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Abstract

This paper deals with a weighted average scheme (or �-scheme) for solving a nonlinear singularly perturbed parabolic reaction–
diffusion problem. The uniform convergence of the weighted average scheme on piecewise uniform and log-meshes is established.
Numerical experiments are presented.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We are interested in solving the nonlinear reaction–diffusion problem

−�2(uxx + uyy) + ut = −f (x, y, t, u), (1)

(x, y, t) ∈ Q = � × (0, tF ], � = {0 < x < 1, 0 < y < 1},
0�fu �c∗ = const (x, y, t, u) ∈ Q × (−∞, ∞) (fu ≡ �f/�u),

where � is a small positive parameter. The initial-boundary conditions are defined by

u(x, y, 0) = u0(x, y), (x, y) ∈ �,

u(x, y, t) = g(x, y, t), (x, y, t) ∈ �� × (0, tF ],
where �� is the boundary of �. The functions f, g and u0 are sufficiently smooth. Under suitable continuity and
compatibility conditions on the data, a unique solution u of (1) exists (see [6] for details). For �>1, problem (1) is
singularly perturbed and characterized by the boundary layers of width O(�| ln �|) at the boundary �� (see Section 3.2
for details). We mention that the assumption fu �0 in (1) can always be obtained via a change of variables.
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It is well-known that classical numerical methods for solving singularly perturbed problems are inefficient, since
in order to resolve layers they require a fine mesh covering the whole domain. For constructing efficient numerical
algorithms to handle these problems, there are two general approaches: the first one is based on layer-adapted meshes
and the second is based on exponential fitting or on locally exact schemes. The basic property of the efficient numerical
methods is uniform convergence with respect to the perturbation parameter. The three books [4,7,9] develop these
approaches and give comprehensive applications to wide classes of singularly perturbed problems.

Our goal is to construct a �-uniform numerical method for solving problem (1), that is, a numerical method which
generates �-uniformly convergent numerical approximations to the solution. We use a numerical method based on a
weighted average scheme. This 10-point difference scheme can be regarded as taking a weighted average of the explicit
scheme and the implicit scheme.

We mention that in [5], the uniform convergence of the weighted average scheme on the piecewise uniform mesh of
Shishkin-type [12], applied to a linear one-dimensional parabolic problem, was proved.

The structure of the paper is as follows. In Section 2, we construct the nonlinear difference scheme based on the
weighted average scheme. Section 3 deals with the uniform convergence of the weighted average scheme on the
piecewise uniform and log-meshes. The numerical experiments of Section 4 use the monotone iterative method to
solve the weighted average scheme. The accuracy is investigated for two types of layer-adapted meshes. The numerical
evidence further clarifies the theoretical stability constraints and convergence order estimates.

2. The weighted average scheme

On Q introduce a rectangular mesh �h × ��, �h = �hx × �hy :

�hx = {xi, 0� i�Nx; x0 = 0, xNx = 1; hxi = xi+1 − xi},
�hy = {yj , 0�j �Ny; y0 = 0, yNy = 1; hyj = yj+1 − yj },
�� = {tk = k�, 0�k�N�, N�� = tF }.

For a mesh function U(P, t), P = (x, y) ∈ �h, t ∈ ��, we use the weighted average or �-scheme

�LhU(P, t) + (1 − �)LhU(P, t − �) + 1

�
[U(P, t) − U(P, t − �)] = −F�, (2)

F� ≡ �f (P, t, U) + (1 − �)f (P, t − �, U), (P, t) ∈ �h × ��,

U(P, t) = g(P, t), (P, t) ∈ ��h × ��, U(P, 0) = u0(P ), P ∈ �h,

where � = const and, when no confusion arises, we write f (P, t, U(P, t)) = f (P, t, U). The linear operator Lh is
defined by

LhU = −�2(D2
xU + D2

yU),

where D2
xU and D2

yU are the central difference approximations to the second derivatives

D2
xU

k
ij = (h̄xi)

−1[(Uk
i+1,j − Uk

ij )(hxi)
−1 − (Uk

ij − Uk
i−1,j )(hx,i−1)

−1],

D2
yU

k
ij = (h̄yj )

−1[(Uk
i,j+1 − Uk

ij )(hyj )
−1 − (Uk

ij − Uk
i,j−1)(hy,j−1)

−1],

h̄xi = 2−1(hx,i−1 + hxi), h̄yj = 2−1(hy,j−1 + hyj ),

where Uk
ij ≡ U

(
xi, yj , tk

)
.
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This 10-point difference scheme can be regarded as taking a weighted average of the explicit scheme (� = 0) and
the implicit scheme (� = 1). We shall assume that we are using an average with nonnegative weights, so that 0���1.

3. Uniform convergence of the difference scheme (2)

Here we analyze uniform convergence properties of the �-method (2). Introduce the following notation:

vi = vx,i−1 + vxi, vx,i−1 = (h̄xi)
−1(hx,i−1)

−1, vxi = (h̄xi)
−1(hxi)

−1, (3)

wj = wy,j−1 + wyj , wy,j−1 = (h̄yj )
−1(hy,j−1)

−1, wyj = (h̄yj )
−1(hyj )

−1,

v̄ = max
1� i �Nx−1

vi, w̄ = max
1� j �Ny−1

wj .

Suppose that the time mesh spacing � satisfies the constraint

�(1 − �)� 1

�2(v̄ + w̄) + c∗ . (4)

The condition (4) guarantees the discrete maximum principle on the computational domain �h × ��. For the implicit
difference scheme with � = 1, there is no restriction on the time spacing �.

The constraint of type (4) is known as the CFL condition. For the �-method on the uniform mesh with step sizes hx

and hy in the x- and y-directions, respectively, the condition (4) can be represented in the standard form

(�x + �y)(1 − �)�0.5, �x = �2�

h2
x

, �y = �2�

h2
y

.

In the case of the linear one-dimensional differential equation −�2uxx + ut = −f (x, t), we obtain the condition
�(1 − �)�0.5 from [8].

