrators for SDEs is in order.

The goal of this paper is the construction of orthogonal integrators for SDEs. First, the class of SDEs
that produce orthogonal solutions is univocally characterized. Then, for this type of equations, a class of
Runge–Kutta (RK) integrators is obtained by imposing orthogonality restrictions to the RK matrices and
weights.

The plan of the paper is as follows: In Section 2, the concepts of orthogonal stochastic solutions and
skew-symmetric SDEs are introduced, and a necessary and sufficient condition that characterizes the
orthogonality of the solutions is given. In Section 3, a sufficient condition for the orthogonality of the RK
schemes is provided. Then, in Section 4, a particular class of the orthogonal RK schemes is considered.
Some details about the numerical implementation of these automatic orthogonal schemes are presented
in Section 5 and finally, two numerical test examples are presented in Section 6.

2. Orthogonal solutions and skew-symmetric equations

Let (�,F, P ) be an underlying complete probability space and{Ft , t �0} be an increasing right
continuous family of complete sub�-algebras ofF. Consider the following Stratanovich SDE:

dXt =
m∑

j=0

Fj (t,Xt ) ◦ dwj
t , Xt0 = X0 ∈ Rd×d, (1)

whereFj are nonlinear matrix functions,w = (w1, . . . ,wm) is anm-dimensionalFt -adapted standard
Wiener process, and the convention dw0

t = dt . Suppose further that the conditions for the existence and
uniqueness of the solution are satisfied.

The following definition is a straightforward extension to the SDEs case of the concept of orthogonal
solution.

Definition 1. Eq. (1) with the conditionX�
0 X0 = Id is said to generate an orthogonal solution ifXt is an

orthogonal matrix for everyt � t0, w.p.1.

The family of SDEs that generate orthogonal solutions is univocally characterized by the following
theorem.

Theorem 2. Eq. (1) with the conditionX�
0 X0 = Id generates an orthogonal solution if and only if for

eachj = 0, . . . , m

Fj (t,Xt ) =Gj (t,Xt )Xt ,
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where the functionsGj satisfy

Gj (t,Xt )
T = −Gj (t,Xt ).

Proof. First suppose that for eachj = 0, . . . , m

Fj (t,Xt ) =Gj (t,Xt )Xt with Gj (t,Xt )
T = −Gj (t,Xt ).

Then, by considering the following differentials in Stratanovich’s sense it is obtained that

d(XT
t Xt ) = (dXT

t )Xt + XT
t (dXt )

=
m∑

j=0

(XT
t Gj (t,Xt )

TXt + XT
t Gj (t,Xt )Xt ) ◦ dwj

t

=
m∑

j=0

XT
t (Gj (t,Xt )

T +Gj (t,Xt ))Xt ◦ dwj
t

= 0.

Therefore,XT
t Xt = XT

0X0 = Id, which implies the orthogonality of the solution.
Now suppose that the solution is orthogonal. That is,

XT
t Xt = Id ∀t � t0.

Taking differential in the sense of Stratanovich it is obtained that

0 = d(XT
t Xt )

= (dXT
t )Xt + XT

t (dXt )

=
m∑

j=0

(Fj (t,Xt )
TXt + XT

t Fj (t,Xt )) ◦ dwj
t

=
m∑

j=0

XT
t (Gj (t,Xt )

T +Gj (t,Xt ))Xt ◦ dwj
t ,

whereGj (t,Xt ) is defined byGj (t,Xt ) = Fj (t,Xt )XT
t , for eachj = 0, . . . , m. Hence, from the last

equality it is obtained thatGj (t,Xt )
T +Gj (t,Xt ) = 0. This concludes the proof.�

The above theorem motivates us to consider the following type of SDEs, which trivially generate
orthogonal solutions.

