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Abstract

In this paper, we establish some existence results for positive solutions to a class of singular boundary value problem on time
scale by using the Krasnosel’skii fixed point theorem. Two examples are presented as applications. The conditions we used in this
paper are different from those in [D.R. Anderson, Eigenvalue intervals for a two-point boundary value problem on a measure chain,
J. Comput. Appl. Math. 141 (2002) 57–64; C.J. Chyan, J. Henderson, Eigenvalues problems for nonlinear differential equations on a
measure chain, J. Math.Anal.Appl. 245 (2000) 547–559; L.H. Erbe,A. Peterson Positive solutions for nonlinear differential equation
on a measure chain, Math. Comput. Modelling 32 (2000) 571–585; L.H. Erbe, H.Y. Wang, On the existence of positive solutions
of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994) 743–748; J. Henderson, H.Y. Wang, Positive solutions for
nonlinear eigenvalue problems, J. Math. Anal. Appl. 208 (1997) 252–259; C.H. Hong, C.C. Yeh, Positive solutions for eigenvalue
problems on a measure chain, Nonlinear Anal. 51 (2002) 499–507; W.C. Lian; W.F. Wong; C.C. Yeh, On the existence of positive
solutions of nonlinear differential equations, Proc. Amer. Math. Soc. 124 (1996) 1117–1126; J. Liang, T.J. Xiao, Z.C. Hao, Positive
solutions of singular differential equations on measure chain, Comput. Math. Appl. 49 (2005) 651–663].
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1. Introduction

In this paper, we consider the existence of positive solutions of the following boundary value problem (BVP in short)
on a time scale (see appendix for this terminology.)

⎧⎪⎨
⎪⎩

x��(t) + m(t)f (t, x(�(t))) = 0, t ∈ [a, b],
�x(a) − �x�(a) = 0,

�x(�(b)) + �x�(�(b)) = 0,

(1.1)
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and ⎧⎪⎨
⎪⎩

x��(t) + m(t)f (t, x(�(t)), x�(�(t))) = 0, t ∈ [a, b],
�x(a) − �x�(a) = 0,

�x(�(b)) + �x�(�(b)) = 0,

(1.2)

where f is continuous; m(·) : (a, �(b)) → [0, ∞) is rd-continuous (see Appendix, Definition 5) and may be singular
at t = a and/or t = �(b); �, �, �, ��0 such that

d := �� + �� + ��(�(b) − a) > 0 and ���[�2(b) − �(b)]. (1.3)

Throughout this paper, we assume that a < b.
To make this work reasonable self-contained we have included the basic definitions from the theory of time scale in

Appendix.
Recently, much interest has developed regarding the existence of positive solutions to problem⎧⎪⎨

⎪⎩
x��(t) + �m(t)f (t, x(�(t))) = 0, t ∈ [a, b],
�x(a) − �x�(a) = 0,

�x(�(b)) + �x�(�(b)) = 0,

(1.4)

the eigenvalue problem of (1.1). For example, Anderson [1], Chyan and Henderson [6], Erbe and Peterson [8] and Hong
and Yeh [14] considered BVP (1.4) on time scale when m(·) ∈ C[a, �(b)]. Erbe and Wang [10], Henderson and Wang
[11], Lian et al. [17] studied BVP (1.4) when T = R, m(·) ∈ C[a, �(b)] and � = 1. Liang et al.[18] studied relating
singular BVP on time scale⎧⎪⎨

⎪⎩
[�(t)x�(t)]� + �m(t)f (t, x(�(t))) = 0, t ∈ [a, b],
�x(a) − �x�(a) = 0,

�x(�(b)) + �x�(�(b)) = 0.

Problems in [1,6,8,10,11,14,17] are all nonsingular. Furthermore, limit conditions on f are all required in papers
[1,6,8,10,11,14,17,18] (see Remark 2.4).

Stimulated by these works, in this paper, we investigate the singular BVP (1.1) and BVP (1.2), which is more general
because of the term x�(t). We obtain some criteria of the existence for positive solutions of BVP (1.1) and BVP (1.2)
via the Krasnosel’skii fixed point theorem. Growth conditions, not limit conditions, on f are required in this paper. In
view of different aspect, main results of papers [1,6,8,10,11,14,17,18] do not apply to Examples 2.3 and 3.2 because
of different conditions on f required in this paper (see Remarks 2.4 and 3.3).