The case �=0.5 corresponds to the Crank–Nicolson difference scheme [3]. It is well-known that for a linear problem
(1) with constant coefficients, the Fourier analysis leads to the unconditionally stable Crank–Nicolson difference
scheme. We know mathematically (and by common experience if u represents, say, temperature) that u(x, y, t) is
bounded above and below by the extremes attained by the initial data and the values on the boundary up to time t.

In the case of the linear one-dimensional differential equation −�2uxx + ut = 0, the condition (4), �(1 − �)�0.5,
is very much more restrictive than that needed in the Fourier analysis of stability, �(1 − 2�)�0.5. For example, the
Crank–Nicolson scheme always satisfies the stability condition, but only if ��1 does it satisfy the condition given for
the maximum principle. In view of this large gap one may wonder about the sharpness of this condition. In fact, the
maximum principle condition is sharp, but a little severe; with Nx = 2, U0

0 =U0
2 = 0, U0

1 = 1 and g(0, t)=g(1, t)= 0,
it follows that U1

1 = (1 − 2(1 − �)�)/(1 + 2��) which is nonnegative only if the given condition is satisfied.
Thus, the maximum principle analysis can be viewed as an alternative means of obtaining stability conditions. It has

the advantage over Fourier analysis that it is easily extended to problems with variable coefficients and to nonlinear
problems as well. We mention here that, in general, the maximum principle analysis gives only sufficient conditions
for stability of difference schemes.

3.1. Truncation error of the difference scheme (2)

Firstly, we consider the Crank–Nicolson difference (2) with � = 0.5. Fix t ∈ �� and (xi, yj ) ∈ �h, and introduce
the one-dimensional differential equation in the space variable x,

�2 d2u(x, yj , t)

dx2 = �(x)(x, yj , t), xi < x < xi+1,

�(x)(x, yj , t) ≡ 1

2
f (x, yj , t, u(x, yj , t)) + 1

2

�u(x, yj , t)

�t
.
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Using the Green function G
(x)
i of the differential operator �2d2/dx2 on [xi, xi+1], we represent the exact solution

u(x, yj , t) in the form

u(x, yj , t) = u(xi, yj , t)�1i (x) + u(xi+1, yj , t)�2i (x) +
∫ xi+1

xi

G
(x)
i (x, s)�(x)(s, yj , t) ds,

where the local Green function G
(x)
i is given by

G
(x)
i (x, s) = 1

�2w
(x)
i (s)

{�1i (s)�2i (x), x�s,

�1i (x)�2i (s), x�s,

w
(x)
i (s) = �2i (s)[�1i (x)]′x=s − �1i (s)[�2i (x)]′x=s ,

and �1i (x), �2i (x) are defined by

�1i (x) = xi+1 − x

hxi

, �2i (x) = x − xi

hxi

, xi �x�xi+1.

Equating the derivatives du(xi −0, yj , t)/dx and du(xi +0, yj , t)/dx, we get the following integral-difference formula

�2D2
xu(xi, yj , t) = 1

h̄xi

∫ xi

xi−1

�2,i−1(s)�
(x)(s, yj , t) ds + 1

h̄xi

∫ xi+1

xi

�1i (s)�
(x)(s, yj , t) ds. (5)

Now, representing �(x)(x, yj , t) on [xi−1, xi+1] in the form

�(x)(x, yj , t) = �(xi, yj , t) +
∫ x

xi

d�(x)

ds
ds,

the above integral-difference formula can be written as

�2D2
xu(P, t) = 1

2
f (P, t, u) + 1

2

�u(P, t)

�t
+ I (x)(P, t, u), (P, t) ∈ �h × ��,

where we denote

I (x)(xi, yj , t, u) ≡ 1

h̄xi

∫ xi

xi−1

�2,i−1(s)

(∫ s

xi

d�(x)(	, yj , t)

d	
d	

)
ds

+ 1

h̄xi

∫ xi+1

xi

�1i (s)

(∫ s

xi

d�(x)(	, yj , t)

d	
d	

)
ds. (6)

Similarly, for the one-dimensional differential equation in the space variable y

�2 d2u(xi, y, t)

dy2 = �(y)(xi, y, t), yj < y < yj+1,

�(y)(xi, y, t) ≡ 1

2
f (xi, y, t, u(xi, y, t)) + 1

2

�u(xi, y, t)

�t
,

we can prove the formula

�2D2
yu(P, t) = 1

2
f (P, t, u) + 1

2

�u(P, t)

�t
+ I (y)(P, t, u), (P, t) ∈ �h × ��,
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where we denote

I (y)(xi, yj , t, u) ≡ 1

h̄yi

∫ yj

yj−1


2,j−1(s)

(∫ s

yj

d�(y)(xi, 	, t)

d	
d	

)
ds

+ 1

h̄yi

∫ yj+1

yj


1j (s)

(∫ s

yj

d�(y)(xi, 	, t)

d	
d	

)
ds, (7)

where 
1j (y) and 
2j (y) are defined by


1j (y) = yj+1 − y

hyj

, 
2j (y) = y − yj

hyj

, yj �y�yj+1.

Thus, the exact solution u to (1) satisfies the integral-difference equation

Lhu(P, t) + �u(P, t)

�t
= −f (P, t, u) − I (P, t, u), (P, t) ∈ �h × ��,

I (P, t, u) ≡ [I (x)(P, t, u) + I (y)(P, t, u)],
where the difference operator Lh is defined in (2). From here and (2), it follows that for � = 0.5, the truncation error
T (P, t) can be represented in the form

T (P, t) = T1(P, t) − 1
2 [I (P, t, u) + I (P, t − �, u)],

T1(P, t) ≡ u(P, t) − u(P, t − �)

�
− 1

2

[
�u(P, t)

�t
+ �u(P, t − �)

�t

]
.

Using the Taylor expansions about the center of the 10 mesh points, namely (P, t1/2), t1/2 ≡ t − 1
2�, we obtain

T1(P, t) = 1
48�2uttt (P , ta1/2) + 1

48�2uttt (P , tb1/2) − 1
16�2uttt (P , tc1/2) − 1

16�2uttt (P , td1/2),

t1/2 < t
a,c
1/2 < t, t − � < t

b,d
1/2 < t1/2.