Definition 3. The equations of the type

dXt =
m∑

j=0

Gj (t,Xt )Xt ◦ dwj
t , Xt0 = X0, XT

0X0 = Id, (2)

whereGj (t,X) are skew-symmetric matrix functions (i.e.Gj (t,X)T = −Gj (t,X) for all t ∈ R, X ∈
Rd×d ) are called skew-symmetric SDEs.
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3. A sufficient condition for the orthogonality of the RK methods

Consider the skew-symmetric SDE

dXt =G0(t,Xt )Xt dt +G1(t,Xt )Xt ◦ dwt,

Xt0 = X0, XT
0X0 = Id, (3)

whereG0 andG1 are differentiable matrix functions. Consider further the time discretization(t)h =
{tn = t0 + nh : n = 0, 1, 2, . . .} with step sizeh ∈ (0, 1) and the class ofs-stage order 1 stochastic RK
integrators[8,1] defined by

�i = Yn+h

s∑
j=1

AijG0(tn+cjh, �j )�j +J1

s∑
j=1

BijG1(tn+cjh, �j )�j , i = 1, . . . , s, (4)

Yn+1 = Yn+h

s∑
j=1

�jG0(tn+cjh, �j )�j +J1

s∑
j=1

�jG1(tn+cjh, �j )�j , n = 0, 1, . . . , (5)

whereA = (Aij ),B = (Bij ) are thes × s RK matrices,� = (�1, . . . , �s), � = (�1, . . . , �s) are thes-
dimensional RK weights,c= (c1, . . . , cs) is thes-dimensional RK node andJ1 denotes Stratanovich’s
integral

∫ h

0 ◦ dw.

Definition 4. The numerical scheme (4–5) is said to be orthogonal ifY�
n Yn = Id , for eachn, w.p.1.

A sufficient condition for the orthogonality of the above numerical scheme is given by the following
theorem.

Theorem 5. LetM1,M2,M3 be thes × s matrices defined by

(M1
lj ) = �l�j − �lAlj − �jAj l,

(M2
lj ) = �l�j − �jAj l − �lBlj ,

(M3
lj ) = �l�j − �lBlj − �jBj l .

If

M1 =M2 =M3 = 0, (6)

then(4–5) is an orthogonal scheme.

Proof. For eachj = 1, . . . , s denote

U0j =G0(tn + cjh, �j )�j and U1j =G1(tn + cjh, �j )�j .
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From (5) it follows that

YT
n+1Yn+1 = YT

nYn + h


YT

n

s∑
j=1

�jU0j +
s∑

j=1

�jUT
0jYn + h

s∑
l=1

s∑
j=1

�l�jUT
0lU0j

+ J1

s∑
l=1

s∑
j=1

�j�lUT
1lU0j


+ J1


YT

n

s∑
j=1

�jU1j +
s∑

j=1

�jUT
1jYn

+h

s∑
l=1

s∑
j=1

�l�jUT
0lU1j + J1

s∑
l=1

s∑
j=1

�l�jUT
1lU1j


 . (7)

Now, from (4) and a suitable exchange of the summation indices it is obtained that

YT
n

s∑
l=1

�lU0l =
s∑

l=1

�l�
T
l U0l − h

s∑
l=1

s∑
j=1

�jAj lUT
0lU0j − J1

s∑
l=1

s∑
j=1

�jBj lUT
1lU0j ,

s∑
l=1

�lUT
0lYn =

s∑
l=1

�lUT
0l�l − h

s∑
l=1

s∑
j=1

�lAljUT
0lU0j − J1

s∑
l=1

s∑
j=1

�lBljUT
0lU1j ,

YT
n

s∑
l=1

�lU1l =
s∑

l=1

�l�
T
l U1l − h

s∑
l=1

s∑
j=1

�jAj lUT
0lU1j − J1

s∑
l=1

s∑
j=1

�jBj lUT
1lU1j ,

s∑
l=1

�lUT
1lYn =

s∑
l=1

�lUT
1l�l − h

s∑
l=1

s∑
j=1

�lAljUT
1lU0j − J1

s∑
l=1

s∑
j=1

�lBljUT
1lU1j ,

which, when substituted into (7), gives

YT
n+1Yn+1 = YT

nYn + h

s∑
l=1

�l(�
T
l U0l + UT

0l�l) + J1

s∑
l=1

�l(�
T
l U1l + UT

1l�l)

+ h2
s∑

l=1

s∑
j=1

(�l�j − �lAlj − �jAj l)UT
0lU0j

+ hJ 1

s∑
l=1

s∑
j=1

(�j�l − �jBj l − �lAlj )UT
1lU0j

+ hJ 1

s∑
l=1

s∑
j=1

(�l�j − �jAj l − �lBlj )UT
0lU1j

+ J 2
1

s∑
l=1

s∑
j=1

(�l�j − �lBlj − �jBj l)UT
1lU1j .
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Since

�T
l U0l + UT

0l�l = �T
l (G0(tn + clh, �l) +G0(tn + clh, �l)

T)�l ,

�T
l U1l + UT

1l�l = �T
l (G1(tn + clh, �l) +G1(tn + clh, �l)

T)�l

andG0,G1 are skew-symmetric matrix functions then

�T
l U0l + UT

0l�l = 0,

�T
l U1l + UT

1l�l = 0.