This paper is organized as follows. In Section 2, we obtain the existence theorem (see Theorem 2.2) of positive
solution of BVP (1.1) and Example 2.3 is given to illustrate it. Section 3 is devoted to BVP (1.2) and Theorem 3.1 is
obtained, which application can be seen from Example 3.2. For the convenience of the readers, we conclude this paper
with Appendix which should serve as a time scale primer for those unfamiliar with the area.

2. Existence of positive solution of BVP (1.1)

Let us first present some properties of G(t, s), the Green function of the following BVP:{
x��(t) = 0, t ∈ [a, b],
�x(a) − �x�(a) = 0, �x(�(b)) + �x�(�(b)) = 0.

We know form Erbe and Peterson [7] that

G(t, s) = 1

d

{
u(t)v(�(s)), t �s,

u(�(s))v(t), �(s)� t,
(2.1)
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where d is given by (1.3) and

u(t) = �(t − a) + �, v(t) = �(�(b) − t) + �.

Obviously, the partial derivative of G(t, s) with respect to t is given by

Gt(t, s) = 1

d

{
�v(�(s)), t �s,

−�u(�(s)), �(s)� t.
(2.2)

(1.3), together with (2.1), implies that

0�G(t, s)�G(�(s), s), (t, s) ∈ [a, �2(b)] × [a, b]. (2.3)

We also need the following fixed point theorem.

Lemma 2.1. (Krasnosel’skii[16]) Let X be a Banach space, and let P be a cone in X. Assume that 	1 and 	2 are open
subsets of X with 0 ∈ 	1, 	1 ⊂ 	2, and let A : P ∩ (	2\	1) → P be a completely continuous operator such that,
either

(i) ‖Ax‖�‖x‖, x ∈ P ∩ �	1, ‖Ax‖�‖x‖, x ∈ P ∩ �	2,

or

(ii) ‖Ax‖�‖x‖, x ∈ P ∩ �	1, ‖Ax‖�‖x‖, x ∈ P ∩ �	2.

Then A has a fixed point in P ∩ (	2\	1).

Now, we give the existence theorem of positive solution of BVP (1.1).

Theorem 2.2. Assume that (H1) f (·, ·) : [a, �(b)] × [0, ∞) → [0, ∞) is continuous and

f (t, x) /≡ 0, (t, x) ∈ S1 × [0, ∞), (2.4)

f (t, x)�p(t) + q(t)x, (t, x) ∈ [a, �(b)] × [0, ∞), (2.5)

where S1 is any closed subinterval of (a, �(b)), p(·) and q(·) : [a, �(b)] → [0, ∞) are continuous functions.
(H2) m(·) : (a, �(b)) → [0, ∞) is rd-continuous and may be singular at t = a and/or t = �(b) and also satisfies

m(t) /≡ 0 on any closed subinterval of (a, �(b)). (2.6)

(H3) The integrals

∫ �(b)

a

G(�(s), s)m(s)�s

and

M1 :=
∫ �(b)

a

m(s)p(s)�s

and

M2 :=
∫ �(b)

a

m(s)q(s)�s
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are convergent and

M2 <
d

u(�(b))v(�(a))
.

(H4) There exist

C > 0, C 
= M1u(�(b))v(�(a))

d − M2u(�(b))v(�(a))
,


 and � ∈
[
�(b) + 3a

4
,

3�(b) + a

4

]
, 
 < �,

��(�) < ��(b) + �, (2.7)

and

t0 ∈ [a, �2(b)],

such that

f (t, x)�C

[∫ �



G(t0, s)m(s)�s

]−1

, (t, x) ∈ [
, �] × [m1C, C], (2.8)

where

m1 = min

{
u(�(b) + 3a/4)

u(�(b))
,
v(3�(b) + a/4)

v(�(a))
, min
s∈[a,b]

G(�(�), s)

G(�(s), s)

}
. (2.9)

Then, BVP (1.1) has at least one positive solution.

Proof. Let

E := Crd[a, �2(b)],

equipped with the norm

‖x‖ := max
t∈[a,�2(b)]

|x(t)|.