Thus, we have proved the following lemma.

Lemma 1. The truncation error of the Crank–Nicolson scheme (2), � = 0.5, can be estimated by

‖T (t)‖�h � 1
6 max

(x,y,t)∈Q
|uttt (x, y, t)|�2 + 1

2 [‖I (t)‖�h + ‖I (t − �)‖�h ], (8)

where I (P, t, u) = I (x)(P, t, u) + I (y)(P, t, u), I (x)(P, t, u) and I (y)(P, t, u) are defined in (6) and (7), respectively.

For � ∈ [0, 1]\{0.5}, the truncation error T (P, t) can be represented in the form

T (P, t) = T1(P, t) − [�I (P, t, u) + (1 − �)I (P, t − �, u)],

T1(P, t) ≡ u(P, t) − u(P, t − �)

�
−
[
�
�u(P, t)

�t
+ (1 − �)

�u(P, t − �)

�t

]
.

Using the Taylor expansions about a mesh point (P, t), we obtain

T1(P, t) = − 1
2�utt (P , ta� ) + (1 − �)�utt (P , tb� ), t − � < t

a,b

� < t .

Thus, we prove the following lemma.
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Lemma 2. The truncation error of the difference scheme (2) for � ∈ [0, 1]\{0.5} can be estimated in the form

‖T (t)‖�h �
(

3

2
− �

)
max

(x,y,t)∈Q
|utt (x, y, t)|� + �‖I (t)‖�h + (1 − �)‖I (t − �)‖�h . (9)

3.2. Bounds on I (x) and I (y) from (6), (7)

We suppose sufficient smoothness of functions f, g and u0 in (1) and also sufficient compatibility conditions between
the initial and boundary data, in such a way that for l sufficiently large integer and 0 < � < 1, the solution of (1) satisfies

u(x, y, t) ∈ Cl+�,l+�,(l+�)/2(� × [0, tF ]).
Using the mean-value theorem, the right-hand side in (1) can be written in the form f (x, y, t, u)=f (x, y, t, 0)+fuu.
Now, we may consider (1) as a linear equation with the smooth coefficient fu and use the bounds of the exact solution
and its derivatives obtained in [12] for a linear problem. According to [12], the solution can be decomposed into two
parts u = S + E, where S and E are the regular and singular parts of u, respectively. In turn, the singular part can be
decomposed in the form

E = � + 
 + (Υ00 + Υ10 + Υ01 + Υ11),

where � and 
 are essentially one-dimensional boundary layer functions in some neighborhoods of sides x = 0, x = 1
and y = 0, y = 1, respectively, and Υmn, m, n = 0, 1 are corner layers in the neighborhood of (m, n). According to the
results from [12], the following bounds hold true:∣∣∣∣ �kS(x, y, t)

�xkx �yky �tkt

∣∣∣∣ �C, (10)

∣∣∣∣ �k�(x, y, t)

�xkx �yky �tkt

∣∣∣∣ �C�−kx �(x), �(x) = �0(x) + �1(x),

∣∣∣∣ �k
(x, y, t)

�xkx �yky �tkt

∣∣∣∣ �C�−ky �̂(y), �̂(y) = �̂0(y) + �̂1(y),

∣∣∣∣�kΥmn(x, y, t)

�xkx �yky �tkt

∣∣∣∣ �C�−(ky+ky)�m(x)�̂n(y), m, n = 0, 1,

�0(x) = exp(−�1x/�), �1(x) = exp(−�1(1 − x)/�),

�̂0(y) = exp(−�2y/�), �̂1(y) = exp(−�2(1 − y)/�),

where k = (kx, ky, kt ), kx + ky + 2kt � l, and here and throughout C denotes a generic positive constant which is
independent of � and the mesh parameters.

From (6), it follows that

|I (x)(xi, yj , t, u)|� 1

h̄xi

∫ xi

xi−1

�2,i−1(s)

(∫ xi

xi−1

∣∣∣∣∣d�(x)(	, yj , t)

d	

∣∣∣∣∣ d	

)
ds

+ 1

h̄xi

∫ xi+1

xi

�1i (s)

(∫ xi+1

xi

∣∣∣∣∣d�(x)(	, yj , t)

d	

∣∣∣∣∣ d	

)
ds.

From (10), the following estimate on d�(x)/dx holds true∣∣∣∣∣d�(x)(x, yj , t)

dx

∣∣∣∣∣ �C[1 + �−1�(x)], 0�x�1,
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and on the intervals [0, 1
2 ] and [ 1

2 , 1], we have∣∣∣∣∣d�(x)(x, yj , t)

dx

∣∣∣∣∣ �C[1 + �−1�0(x)], 0�x� 1
2 ,

∣∣∣∣∣d�(x)(x, yj , t)

dx

∣∣∣∣∣ �C[1 + �−1�1(x)], 1
2 �x�1.

Hence, we obtain

|I (x)(xi, yj , t, u)|� C

2h̄xi

[(h2
xi−1 + h2

xi) + B1(hxi−1, xi−1) + B1(hxi, xi)],

xi ∈ (0, 1
2 ], B1(v, w) ≡ v

�1
exp(−�−1�1w)[1 − exp(−�−1�1v)],

|I (x)(xi, yj , t, u)|� C

2h̄xi

[(h2
xi−1 + h2

xi) + B1(hxi−1, 1 − xi) + B1(hxi, 1 − xi+1)], xi ∈ [ 1
2 , 1). (11)

Similarly, I (y)(xi, yj , t, u) is estimated by

|I (y)(xi, yj , t, u)|� C

2h̄yj

[(h2
yj−1 + h2

yj ) + B2(hyj−1, yj−1) + B2(hyj , yj )],

yj ∈ (0, 1
2 ], B2(v, w) ≡ v

�2
exp(−�−1�2w)[1 − exp(−�−1�2v)],

|I (y)(xi, yj , t, u)|� C

2h̄yj

[(h2
yj−1 + h2

yj ) + B2(hyj−1, 1 − yj ) + B2(hyj , 1 − yj+1)], yj ∈ [ 1
2 , 1). (12)

