Journal of Computational and Applied Mathematics 234 (2010) 3196-3212

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

An Arnoldi-Extrapolation algorithm for computing PageRank
Gang Wu?, Yimin Weij ><*

2 School of Mathematical Sciences, Xuzhou Normal University, Xuzhou, 221116, Jiangsu, PR China
b School of Mathematical Sciences, Fudan University, Shanghai, 200433, PR China
¢ Shanghai Key Laboratory of Contemporary Applied Mathematics, PR China

ARTICLE INFO ABSTRACT
Article history: The Arnoldi-type algorithm proposed by Golub and Greif [G. Golub, C. Greif, An Arnoldi-
Received 7 February 2008 type algorithm for computing PageRank, BIT 46 (2006) 759-771] is a restarted Krylov
subspace method for computing PageRank. However, this algorithm may not be efficient
MScC: when the damping factor is high and the dimension of the search subspace is small.
65F15 In this paper, we first develop an extrapolation method based on Ritz values. We then
ggg}l% consider how to periodically knit this extrapolation method together with the Arnoldi-
60122 type algorithm. The resulting algorithm is the Arnoldi-Extrapolation algorithm. The
convergence of the new algorithm is analyzed. Numerical experiments demonstrate the
Keywords: numerical behavior of this algorithm.
PageRank © 2010 Elsevier B.V. All rights reserved.
GeneRank

Krylov subspace
Arnoldi method
Ritz value

1. Introduction

The PageRank algorithm is one of the most commonly used techniques that determine the global importance of Web
pages [1]. The core of this algorithm involves using the classical power method to compute the principal eigenvector of the
Google matrix. However, it is well known that the power method may perform poorly when the second largest eigenvalue is
close to the dominant one [2]. This happens when the damping factor is close to 1[3,4]. Therefore, it is necessary to develop
more efficient algorithms for accelerating the computation of PageRank.

Recently, a very interesting research track exploits efficient numerical linear algebra methods to speed up the
computation of PageRank [5-8]. Kamvar et al. devised adaptive methods [9] to speed up the computation of PageRank,
in which the PageRank of pages that have converged, are not recomputed at each iteration after convergence. The quadratic
extrapolation method [10] accelerates the convergence of the power method by periodically subtracting off estimates of
the non-principal eigenvectors, from the current iteration of the power method. A reordering method [11] reduces the
computation of PageRank to solve a much smaller system, and then uses forward substitution to get a full solution vector.
The BlockRank algorithm [12] exploits the block structure of the Web link graph to speed up the PageRank computation
via a three step algorithm. The Arnoldi-type algorithm [13] is an explicitly restarted Krylov subspace method, which is
a combination of the Arnoldi process and small singular value decomposition (SVD) that relies on the knowledge of the
largest eigenvalue. The Power-Arnoldi algorithm [14] proposed recently is a hybrid algorithm that is based on a periodic
combination of the power method with the thick restarted Arnoldi algorithm [15]. We refer the reader to [16-29], as well
as the references given therein for recent developments on the PageRank problem.

* Corresponding author at: School of Mathematical Sciences, Fudan University, Shanghai, 200433, PR China.
E-mail addresses: gangwu76@yahoo.com.cn, wugangzy@gmail.com (G. Wu), ymwei@fudan.edu.cn, yimin.wei@gmail.com (Y. Wei).

0377-0427/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2010.02.009

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:gangwu76@yahoo.com.cn
mailto:wugangzy@gmail.com
mailto:ymwei@fudan.edu.cn
mailto:yimin.wei@gmail.com
http://dx.doi.org/10.1016/j.cam.2010.02.009

G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212 3197

Let us briefly introduce how Google turns the hyperlink structure of the Web into a stochastic and irreducible matrix, a
detailed description of this can be found in [5-8]. Consider the hyperlink structure of the Web as a directed Web graph. If
there are n pages in the Web, then the Markov model represents this graph with an n by n matrix P whose entries p;; are
the probability of moving from page i to page j in one click of a mouse. However, there are two potential problems. The first
one is the existence of dangling nodes [23,24]. This means some rows of P may contain all zeros, so that P is not stochastic.
A cure is to replace all zero rows in P with eT/n, wheree =[1, 1, ..., 1]7 is the row of all ones, so we have

P =P +fel/n,
where

fi= 1, if pageiis dangling,
710, otherwise.

The second problem is the existence of cyclic paths, i.e., some pages may form a closed loop. This is mathematically equivalent
to P being reducible. So as to deal with this drawback, another adjustment is required, which yields the Google matrix

A=[eP+(1—-a)E]", O0<a <1, (1.1)

where E = %eeT is a rank-one matrix,' and 0 < o < 1 is the damping factor which models the possibility that a Web

surfer jumps from one page to the next without following a link. The convex combination of the stochastic matrix P and a
stochastic perturbation matrix E insures that A is both stochastic and irreducible [30,31]. The irreducibility adjustment also
insures A is primitive, which implies that the power method will converge to the PageRank vector if the starting vector is a
distribution.