From this and the definition of the matricesM i , i = 1, . . . , 3 it is obtained that

YT
n+1Yn+1 = YT

nYn + h2
s∑

l=1

s∑
j=1

M1
ljU

T
0lU0j + hJ 1

s∑
l=1

s∑
j=1

M2
j lU

T
1lU0j

+ hJ 1

s∑
l=1

s∑
j=1

M2
ljU

T
0lU1j + J 2

1

s∑
l=1

s∑
j=1

M3
ljU

T
1lU1j ,

which by condition (6) givesYT
n+1Yn+1 = YT

nYn. �

The following corollary follows straightforwardly from the proof of the above theorem.

Corollary 6. LetG0,G1 be commutative matrix functions. Scheme(4–5) is orthogonal ifM1 =M3 = 0
andM2 is a skew-symmetric matrix.

Remark 7. It is not difficult to see that the last theorem reduces to Theorem 2 in[9] for the particular case
of ODEs. On the other hand, Theorem 5 could be directly extended to a more general class of stochastic
Runge–Kutta integrators for SDEs with 1-dimensional Wiener process, namely, those defined by

�i = Yn + h

s∑
j=1

AijG0(tn + cjh, �j )�j +
p∑

k=1


 s∑

j=1

Bk

ijG1(tn + cjh, �j )�j


 �k,

i = 1, . . . , s,

Yn+1 = Yn + h

s∑
j=1

�jG0(tn + cjh, �j )�j +
p∑

k=1


 s∑

j=1

�k
jG1(tn + cjh, �j )�j


 �k,

n = 0, 1, . . .

with the Butcher tableau

c A B1 · · · Bp

� �1 · · · �p

where�i , i = 1, . . . , p are different random variables[1]. In a similar way, the Runge–Kutta integrators
for the general case of skew-symmetric SDE (2) could also be considered withm-dimensional Wiener
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process, which are given by

�i = Yn + h

s∑
j=1

AijG0(tn + cjh, �j )�j +
m∑

k=1


 s∑

j=1

Bk

ijGk(tn + cjh, �j )�j


 �k,

i = 1, . . . , s,

Yn+1 = Yn + h

s∑
j=1

�jG0(tn + cjh, �j )�j +
m∑

k=1


 s∑

j=1

�k
jGk(tn + cjh, �j )�j


 �k,

n = 0, 1, . . . ,

with �k = ∫ h

0 ◦ dwk.

4. A class of orthogonal stochastic RK schemes

In this section a class of order 1 orthogonal RK schemes is presented. Specifically, it is defined by the
expression (4)–(5) with RK matricesA,B and RK weights�, � satisfying the orthogonality conditions
(6) and the strong global order 1 conditions

�es = 1, �es = 1, �Bes = 1
2,

es = (1, . . . , 1)T (vector ofs ones)

stated in[2].
It is not hard to see that the above conditions are fulfilled by settingB = A and� = �, with A and�

defined by

Aij =
∫ ci

0

�j (t)

�j (cj )
dt, �i =

∫ 1

0

�i(t)

�i(ci)
dt, i, j = 1, . . . , s, (8)

where�(t) =∏s
i=1(t − ci), �i(t) = �(t)/(t − ci) and the RK nodesci ∈ [0, 1], i = 1, . . . , s are the zeros

of the Legendre polynomialPs, linearly translated to[0, 1]. For instance,

for s = 1: A = B=
(

1

2

)
, � = � = (1), c=

(
1

2

)
, (9)

for s = 2: A = B=
( 1

4
1
4 −

√
3

6
1
4 +

√
3

6
1
4

)
, � = � =

(
1

2
,

1

2

)
,

c=
(

1

2
−

√
3

6
,

1

2
+

√
3

6

)
(10)

and so on.
At this point, it is opportune to remark that for ODEs the above scheme reduces to the well-known

Gauss–Legendre–RK schemes[6]. Therefore, the schemes constructed in this section could be called
stochastic Gauss–Legendre–RK schemes.
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5. Computational aspects

Note that condition (6) in Theorem 5 implies that the orthogonal stochastic RK integrators (4–5)
are implicit schemes. Thus, a matrix equation must be solved at each step. In this section, two explicit
expressions for the stochastic Gauss–Legendre–RK schemes are obtained by considering either the exact
or approximate solution of the above-mentioned matrix equation.