3.3. The difference scheme (2) on special fitted meshes

Here we estimate convergence properties of the difference (2) defined on meshes of general type introduced in [10].
A mesh of this type is formed in the following manner. We divide each of the intervals �x =[0, 1] and �y =[0, 1] into

three parts [0, �x], [�x, 1 − �x], [1 − �x, 1], and [0, �y], [�y, 1 − �y], [1 − �y, 1], respectively. Assuming that Nx, Ny

are divisible by 4, in the parts [0, �x], [1 − �x, 1] and [0, �y], [1 − �y, 1] we allocate Nx/4 + 1 and Ny/4 + 1 mesh
points, respectively, and in the parts [�x, 1 − �x] and [�y, 1 − �y] we allocate Nx/2 + 1 and Ny/2 + 1 mesh points,
respectively. Points �x , (1 − �x) and �y , (1 − �y) correspond to transition to the boundary layers. We consider meshes
�hx and �hy which are equidistant in [xNx/4, x3Nx/4] and [yNy/4, y3Ny/4] but graded in [0, xNx/4], [x3Nx/4, 1] and
[0, yNy/4], [y3Ny/4, 1]. On [0, xNx/4], [x3Nx/4, 1] and [0, yNy/4], [y3Ny/4, 1] let our mesh be given by a mesh generating
function d with d(0)= 0 and d(1/4)= 1 which is supposed to be continuous, monotonically increasing, and piecewise
continuously differentiable. Then our mesh is defined by

xi =

⎧⎪⎨
⎪⎩

�xd(	i ), 	i = i/Nx, i = 0, . . . , Nx/4,

�x + (i − Nx/4)hx, i = Nx/4 + 1, . . . , 3Nx/4,

1 − �xd(	i ), 	i = (Nx − i) /Nx, i = 3Nx/4 + 1, . . . , Nx,

yj =

⎧⎪⎨
⎪⎩

�yd(	j ), 	j = j/Ny, j = 0, . . . , Ny/4,

�y + (j − Ny/4)hy, j = Ny/4 + 1, . . . , 3Ny/4,

1 − �yd(	j ), 	j = (Ny − j)/Ny, j = 3Ny/4 + 1, . . . , Ny,

hx = 2(1 − 2�x)N
−1
x , hy = 2(1 − 2�y)N

−1
y .



712 I. Boglaev, M. Hardy / Journal of Computational and Applied Mathematics 200 (2007) 705–721

We also assume that d(d(	))/d	 does not decrease. This condition implies that

hxi �hx,i+1, i = 1, . . . , Nx/4 − 1, hxi �hx,i+1, i = 3Nx/4 + 1, . . . , Nx − 1,

hyj �hy,j+1, j = 1, . . . , Ny/4 − 1, hyj �hy,j+1, j = 3Ny/4 + 1, . . . , Ny − 1.

3.3.1. Uniform convergence of the difference scheme (2) on the piecewise uniform mesh
We choose the transition points �x , (1 − �x) and �y , (1 − �y) as in [12], i.e.,

�x = min{4−1, �1� ln Nx}, �y = min{4−1, �2� ln Ny},
where �1 and �2 are positive constants. If �x,y = 1

4 , then Nx,y are very large compared to 1/� which means that the
difference scheme (2) can be analyzed using standard techniques. We therefore assume that

�x = �1� ln Nx, �y = �2� ln Ny .

Consider the mesh generating function d in the form

d(	) = 4	.

In this case the meshes �hx and �hy are piecewise uniform with the step sizes

N−1
x < hx < 2N−1

x , hx� = 4�1�N−1
x ln Nx , (13)

N−1
y < hy < 2N−1

y , hy� = 4�2�N−1
y ln Ny .

Now, using (11) and (12), we estimate the truncation error T (t) in (8) on the piecewise uniform mesh (13). In (13),
we choose �1,2 = 1/�1,2. To evaluate the right-hand side in (11) on (0, 1

2 ], we consider the following three cases:
xi ∈ (0, �x), xi = �x and xi ∈ (�x,

1
2 ]. If xi ∈ (0, �x), then hx,i−1 = hxi = hx�, and by the Taylor expansions we have

|I (x)(xi, yj , t, u)|�Chx�(1 + �−1), xi ∈ (0, �x).

If xi = �x , then hx,i−1 = hx�, hxi = hx , and by the Taylor expansion and taking into account that �x = � ln Nx/�1,
we have

|I (x)(�x, yj , t, u)|� C

hx� + hx

(
h2

x� + h2
x + hx�

�
+ hx

�1Nx

)

�C[hx�(1 + �−1) + hx + (�1Nx)
−1].

If xi ∈ (�x,
1
2 ], then hx,i−1 = hxi = hx , and we have

|I (x)(xi, yj , t, u)|�C[hx + (�1Nx)
−1], xi ∈ (�x,

1
2 ].

Similarly, we can prove these three estimates on the interval [ 1
2 , 1), and we conclude the estimate

|I (x)(xi, yj , t, u)|�C[hx�(1 + �−1) + hx + (�1Nx)
−1], xi ∈ (0, 1).

In a similar way, using (12), we can prove the estimate

|I (y)(xi, yj , t, u)|�C[hy�(1 + �−1) + hy + (�2Ny)
−1], yj ∈ (0, 1).

From here and (13), it follows that

|I (x)(xi, yj , t, u)|�C(N−1
x ln Nx), |I (y)(xi, yj , t, u)|�C(N−1

y ln Ny),

and, hence, the second term in the estimate of the truncation error T in (8) on the piecewise uniform mesh (13) is
estimated by

1
2 [‖I (t)‖�h + ‖I (t − �)‖�h ]�C(N−1 ln N), N = min{Nx; Ny}.
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Using (10), the first term in (8) is estimated by

1
6 max

(P,t)∈Q
|uttt (P , t)|�2 �C�2.

Thus,

‖T (t)‖�h �C(N−1 ln N + �2), N = min{Nx; Ny}. (14)

Similarly, for T (t) from (9), we can prove the estimate

‖T (t)‖�h �C(N−1 ln N + �). (15)

Now, we prove the theorem.