In the Banach space(E, ‖ · ‖) we define

P :=
{
x ∈ E; x�0 on [a, �2(b)] and min

t∈[
,�(�)]
x(t)�m1‖x‖

}
, (2.10)

where m1 is given by (2.9) and it also satisfies m1 > 0 with the aid of (2.7). It is clear that P is a cone in E. By (2.3)
and assumptions (H1) and (H3), we may define an operator A on P by

Ax(t) :=
∫ �(b)

a

G(t, s)m(s)f (s, x(�(s)))�s, x ∈ P, t ∈ [a, �2(b)]. (2.11)

From (2.11) and the fact that G(t, s) is Green function, we know that

Fixed points of operator A are also solutions of the BVP (1.1). (2.12)
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We know from [18, Lemma 2.3] that

A : P → P is completely continuous. (2.13)

Now, let us prove the existence of positive solutions of BVP (1.1). Write

R1 := M1u(�(b))v(�(a))

d − M2u(�(b))v(�(a))
, R2 := C.

	1 := {x ∈ E : ‖x‖ < R1}, 	2 := {x ∈ E : ‖x‖ < R2}.
Without loss of generality, we may assume that R1 < R2.

Firstly, for any x ∈ P ∩ �	1, t ∈ [a, �2(b)], we have from (H1), (H3) and (2.5),

Ax(t)�
∫ �(b)

a

G(�(s), s)m(s)[p(s) + q(s)x(�(s))]�s

�d−1u(�(b))v(�(a))

[∫ �(b)

a

m(s)p(s)�s +
∫ �(b)

a

m(s)q(s)x(�(s))�s

]

= d−1u(�(b))v(�(a))[M1 + M2R1]
= R1.

Hence,

‖Ax‖�‖x‖, ∀x ∈ P ∩ �	1. (2.14)

Secondly, if x ∈ P ∩ �	2, then mint∈[
,�(�)] x(t)�m1R2. So

m1R2 �x(�(s))�R2, s ∈ [
, �], x ∈ P ∩ �	2.

Thus, for any x ∈ P ∩ �	2, we know from (2.4), (2.6) and (2.8) that

Ax(t0)�
∫ �



G(t0, s)m(s)f (s, x(�(s)))�s

�
∫ �



G(t0, s)m(s)C

[∫ �



G(t0, s)m(s)�s

]−1

�s

= C.

Then

‖Ax‖�‖x‖, ∀x ∈ P ∩ �	2. (2.15)

(2.13)–(2.15) and Lemma 2.1 imply that the operator A has one fixed point x ∈ 	2\	1. (2.12) tells us that x is a
positive solution of BVP (1.1). �

Let us give an example to illustrate Theorem 2.2.

Example 2.3. Consider BVP{
x′′ + 1

t (1 − t)
f (t, x) = 0, t ∈ (0, 1),

x(0) = x(1) = 0,
(2.16)

where

f (t, x) = e−x

[
11e

√
3

ln 3
t
√

1 − t + (1 − t)
√

t

4
x

]
.
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Clearly, (2.16) is a singular BVP on [0, 1]. We choose

p(t) = 11e
√

3

ln 3
t
√

1 − t, q(t) = (1 − t)
√

t

4
, m(t) = 1

(1 − t)t
,

� = � = 1, � = � = 0.

Then we compute

∫ �(b)

a

G(�(s), s)m(s)�s = 1, M1 = 22e
√

3

ln 3
, M2 = 1

2
,

C = 1, 
 = 1

4
, � = 3

4
, t0 = 1

4
, m1 = 1

4
.

For any (t, x) ∈ [ 1
4 , 3

4 ] × [ 1
4 , 1], we know

f (t, x)

∫ �



G(t0, s)m(s)�s = e−x

[
11e

√
3

ln 3
t
√

1 − t + (1 − t)
√

t

4
x

] ∫ 3
4

1
4

t

s
ds

> t ln 3e−x 11e
√

3

ln 3
t
√

1 − t

�11t2
√

1 − t

� 33

32
> C.

Hence conditions of Theorem 2.2 hold all. Then applying Theorem 2.2 we know that BVP (2.16) has at least one
positive solution.