For the skew-symmetric linear SDE

dXt =G0(t)Xt dt +G1(t)Xt ◦ dwt,

Xt0 = X0, XT
0X0 = Id, (11)

the numerical scheme (4–5) can be rewritten as

� = es ⊗ Yn + �(tn)�, (12)

Yn+1 = Yn + �(tn)�, (13)

where� = (�T
1 , . . . , �T

s )T,

�(t) = h(A ⊗ Id) diag(G01(t), . . . ,G0s(t)) + J1(B⊗ Id) diag(G11(t), . . . ,G1s(t)),

�(t) = h(� ⊗ Id) diag(G01(t), . . . ,G0s(t)) + J1(� ⊗ Id) diag(G11(t), . . . ,G1s(t)),

G0j (t) =G0(t + cjh), G1j (t) =G1(t + cjh), j = 1, . . . , s,

the symbol⊗ denotes the Kronecker product and for any square matricesA1, . . . ,As ,

diag(A1, . . . ,As) =

A1 · · · 0

...
. . .

...

0 · · · As


 .

Solving explicitly the linear equation (12), the following numerical scheme is obtained:

Yn+1 = Yn + �(tn)(Ids − �(tn))
−1(es ⊗ Yn), (14)

which could be easily implemented.
In the case of nonlinear skew-symmetric SDE like (3) the numerical scheme (4–5) can be rewritten as

� = es ⊗ Yn + �(tn, �)�, (15)

Yn+1 = Yn + �(tn, �)�, (16)

where

�(t, �) = h(A ⊗ Id) diag(G01(t, �), . . . ,G0s(t, �))

+ J1(B⊗ Id) diag(G11(t, �), . . . ,G1s(t, �)),

�(t, �) = h(� ⊗ Id) diag(G01(t, �), . . . ,G0s(t, �))

+ J1(� ⊗ Id) diag(G11(t, �), . . . ,G1s(t, �)),

G0j (t, �) =G0(t + cjh, �j ), G1j (t, �) =G1(t + cjh, �j ).



358 F. Carbonell et al. / Journal of Computational and Applied Mathematics 182 (2005) 350–361

As in the deterministic case, the nonlinear equation (15) must be solved numerically by some kind of
iterative process. The natural choice to do this is the well-known Newton’s method. However, as it was
pointed out in[6], a large number of iterations should be performed in order to retain the orthogonality
property of the solution. So, the use of the Newton’s method seems to be a quite expensive choice.
Alternatively, by following the approach introduced in[6], let us consider the implicit iteration

�(k+1) = es ⊗ Yn + �(tn, �(k))�(k+1),

Y(k+1)
n+1 = Yn + �(tn, �(k))�(k+1), k = 0, 1, 2, . . .

with initial value�(0) = es ⊗Yn, which corresponds to the RK discretization of a linear SDE of the type
(11). Therefore,

�(k+1) = (Ids − �(tn, �(k)))−1(es ⊗ Yn) (17)

and so the following explicit scheme is obtained:

Y(k+1)
n+1 = Yn + �(tn, �(k))(Ids − �(tn, �(k)))−1(es ⊗ Yn), (18)

which could be easily implemented. The iteration stops when

‖�(k) − es ⊗ Yn − �(tn, �(k))�(k)‖∞ < �, (19)

for a given� > 0.

Remark 8. At this point it is worth noting that the iterationY(k)
n converges toYn w.p.1, for all fixedn.

To see this one should realize that (17) is just an usual fixed-point iteration corresponding to the problem
� = F(�), where

F(�) = (Ids − �(tn, �))−1(es ⊗ Yn).

It is well-known that‖ dF
d�(�)‖�1 is a sufficient condition to assure the contractivity property forF and

so, the convergence of the iteration (17). Since∥∥∥∥ dF
d�

(�)

∥∥∥∥ �
∥∥d�

d�(tn, �)
∥∥

‖Ids − �(tn, �)‖2 < 1,

for sufficiently smallh then the convergence follows. Therefore, forh and� small enough the theoretical
order 1 of the RK schemes is guaranteed.