Theorem 1. Let the time mesh spacing � satisfy the CFL condition (4). Then the difference scheme (2) on the piecewise
uniform mesh (13) converges �-uniformly to the solution of (1):

max
t∈��

‖U(t) − u(t)‖�h �C(N−1 ln N + |� − 0.5|� + �2), (16)

where N = min{Nx; Ny} and constant C is independent of �, N and �.

Proof. Introduce the notation

W(P, t) = U(P, t) − u(P, t).

Using the mean-value theorem, from (2) we conclude that W(P, t) satisfies

(�Lh
f (P, t) + �−1)W(P, t) = − [(1 − �)Lh

f (P, t − �) − �−1]W(P, t − �)

− T (P, t), (P, t) ∈ �h × ��,

W(P, t) = 0, P ∈ ��h, Lh
f (P, t) ≡ Lh + fu(P, t),

where T is the truncation error of the exact solution u to (1) and fu(P, t) ≡ fu[P, t, u(P, t) + �(P, t)W(P, t)],
0 < �(P, t) < 1. Represent the above difference equation in the following equivalent form:

(1 + �rk
ij )W

k
ij = �[Mh�

x (Wk
ij ) + Mh�

y (Wk
ij )] + (1 − �)[Mh�

x (Wk−1
ij ) + Mh�

y (Wk−1
ij )]

+ [1 − (1 − �)rk−1
ij ]Wk−1

ij − �Tij ,

rk
ij = ��2(vi + wj) + �f k

u,ij , Mh�
x (Wk

ij ) ≡ ��2(vxiW
k
i+1,j + vx,i−1W

k
i−1,j ),

Mh�
y (Wk

ij ) ≡ ��2(wyjW
k
i,j+1 + wy,j−1W

k
i,j−1).

Under the CFL condition (4) all the coefficients on the right are nonnegative, and we conclude the estimate

‖W(t)‖�h �‖W(t − �)‖�h + �‖T (t)‖�h .

Since W(P, 0) = 0, by induction we conclude that

‖W(tk)‖�k� max
1� t � tk

‖T (t)‖�h , k = 1, . . . , N�.

Taking into account N�� = tF , we have

max
t∈��

‖W(t)‖� tF max
1� t � tF

‖T (t)‖�h .

From here, (14) and (15), we prove the theorem.
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3.3.2. Uniform convergence of the difference scheme (2) on the log-mesh
We choose the transition points �x , (1 − �x) and �y , (1 − �y) as in [1], i.e.,

�x = �1� ln(1/�), �y = �2� ln(1/�), (17)

d(	) = ln[1 − 4(1 − �)	]
ln �

.

Firstly, we estimate the truncation error T (t) from (8) on the log-mesh (17), where �1,2 = 1/�1,2. The mesh points in
(17) are chosen such that

hxi �

⎧⎪⎨
⎪⎩

4/(�1Nx), i = 0, . . . , Nx/4 − 1,

2/Nx, i = Nx/4, . . . , 3Nx/4 − 1,

4/(�1Nx), i = 3Nx/4, . . . , Nx − 1,

exp(−�−1�1xi) − exp(−�−1�1xi+1)�4/Nx, xi ∈ [0, 1
2 ],

exp(−�−1�1(1 − xi+1)) − exp(−�−1�1(1 − xi))�4/Nx, xi ∈ [ 1
2 , 1),

where we assume that Nx ��−1. From here, we estimate (11) by

|I (x)(xi, yj , t, u)|� C

�1Nx

[max{4(1 + �1); 12}], xi ∈ (0, 1).

In a similar way, we estimate (12) by

|I (y)(xi, yj , t, u)|� C

�2Ny

[max{4(1 + �2); 12}], yj ∈ (0, 1).

From here, it follows that

|I (x)(xi, yj , t, u)|�CN−1
x , |I (y)(xi, yj , t, u)|�CN−1

y ,

and, hence, the second term in the estimate on the truncation error T from (8) on the log-mesh (17) is estimated by

1
2 [‖I (t)‖�h + ‖I (t − �)‖�h ]�CN−1, N = min{Nx; Ny}.

Using (10), the first term in (8) is estimated by

1
6 max

(P,t)∈Q
|uttt (P , t)|�2 �C�2.

Thus,

‖T (t)‖�h �C(N−1 + �2).

Similarly, for T (t) from (9), we can prove the estimate

‖T (t)‖�h �C(N−1 + �).

For the difference (2) on the log-mesh (17), Theorem 1 on �-uniform convergence holds true with the following error
estimate:

max
t∈��

‖U(t) − u(t)‖�h �C(N−1 + |� − 0.5|� + �2), N = min{Nx; Ny}, (18)

where constant C is independent of �, N and �.
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4. Numerical experiments

In this section, we consider the model problem

−�2(uxx + uyy) + ut = −u − 4

5 − u
,

(x, y, t) ∈ � × (0, 10], � = {0 < x < 1} × {0 < y < 1},
u(�, 0) = 0, u(��, 0) = 1, u(��, t) = 1, t ∈ (0, 10].

The steady state solution to the reduced problem (� = 0) is ur = 4. For �>1 the problem is singularly perturbed and
the steady state solution increases sharply from u = 1 on �� to u = 4 on the interior. The solution to the parabolic
problem approaches this steady state with time.

For the model problem, we solve the nonlinear difference (2) with the monotone iterative method, based on the
method of upper and lower solutions, from [2]. The paper [2] introduced a monotone iterative method for solving the
weighted average scheme. The method’s parameter-uniform convergence was proved for nonlinear, two-dimensional
problems. This method is a practical and robust alternative to Newton’s method for solving the nonlinear algebraic
system arising from the weighted average scheme at each time level.