Remark 2.4. As usual we write

max f∞ := lim
u→∞ max

t∈[a,�(b)]
f (t, u)

u
, min f∞ := lim

u→∞ min
t∈[a,�(b)]

f (t, u)

u
,

max f0 := lim
u→0+ max

t∈[a,�(b)]
f (t, u)

u
, min f0 := lim

u→0+ min
t∈[a,�(b)]

f (t, u)

u
.

Function f in [8,10] is assumed to be superlinear (max f0 = 0 and min f∞ = ∞) or sublinear ( max f∞ = 0 and
min f0 = ∞). It is required in papers [1,6,11,14,17] that limits max f∞, min f∞ and min f0 and max f0 all exist and
are positive. The following condition:

0�f 0 < L, l < f∞ �∞ or 0�f ∞ < L, l < f0 �∞,

is required in [18], where L and l are given. In this paper, we can see from Example 2.3 that

max f0 = ∞, min f0 = max f∞ = min f∞ = 0.

So the function f in Example 2.3 does not satisfy either superlinear (sublinear) conditions, or positive. Consequently,
in view of different aspect, we can say that main results of papers [1,6,8,10,11,14,17,18] do not apply to Examples 2.3.

3. Existence of positive solution of BVP (1.2)

Main result of this section is as follows.
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Theorem 3.1. Assume (H2) in Theorem 2.2 holds. Moreover, we assume also
(H5) f (·, ·, ·) : [a, �(b)] × [0, ∞) × R → [0, ∞) is continuous and

f (t, x, y) /≡ 0, (t, x, y) ∈ S2 × [0, ∞) × (−∞, ∞), (3.1)

f (t, x, y)�p∗(t) + q∗(t)(x + |y|), (t, x, y) ∈ [a, �(b)] × [0, ∞) × R, (3.2)

where S2 is any closed subinterval of (a, �(b)), p∗(·) and q∗(·) : [a, �(b)] → [0, ∞) are continuous functions
satisfying the following condition (H6).

(H6) The integrals

∫ �(b)

a

G(�(s), s)m(s)�s

and

M∗
1 :=

∫ �(b)

a

m(s)p(s)�s

and

M∗
2 :=

∫ �(b)

a

m(s)q(s)�s

are convergent and

M∗
2 <

1

M∗∗ , (3.3)

where

M∗∗ := d−1[u(�(b))v(�(a)) + max{�v(�(a)), �u(�(b))}].

(H7) There exist

C∗ > 0, C∗ 
= M∗
1 M∗∗

1 − M∗∗M∗
2

,


∗ and �∗ ∈
[
�(b) + 3a

4
,

3�(b) + a

4

]
, 
∗ < �∗, ��(�∗) < ��(b) + �,

and

t∗0 ∈ [a, �2(b)],

such that

f (t, x, y)� m2C
∗∫ �∗


∗ [m2G(t∗0 , s) + Gt(t
∗
0 , s)]m(s)�s

, (3.4)

for all

(t, x, y) ∈ [
∗, �∗] × D,
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where

D := {(x, y) ∈ [0, ∞) × R : m2x + y�m3m4C
∗ and x + |y|�C∗}, (3.5)

m2 := max

{
1,

� + 1

�(�(b) − �(�∗)) + �

}
, m3 := min

{
m2v(�(�∗)) − �

v(�(
∗)) + �
,

m2u(
∗) + �

u(�(b)) + �

}
,

and m4 is chosen as

min

{
v(�2(�∗)) + �

v(a) + �
,

u(�(a))[v(�2(�∗)) + �]
v(�(a))[u(�2(b)) + �] ,

v(�2(b))[u(�(
∗)) + �]
u(�2(b))[v(a) + �] ,

u(�(
∗)) + �

u(�2(b)) + �

}
.

Then, BVP (1.2) has at least one positive solution.

Proof. We first write

E∗ := {x ∈ E : x�(t) ∈ Crd[a, �2(b)]},

with the norm

‖x‖ := max
t∈[a,�2(b)]

{|x(t)| + |x�(t)|}.

Obviously, (E∗, ‖ · ‖) is a Banach space. Our aim is to construct a special cone (see P ∗ given by (3.10)) in the Banach
space (E∗, ‖ · ‖), in which we may find a positive solution of BVP (1.2). However, the success of this thing reckons on
more profound properties of the Green function G(t, s) given by (2.1).