6. Numerical experiments

In this section, the performance of the orthogonal stochastic integrators is illustrated with two examples.
With this purpose, both the orthogonality preservation and integration errors are analyzed. Specifically,
for the time discretization(t)h = {tn = t0 + nh : n = 0, 1, 2, . . . , N}, the uniform mean orthogonality
error

Oe(h) = E

(
max

0�n�N
‖YT

nYn − Id‖
)
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Table 1
Values of the mean convergence error and the uniform mean orthogonality error for the linear test example

h Stages= 1 Stages= 2

Se Oe(×10−14) Se(×10−4) Oe(×10−14)

2−8 0.1805 0.1365 0.9043 0.1359
2−9 0.0888 0.1422 0.4456 0.1433
2−10 0.0451 0.1477 0.2217 0.1489
2−11 0.0227 0.1532 0.1238 0.1517

and the mean convergence error att = tN

Se(h) = E(‖XtN − YN‖),
are computed. Here,E(.) denotes the mathematical expectation.

6.1. Example 1 (Linear case)

Consider the following skew-symmetric linear equation:

dXt =G0Xt dt +G1Xt ◦ dwt, 0� t �10,

X0 = I3,

with the skew-symmetric matrices

G0 =
( 0 3 −1

−3 0 −2
1 2 0

)
and G1 =


 0 −3

2
1
2

3
2 0 1

−1
2 −1 0


 .

By Theorem 2, the above equation has an orthogonal solution, which due to the commutativity ofG0 and
G1 is given byXt = eG0t+G1wt .

For eachh = 2−8, 2−9, 2−10, 2−11 this equation was solved numerically by using the scheme (14) for
the stagess =1, 2, whose RK matrices, RK weights and RK nodes are given by (9) and (10), respectively.
For eachs andh, 1000 simulations were carried out for estimating the errors Oe(h) and Se(h). Table 1
shows these estimated values. Note that, in contrast to the mean convergence errors, the uniform mean
orthogonality errors are very similar in both cases.

6.2. Example 2 (Nonlinear case)

The deterministic version of skew-symmetric SDEs (i.e. no stochastic component) has arisen in a
number of applications (see[6] and references therein). The stability analysis of nonlinear dynamical
systems via the computation of the Lyapunov exponents[7] is perhaps one of the most interesting of such
applications. In fact, the skew-symmetric systems constitute the main component of the continuousQR
method for computing the Lyapunov exponents of ODEs. More recently a continuousQR method for
computing the Lyapunov exponents of SDEs was proposed in[4]. It holds that, as in the deterministic
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Table 2
Values of the mean convergence error and the uniform mean orthogonality error for the nonlinear test example

h Stages= 1 Stages= 2

Se Oe(×10−15) Se(×10−5) Oe(×10−15)

2−8 0.0171 0.8693 0.1922 0.8594
2−9 0.0084 0.8958 0.0798 0.8971
2−10 0.0042 0.9169 0.0431 0.9061
2−11 0.0021 0.9312 0.0202 0.9211

case, the numerical integration of skew-symmetric SDEs becomes a crucial element for such stochastic
continuousQR method. Thus, the following skew-symmetric cubic SDE is a very interesting example
from that application point of view.

dXt =G0(Xt )Xt dt +G1(Xt )Xt ◦ dwt, 0� t �10,

X0 = I2, (20)

where

G0(X) =
(

0 −(XTCX)21
(XTCX)21 0

)
, C=

( √
3

2
1
2

−1
2

√
3

2

)

and

G1(X) =
(

0 −(XTDX)21
(XTDX)21 0

)
, D=

(
0 1

−1 0

)
.

As in Example 1, 1000 simulations were carried out for eachh = 2−8, 2−9, 2−10, 2−11 ands = 1, 2 by
means of the scheme (18) with RK matrices, RK weights and RK nodes given by (9) and (10), respectively,
and the stop condition (19) with� = 10−6. These approximated solutions were compared with the exact
solution of Eq. (20), namely, the factorQ in theQRdecomposition of eCt+Dwt (see details in[4]). The
values of the mean convergence errors and the uniform mean orthogonality errors are shown inTable 2.
Note that, in this nonlinear example, the orthogonal integrator on consideration also performs well.
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