The numerical solution at t = t0 is simply given by the initial condition V (�h, t0) = 0, V (��h, t0) = 1. The mesh
function V (0)(P , t1) defined by V (0)(P , t1)=V (P, t0), P ∈ �h, is clearly a lower solution with respect to V (P, t0). We
initiate the algorithm with V (0)(P , t1) and thus generate a sequence of lower solutions. At each time level tk , we define
a converged solution V (P, tk) = V (n∗)(P , tk) with n∗ = n∗(tk) minimal subject to ‖V (n∗)(tk) − V (n∗−1)(tk)‖�h < �,
where � is a specified tolerance. At the next time level, tk+1, we require an initial iterate that is a lower solution with
respect to V (P, tk). Since the boundary condition and function f (u) = (u − 4)/(5 − u) are independent of time, we
may choose V (0)(P , tk+1) = V (P, tk), P ∈ �h. Now, from [2, Theorem 1], it follows by induction on k that the mesh
function V (P, tk+1) defined by V (�h, tk+1) = 4, V (��h, tk+1) = 1 is an upper solution with respect to V (P, tk) and
thus our computed mesh functions satisfy

0�V (n)(P, tk)�4, P ∈ �h, 0�n�n∗, 0�k�N�.

Hence we may suppose that fu = 1/(5 − u)2 is bounded below and above by c∗ = 1
25 and c∗ = 1, respectively. Thus,

the CFL condition (4) for the model problem is defined by c∗ = 1.
We take as our convergence tolerance � = 10−5. With either the piecewise uniform mesh (13) or log-mesh (17), we

take Nx = Ny = N . Because of mesh nonuniformity, the linear systems may be nonsymmetric. Therefore, we solve all
linear systems with the restarted GMRES(m) algorithm from [11].

4.1. Spatial order of accuracy

For each of the implicit and Crank–Nicolson schemes, we investigate the numerical order of convergence with respect
to N−1. Let V N be the numerical solution computed on a mesh with Nx = Ny = N . We measure the error in V N by
comparing it to the reference solution V 2N , computed on the mesh with Nx = Ny = 2N . With the norm

‖V ‖ = max
(P,t)∈�h×��

|V (P, t)|,

we suppose that the error EN ≡ ‖V N − V 2N‖ satisfies

EN = C(N−1)p,

where constant C is independent of N, and p is the numerical order of convergence. For each N, we compute pN from

pN = ln(EN/E2N)

ln 2
,
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and we compute a �-uniform order of convergence p as in [4]

pN = ln(EN/E2N)

ln 2
,

where EN = max�EN .

4.1.1. Spatial accuracy on the piecewise uniform mesh (13)
The implicit and Crank–Nicolson schemes, respectively, correspond to � = 1 and � = 1

2 in the generic (2). We solve
each of these schemes with the monotone iterative method from [2]. For each of � = 10−2, 10−3, 10−4 and 10−5, we
compute a sequence of solutions {V N }, where N =32, 64, 128, 256 and 512. For the boundary layer thickness, we take

�1 = �2 = 9√
c∗ log2N

in (13). Thus, we choose the computational boundary layer thickness independently of N and the solution V N may be
directly compared with V 2N .

For the various values of � and N, we give in Table 1 the right-hand side of the CFL condition (4). Clearly, the
implicit scheme satisfies the CFL condition for all choices of time step �. To ensure that the Crank–Nicolson scheme
satisfies the CFL condition, we choose � = 10−2 for all � and N.

The error for each scheme is shown in Table 2. For ��10−3, the error is independent of � and decreases with N. The
numerical order of convergence pN and pN is shown in Table 3. Each scheme’s numerical order of spatial accuracy is
between one and two.

Table 1
The right-hand side of the CFL condition (4) for the piecewise uniform mesh (13)

�\N 32 64 128 256 512

10−2 7.09 × 10−1 3.79 × 10−1 1.32 × 10−1 3.67 × 10−2 9.45 × 10−3

10−3 7.92 × 10−1 4.87 × 10−1 1.92 × 10−1 5.61 × 10−2 1.46 × 10−2

10−4 7.92 × 10−1 4.87 × 10−1 1.92 × 10−1 5.61 × 10−2 1.46 × 10−2

10−5 7.92 × 10−1 4.87 × 10−1 1.92 × 10−1 5.61 × 10−2 1.46 × 10−2

Table 2
The error EN for the implicit and Crank–Nicolson schemes on the piecewise uniform mesh (13)

�\N 32 64 128 256

Implicit scheme
10−2 1.259 × 10−1 4.279 × 10−2 1.237 × 10−2 3.376 × 10−3

10−3 1.467 × 10−1 6.346 × 10−2 1.843 × 10−2 5.128 × 10−3

10−4 1.467 × 10−1 6.346 × 10−2 1.843 × 10−2 5.128 × 10−3

10−5 1.467 × 10−1 6.346 × 10−2 1.843 × 10−2 5.128 × 10−3

Crank–Nicolson scheme
10−2 1.260 × 10−1 4.287 × 10−2 1.240 × 10−2 3.388 × 10−3

10−3 1.469 × 10−1 6.353 × 10−2 1.847 × 10−2 5.127 × 10−3

10−4 1.469 × 10−1 6.353 × 10−2 1.847 × 10−2 5.127 × 10−3

10−5 1.469 × 10−1 6.353 × 10−2 1.847 × 10−2 5.127 × 10−3

The time step is � = 10−2.
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Table 3
The numerical order of convergence pN and pN for the implicit and Crank–Nicolson schemes on the piecewise uniform mesh (13)

�\N Implicit scheme Crank–Nicolson scheme

32 64 128 32 64 128

10−2 1.556 1.791 1.873 1.555 1.790 1.872
10−3 1.209 1.784 1.846 1.209 1.783 1.849
10−4 1.209 1.784 1.846 1.209 1.783 1.849
10−5 1.209 1.784 1.846 1.209 1.783 1.849

pN 1.209 1.784 1.815 1.209 1.783 1.849

The time step is � = 10−2.