Denote by Gt(s + 0, s) (Gt(s − 0, s) ) the right-hand side derivative (left-hand side derivative ) of (2.1) at (s, s). We
can see that, for any s ∈ [a, �(b)],

m2G(t, s) + Gt(t, s)

G(�(s), s) + |Gt(s + 0, s)| = m2v(t) − �

v(�(s)) + �
�m3, t ∈ [
∗, �(�∗)], s < t , (3.6)

m2G(t, s) + Gt(t, s)

G(�(s), s) + |Gt(s − 0, s)| = m2u(t) + �

u(�(s)) + �
�m3, t ∈ [
∗, �(�∗)], s� t . (3.7)

Furthermore, we know that, for any fixed t ∈ [
∗, �(�∗)],

G(�(s), s) + |Gt(s + 0, s)|
G(�, s) + |Gt(�, s)| , s ∈ [a, t], � ∈ [a, �2(b)],

=

⎧⎪⎨
⎪⎩

v(�(s)) + �

v(�) + �
, s < �,

u(�(s))[v(�(s)) + �]
v(�(s))[u(�) + �] , s��,

�

⎧⎪⎪⎨
⎪⎪⎩

v(�2(�∗)) + �

v(a) + �
, s < �,

u(�(a))[v(�2(�∗)) + �]
v(�(a))[u(�2(b)) + �] , s��,



164 Z.-C. Hao et al. / Journal of Computational and Applied Mathematics 197 (2006) 156–168

and

G(�(s), s) + |Gt(s − 0, s)|
G(�, s) + |Gt(�, s)| , s ∈ [t, �(b)], � ∈ [a, �2(b)],

=

⎧⎪⎨
⎪⎩

v(�(s))[u(�(s)) + �]
u(�(s))[v(�) + �] , s < �,

u(�(s)) + �

u(�) + �
, s��,

�

⎧⎪⎪⎨
⎪⎪⎩

v(�2(b))[u(�(
∗)) + �]
u(�2(b))[v(a) + �] , s < �,

u(�(
∗)) + �

u(�2(b)) + �
, s��.

So we get, for any fixed t ∈ [
∗, �(�∗)],

G(�(s), s) + |Gt(s + 0, s)|
G(�, s) + |Gt(�, s)| �m4, s ∈ [a, t], � ∈ [a, �2(b)], (3.8)

and

G(�(s), s) + |Gt(s − 0, s)|
G(�, s) + |Gt(�, s)| �m4, s ∈ [t, �(b)], � ∈ [a, �2(b)]. (3.9)

Now, let us define a cone P ∗ in (E∗, ‖ · ‖) such that

P ∗ :=
{
x ∈ E∗; x(t)�0, t ∈ [a, �2(b)]; min

t∈[
∗
,�(�∗)]

[m2x(t) + x�(t)]�m3m4‖x‖
}

. (3.10)

Define an operator B as follows:

Bx(t) :=
∫ �(b)

a

G(t, s)m(s)f (s, x(�(s)), x�(�(s)))�s, x ∈ P ∗, t ∈ [a, �2(b)].

We will show B(P ∗) ⊂ P ∗. It is easy to see that B maps P ∗ into E∗ and Bx(t)�0 for all x ∈ P ∗ and t ∈ [a, �2(b)].
Moreover, we have, by (3.6)–(3.9) , for any t ∈ [
∗, �(�∗)], � ∈ [a, �2(b)], x ∈ P ∗,

m2Bx(t) + (Bx(t))�

=
∫ �(b)

a

{m2G(t, s) + Gt(t, s)}m(s)f (s, x(�(s)), x�(�(s)))�s

�m3

∫ t

a

{G(�(s), s) + |Gt(s + 0, s)|}m(s)f (s, x(�(s)), x�(�(s)))�s

+ m3

∫ �(b)

t

{G(�(s), s) + |Gt(s − 0, s)|}m(s)f (s, x(�(s)), x�(�(s)))�s

�m3

∫ t

a

m4{G(�, s) + |Gt(�, s)|}m(s)f (s, x(�(s)), x�(�(s)))�s

+ m3

∫ �(b)

t

m4{G(�, s) + |Gt(�, s)|}m(s)f (s, x(�(s)), x�(�(s)))�s

= m3m4{|Bx(�)| + |(Bx(�))�|}.
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Thus,

min
t∈[
∗

, �(�∗)]
[m2Bx(t) + (Bx(t))�]�m3m4‖Bx‖.