Table 4
The right-hand side of the CFL condition (4) for the log-mesh (17)

�\N 32 64 128 256 512

10−2 1.12 × 10−1 2.65 × 10−2 6.33 × 10−3 1.54 × 10−3 3.80 × 10−4

10−3 1.14 × 10−1 2.70 × 10−2 6.45 × 10−3 1.57 × 10−3 3.87 × 10−4

10−4 1.14 × 10−1 2.71 × 10−2 6.46 × 10−3 1.57 × 10−3 3.87 × 10−4

10−5 1.14 × 10−1 2.71 × 10−2 6.46 × 10−3 1.57 × 10−3 3.87 × 10−4

Table 5
The error EN for the implicit and Crank–Nicolson schemes on the log-mesh (17)

�/N 32 64 128 256

Implicit scheme
10−2 1.012 × 10−2 2.485 × 10−3 6.219 × 10−4 1.553 × 10−4

10−3 1.029 × 10−2 2.535 × 10−3 6.331 × 10−4 1.581 × 10−4

10−4 1.031 × 10−2 2.540 × 10−3 6.342 × 10−4 1.584 × 10−4

10−5 1.031 × 10−2 2.541 × 10−3 6.343 × 10−4 1.584 × 10−4

Crank–Nicolson scheme
10−2 1.013 × 10−2 2.485 × 10−3 6.219 × 10−4 1.553 × 10−4

10−3 1.029 × 10−2 2.535 × 10−3 6.331 × 10−4 1.581 × 10−4

10−4 1.031 × 10−2 2.540 × 10−3 6.342 × 10−4 1.584 × 10−4

10−5 1.031 × 10−2 2.541 × 10−3 6.343 × 10−4 1.584 × 10−4

The time step is � = 5 × 10−4.

4.1.2. Spatial accuracy on the log-mesh (17)
For the boundary layer thickness, we take

�1 = �2 = 1√
c∗

in (17). Thus, the computational boundary layer thickness is independent of N and the solution V N may be directly
compared with V 2N .

For the various values of � and N, we present in Table 4 the right-hand side of the CFL condition (4). To ensure that
the Crank–Nicolson scheme satisfies the CFL condition, we choose � = 5 × 10−4 for all � and N.

The error for each scheme is shown in Table 5 and the numerical order of convergence is shown in Table 6. Each
scheme’s numerical order of spatial accuracy is very close to two.

Now, the results of Table 3 on the piecewise uniform mesh and Table 6 on the log-mesh are with � = 10−2 and
� = 5 × 10−4, respectively. To check that the numerical order of convergence is independent of �, we repeated the
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Table 6
The numerical order of convergence pN and pN for the implicit and Crank–Nicolson schemes on the log-mesh (17)

�\N Implicit scheme Crank–Nicolson scheme

32 64 128 32 64 128

10−2 2.026 1.999 2.001 2.026 1.999 2.001
10−3 2.021 2.002 2.002 2.021 2.002 2.002
10−4 2.021 2.002 2.001 2.021 2.002 2.001
10−5 2.021 2.002 2.001 2.021 2.002 2.001
pN 2.021 2.002 2.001 2.021 2.002 2.001

The time step is � = 5 × 10−4.

Table 7
The error EN for the implicit and Crank–Nicolson schemes on the log-mesh (17)

�/N 32 64 128 256

Implicit scheme
10−2 1.012 × 10−2 2.484 × 10−3 6.215 × 10−4 1.552 × 10−4

10−3 1.028 × 10−2 2.533 × 10−3 6.326 × 10−4 1.580 × 10−4

10−4 1.030 × 10−2 2.538 × 10−3 6.337 × 10−4 1.583 × 10−4

10−5 1.030 × 10−2 2.539 × 10−3 6.338 × 10−4 1.583 × 10−4

Crank–Nicolson scheme
10−2 1.012 × 10−2 2.485 × 10−3 6.219 × 10−4 1.553 × 10−4

10−3 1.029 × 10−2 2.535 × 10−3 6.331 × 10−4 1.581 × 10−4

10−4 1.031 × 10−2 2.540 × 10−3 6.342 × 10−4 1.584 × 10−4

10−5 1.031 × 10−2 2.541 × 10−3 6.343 × 10−4 1.584 × 10−4

The time step is � = 10−2.

log-mesh experiments with � = 10−2. The error and numerical order of convergence are shown in Tables 7 and 8,
respectively. The values are very similar to those of Tables 5 and 6. We thus conclude that the spatial accuracy is
independent of �. This also demonstrates that the CFL condition (4) is not strictly necessary for stability.

4.2. Order of accuracy with respect to �

We consider now the temporal accuracy of the implicit and Crank–Nicolson schemes on the piecewise uniform mesh.
In the absence of an exact solution for the model problem, the Crank–Nicolson scheme with �∗ = 10−3 is solved with
the monotone iterative method from [2] for 5000 time steps. This generates a reference solution V�∗(P, t) for 0� t �5.
With n∗ = 4 iterations on each time step, the reference solution is fully converged. We then generate “coarse” solutions
V�(P, t) by taking �1 = 0.1 or �2 = 0.04 and solving both the implicit scheme and the Crank–Nicolson scheme with
the corresponding monotone iterative method. At the common times, t = 0.2, 0.4, . . . , 5.0, each of these solutions is
compared with V�∗(P, t).

In Tables 9 and 10, for the implicit scheme with N = 256 and 512, we present the maximum error E�(t) = ‖V�(t) −
V�∗(t)‖�h , � = �1 and � = �2, as a function of t. As t increases, the ratio E�1/E�2 tends to �1/�2 = 2.5, consistent with
first order convergence with respect to �.

In Tables 11 and 12, for the Crank–Nicolson scheme with N = 256 and 512, we present the maximum error
E�(t)=‖V�(t)−V�∗(t)‖�h , �=�1 and �=�2 as a function of t.As t increases, the ratio E�1/E�2 tends to (�1/�2)

2 =6.25,
consistent with second order convergence with respect to �.

In Fig. 1 we plot E� against t for each of the schemes and time steps �. This demonstrates the improved accuracy of
the Crank–Nicolson scheme with respect to the implicit scheme.
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Table 8
The numerical order of convergence pN and pN for the implicit and Crank–Nicolson schemes on the log-mesh (17)

�\N Implicit scheme Crank–Nicolson scheme

32 64 128 32 64 128

10−2 2.026 1.999 2.001 2.026 1.999 2.002
10−3 2.021 2.002 2.002 2.021 2.002 2.002
10−4 2.021 2.002 2.001 2.021 2.002 2.002
10−5 2.021 2.002 2.001 2.021 2.002 2.002

pN 2.021 2.002 2.001 2.021 2.002 2.002

The time step is � = 10−2.