This implies B(P ∗) ⊂ P ∗. We know from [18, Lemma 2.3] that

B : P ∗ → P ∗is completely continuous, (3.11)

hold also.
At last, let us consider the existence of positive solution of BVP (1.2). Set

R∗
1 := M∗

1 M∗∗

1 − M∗∗M∗
2
, R∗

2 := C∗,

	∗
1 := {x ∈ E∗ : ‖x‖ < R∗

1}, 	∗
2 := {x ∈ E∗ : ‖x‖ < R∗

2}.
Without loss of generality, we may assume that R∗

1 < R∗
2 . For any x ∈ �	∗

1 ∩P ∗, t ∈ [a, �2(b)], we see from (2.1)–(2.2)
and (3.1)–(3.3) that

|Bx(t)| + |(Bx(t))�| =
∫ �(b)

a

[G(t, s) + |Gt(t, s)|] m(s)f (s, x(�(s)), x�(�(s)))�s

�M∗∗
∫ �(b)

a

m(s)
{
p(s) + q(s)

[
x(�(s)) + |x�(�(s))|

]}
�s

�M∗∗(M∗
1 + M∗

2 R∗
1) = R∗

1 .

Hence,

‖Bx‖�‖x‖, ∀x ∈ P ∗ ∩ �	∗
1. (3.12)

Furthermore, if x ∈ P ∗ ∩ �	∗
2, then for any t ∈ [
∗, �∗], we get

m3m4C
∗ �m2x(�(t)) + x�(�(t)),

x(�(t)) + |x�(�(t))|�C∗.

Thus, we have from (H2) and (H7) that for any x ∈ P ∗ ∩ �	∗
2,

m2{|Bx(t0)| + |(Bx(t0))
�|}

�
∫ �(b)

a

[m2G(t∗0 , s) + |Gt(t
∗
0 , s)|]m(s)f (s, x(�(s)), x�(�(s)))�s

�
∫ �∗


∗
[m2G(t∗0 , s) + |Gt(t

∗
0 , s)|]m(s)f (s, x(�(s)), x�(�(s)))�s

�
∫ �∗


∗
m2C

∗[m2G(t∗0 , s) + |Gt(t
∗
0 , s)|]m(s)∫ �∗


∗ [m2G(t∗0 , s) + |Gt(t
∗
0 , s)|]m(s)�s

�s

= m2C
∗.

Consequently,

‖Bx‖�‖x‖, ∀x ∈ P ∗ ∩ �	∗
2. (3.13)

(3.11)–(3.13) and Lemma 2.1 imply that the operator B has one fixed point x∗ ∈ 	∗
2\	∗

1. Furthermore, (2.12) implies
also that x∗ is a positive solution of BVP (1.2). �

We end this Section by the following example.



166 Z.-C. Hao et al. / Journal of Computational and Applied Mathematics 197 (2006) 156–168

Example 3.2. Consider the singular BVP{
x′′ + 1

t (1 − t)
f (t, x, x′) = 0, t ∈ (0, 1),

x(0) = x(1) = 0,
(3.14)

where

f (t, x, x′) = e−x

[
11e

√
3

ln 3
t
√

1 − t + (1 − t)
√

t

8
(x + | sin x′|)

]
.

We may set

p∗(t) = 11e
√

3

ln 3
t
√

1 − t, q∗(t) = (1 − t)
√

t

8
, m(t) = 1

(1 − t)t
.

Then

f (t, x, y)�p∗(t) + q∗(t)(x + |y|), (t, x, y) ∈ [a, �(b)] × [0, ∞) × R.

We compute

� = � = 1, � = � = 0, C∗ = 1, 
∗ = 1

4
, �∗ = 3

4
, t∗0 = 1

4
,

∫ �(b)

a

G(�(s), s)m(s)ds = 1, M∗
1 = 22e

√
3

ln 3
, M∗

2 = 1

4
, M∗ = 3.

It is easy to testify that all conditions of Theorem 3.1 hold. Therefore, Theorem 3.1 implies the existence of positive
solutions of BVP (3.14).

Remark 3.3. Main results in [1,6,8,10,11,14,17,18] do not apply to Examples 3.3 because functions f in those papers
do not contain the term x�(t).

Now let us end this paper by the following Appendix.
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Appendix

Let T be a time scale, which is a closed subset of R, the set of real numbers, with the subspace topology inherited
from the Euclidean topology on R. An alternative terminology for time scale is measure chain.

The theory of time scale was introduced and developed by Aulbach and Hilger [2] to unify continuous and discrete
analysis. Now, there have been many publications (see [4,5,12,15]) relating difference equations with differential
equations. A result for a dynamic equation contains simultaneously a corresponding result for a differential equation,
one for a difference equation, as well as results for other dynamic equations in arbitrary time scales. Time scales theory
present us with the tools necessary to understand and explain the mathematical structure underpinning the theories of
discrete and continuous dynamical systems and allows us to connect them. That is certainly the goal with this work. In
fact, the potential impact of dynamic equations on time scales in applications is showcased in a recent article in New
Scientist magazine (see [19]). The following definitions on time scales can be found in papers [2–4,9,12,15].
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Definition 4. Define the interval in T

[a, b] := {t ∈ T such that a� t �b}.
Open intervals and half-open intervals etc. are defined accordingly.

Definition 5. A time scale may or may not be connected, so we define the forward jump operator and backward jump
operator �, � by

�(t) := inf{� > t; � ∈ T} ∈ T, �(t) := sup{� < t; � ∈ T} ∈ T,

for all t ∈ T with t < sup T .

In this definition, we put inf 
= sup T (i.e., �(M)=M if T has a maximum M ) and sup 
= inf T (i.e., �(m)=m

if T has a minimum m), where 
 denotes the empty set. If �(t) > t , we say t is right scattered, while if �(t) < t we
say that t is left scattered. Points that are right scattered and left scattered at the same time are called isolated. Also, if
t < sup T and �(t) = t , then t is called right-dense, and if t > inf T and �(t) = t , then t is called left-dense. Points that
are right-dense and left-dense are called dense. If T has a left-scattered maximum M, then we define Tk := T − {M},
otherwise Tk := T.

Definition 6. Assume x : T → R and fix t ∈ Tk . Then we define x�(t) to be the number (provided it exists) with the
property that given any � > 0, there is a neighborhood U of t such that

‖[x(�(t)) − x(s)] − x�(t)[�(t) − s]‖��|�(t) − s|,
for all s ∈ U . We call x�(t) the delta (or Hilger) derivative of x(t) at t ∈ T. The derivative can also be defined in terms
of a limit as follows:

x�(t) := lim
s→t,�(s)
=t

x(�(s)) − x(t)

�(s) − t
= lim

s→t,�(t) 
=s

x(�(t)) − x(s)

�(t) − s
.

The second derivative of x(t) is defined by x��(t) = (x�)�(t).

It is obvious that if x : T → R is continuous at t ∈ Tk and t is right scattered, then

x�(t) = x(�(t)) − x(t)

�(t) − t
.

Note that if T = Z, the set of integers, then it follows that x�(t) = �x(t) := x(t + 1) − x(t). In particular, if T = R,
we find �(s) = s for all s ∈ T. Thus x�(t) reduces to the usual derivative

x′(t) = lim
s→t

x(s) − x(t)

s − t
.

Definition 7. A function F : T → R is called a delta-antiderivative of f : T → R provided F�(t) = f (t) holds for
all t ∈ Tk . In this case we define the integral of f by

∫ t

a
f (�)�� = F(t) − F(a).

Further property of this integral can be seen in Bohner and Guseinov [3].

Definition 8. A function f : T → R is called rd-continuous provided it is continuous at right-dense points in T and its
left-sided limits exist (finite) at left-dense points in T. The set of rd-continuous functions f : T → R will be denoted
by Crd = Crd(T) = Crd(T, R).

Remark. Hilger [13, p.2688, line 8] shows that, for the usual time scales T = R or T = Z, rd-continuity coincides
with continuity. So main results of this paper are new also when T = R or T = Z.
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