Table 9
The error E�(t) for the implicit scheme with N = 256

t E�1 E�2 E�1 E�2 E�1 /E�2

0.2 8.799 × 10−2 3.695 × 10−2 8.948 × 10−2 3.746 × 10−2 2.39
0.4 6.018 × 10−2 2.517 × 10−2 5.792 × 10−2 2.472 × 10−2 2.34
0.6 4.414 × 10−2 1.859 × 10−2 4.389 × 10−2 1.797 × 10−2 2.44
0.8 3.837 × 10−2 1.565 × 10−2 3.785 × 10−2 1.563 × 10−2 2.42
1.0 3.297 × 10−2 1.358 × 10−2 3.327 × 10−2 1.349 × 10−2 2.47
2.0 2.413 × 10−2 9.771 × 10−3 2.429 × 10−2 9.809 × 10−3 2.48
3.0 2.141 × 10−2 8.613 × 10−3 2.140 × 10−2 8.617 × 10−3 2.48
4.0 2.027 × 10−2 8.137 × 10−3 2.023 × 10−2 8.119 × 10−3 2.49
5.0 1.924 × 10−2 7.720 × 10−3 1.924 × 10−2 7.718 × 10−3 2.49

� 10−2 �10−3

Table 10
The error E�(t) for the implicit scheme with N = 512

t E�1 E�2 E�1 E�2 E�1 /E�2

0.2 1.017 × 10−1 4.599 × 10−2 1.033 × 10−1 4.419 × 10−2 2.34
0.4 6.336 × 10−2 2.625 × 10−2 6.213 × 10−2 2.565 × 10−2 2.42
0.6 4.730 × 10−2 1.940 × 10−2 4.705 × 10−2 1.920 × 10−2 2.45
0.8 3.914 × 10−2 1.598 × 10−2 3.916 × 10−2 1.600 × 10−2 2.45
1.0 3.425 × 10−2 1.391 × 10−2 3.415 × 10−2 1.396 × 10−2 2.45
2.0 2.449 × 10−2 9.883 × 10−3 2.449 × 10−2 9.888 × 10−3 2.48
3.0 2.160 × 10−2 8.693 × 10−3 2.159 × 10−2 8.687 × 10−3 2.49
4.0 2.033 × 10−2 8.161 × 10−3 2.033 × 10−2 8.162 × 10−3 2.49
5.0 1.928 × 10−2 7.734 × 10−3 1.928 × 10−2 7.734 × 10−3 2.49

� 10−2 �10−3

5. Conclusions

From the numerical evidence, we make the following observations:

• Although the theoretical estimate (16) predicts almost first order spatial accuracy of the implicit and Crank–Nicolson
schemes on the piecewise uniform mesh (13), the numerical experiments indicate that the spatial accuracy is be-
tween one and two.
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Table 11
The error E�(t) for the Crank–Nicolson scheme with N = 256

t E�1 E�2 E�1 E�2 E�1 /E�2

0.2 1.833 × 10−2 2.728 × 10−3 1.477 × 10−2 2.724 × 10−3 5.42
0.4 5.097 × 10−3 8.320 × 10−4 4.609 × 10−3 7.208 × 10−4 6.39
0.6 2.486 × 10−3 4.065 × 10−4 2.569 × 10−3 4.121 × 10−4 6.23
0.8 1.503 × 10−3 2.397 × 10−4 1.465 × 10−3 2.357 × 10−4 6.22
1.0 1.061 × 10−3 1.696 × 10−4 1.021 × 10−3 1.630 × 10−4 6.26
2.0 3.237 × 10−4 5.201 × 10−5 3.277 × 10−4 5.252 × 10−5 6.24
3.0 1.654 × 10−4 2.726 × 10−5 1.664 × 10−4 2.701 × 10−5 6.16
4.0 9.977 × 10−5 1.641 × 10−5 9.903 × 10−5 1.654 × 10−5 5.99
5.0 7.694 × 10−5 1.785 × 10−5 7.677 × 10−5 1.183 × 10−5 6.49

� 10−2 �10−3

Table 12
The error E�(t) for the Crank–Nicolson scheme with N = 512

t E�1 E�2 E�1 E�2 E�1 /E�2

0.2 1.901 × 10−1 3.504 × 10−3 9.318 × 10−2 3.378 × 10−3 27.58
0.4 7.023 × 10−2 9.006 × 10−4 2.380 × 10−2 9.032 × 10−4 26.35
0.6 2.929 × 10−2 4.238 × 10−4 7.069 × 10−3 4.210 × 10−4 16.79
0.8 1.318 × 10−2 2.536 × 10−4 2.304 × 10−3 2.532 × 10−4 9.10
1.0 6.254 × 10−3 1.730 × 10−4 1.066 × 10−3 1.723 × 10−4 6.19
2.0 3.305 × 10−4 5.339 × 10−5 3.305 × 10−4 5.308 × 10−5 6.23
3.0 1.668 × 10−4 2.713 × 10−5 1.667 × 10−4 2.705 × 10−5 6.16
4.0 1.001 × 10−4 1.552 × 10−5 9.986 × 10−5 1.669 × 10−5 5.98
5.0 7.727 × 10−5 1.188 × 10−5 7.717 × 10−5 1.191 × 10−5 6.48

� 10−2 �10−3
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Fig. 1. The value of E�(t) = ‖V�(t) − V�∗ (t)‖�h as a function of t for each of the schemes with � = 0.1 and � = 0.04.
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• Similarly, although the estimate (18) predicts first order spatial accuracy of the implicit and Crank–Nicolson
schemes on the log-mesh (17), the numerical experiments indicate a spatial accuracy of two.

• On the piecewise uniform mesh (13), the numerical experiments confirm that the implicit scheme is first order
convergent with respect to the time step � while the Crank–Nicolson scheme is second order convergent with
respect to �.

• For the Crank–Nicolson scheme, the time step � can exceed the CFL condition (4) by an order of magnitude
without loss of stability. (For the implicit scheme, of course, the CFL condition imposes no restriction on �.)
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