It was reported that the damping factor is originally set to 0.85 [1]. The question which value of « is the correct value and
what gives a meaningful ranking, is subject to ongoing investigation, one can see [32,22,26,27] for recent study. On the one
hand, the smaller the damping factor is, the easier it is to compute the PageRank vector by simple ways, such as the power
method (within a modest number of iterations). On the other hand, the closer the damping factor is to 1, the closer the
Google matrix is to the original Web link graph. However, if the damping factor is close to 1, the power method will perform
poorly, and new approaches for accelerating the PageRank computation will be required. Although the usual value for « is
0.85, the computation of many PageRank vectors with different values of « seems promising for the design of anti-spam
mechanism [33].

This paper is organized as follows. In Section 2, we briefly introduce the mechanism of the Arnoldi-type algorithm
proposed by Golub and Greif for computing PageRank [13]. In Section 3, we first develop an extrapolation method based
on Ritz values, which are available from the Arnoldi iteration. We then consider how to periodically knit this extrapolation
procedure together with the Arnoldi-type algorithm. The resulting algorithm is the Arnoldi-Extrapolation algorithm. The
convergence of the new algorithm is considered. Numerical experiments given in Section 4 to illustrate the numerical
behavior of this algorithm. Some concluding remarks are presented in Section 5.

Matlab notation is used throughout this paper. Let P,;,_; be the set of monic polynomials whose degrees are at most m— 1.
Denote by || - ||1, || - ||> the vector 1-norm and 2-norm, as well as the induced matrix norms, respectively, and by o, (+) the
smallest singular value of a given matrix.

2. The Arnoldi-type algorithm for computing PageRank

The Arnoldi method is a well-known Krylov subspace method that can be utilized to find a few eigenpairs of a large
matrix [34,35]. Given a unit norm vector vy, if computations are performed in exact arithmetic, then the Arnoldi process
will generate successively an orthonormal basis for the Krylov subspace X, (A4, v1) = span{vy, Avy, ..., A" v;}. In this
subspace, the restriction of A is represented by an m x m upper Hessenberg matrix Hy, with the entries h;. Furthermore, the
following relation holds

AV = VoHp + hm+1,mvm+1e; = Vm+11:1mv (2.1)

where V), is an orthonormal basis of the Krylov subspace, e, is the mth coordinate vector of dimension m, and I:Im is an
(m + 1) x m upper Hessenberg matrix which is the same as Hy,, except for an additional row whose only nonzero entry is
hmt1,m- The eigenvalues of Hy, X, (i=1,2,...,m)called Ritz values of A in K;;(A, v1), can be used to approximate some
eigenvalues of A. We provide the essential details of the Arnoldi process, for more details, refer to [34,36,35].

Algorithm 1 (The m-Step Arnoldi Process).

function [Vpy1, Hy, matvec] = Arnoldi(A, vy, m, matvec)

1 Google eventually replaced the uniform vector e’ /n with a more general probability vector v" (so that E = ev”) to allow the flexibility to make
adjustments to PageRanks as well as to personalize them.

3198 G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212

for j=1,2,...,m
q = Ay
matvec=matvec+1; % the number of matrix-vector products
fori=1,2,...,j

hij=v/q;
q=qg— hi,jvi:
end for
hiv1; = llqllz;
if hj;;,==0
break;
end if
Vi1 = q/hjpj;
end for

Remark 1. For the sake of clarity, we denote by Av; the “matrix-vector products”, and by Pij the “sparse matrix-vector
products” in this paper. Note that the number of the two products are the same. Given a vector vj, the matrix-vector products
Avj; can be implemented as follows [37,10]:

Avj = aP v + [e"v; — ae’ (PTvp)le" /n, 1<j<m, (2.2)

where e is the vector of all ones. So the computation of Av; requires one sparse matrix-vector product (PT vj) and two inner
products (e"v; and e’ (PTv))).

As the size of the Google matrix is very large, we stress that the inner products involved in the Arnoldi process, add
a substantial amount of work. If we denote by N, the nonzero elements of the matrix P, then the m-step Arnoldi process
requires 2mN, operations for the sparse matrix-vector products Pij,j =1,2,...,m;and 2m + W inner products for

the computation of e” vj, e’ (PT v;) and h;;, which requires 2n- (2m+ W) operations. Therefore, the m-step Arnoldi process

needs approximately m+ (2m+ W)n /N, sparse matrix-vector products per iteration. For instance, when m = 3 and the
Web graph has, say, 10 nonzero entries on average per row, the Arnoldi process costs practically 1.4 sparse matrix-vector
products per step.

The Arnoldi-type algorithm for computing PageRank [13] is a variant of the explicitly restarted refined Arnoldi method
[38], which relies on the fact that the largest eigenvalue of the Google matrix is 1. For the known eigenvalue, the Arnoldi-type
algorithm seeks a unit norm vector xAT satisfying the following optimal property

IA—=Dx"T, = min (A= Dulls, (2.3)
ueXm(A,vq),

lullz=1

and exploits AT as an approximation to the PageRank vector. A sketch of the Arnoldi-type algorithm appears as follows, for
more details, refer to [13].

Algorithm 2 (The Arnoldi-Type Algorithm for Computing PageRank).

1. Start: Given an initial guess x of unit norm, the Arnoldi steps number m, and a prescribed tolerance tol; Set the number of
matrix-vector products matvec=0;

2. [terate

do
[Vin+1, ﬁm, matvec] = Arnoldi(A, x, m, matvec);
Compute small SVD: Hy — [I;0] = USWT;
Compute the approximate eigenvector: AT = V,,W (:, m);
I = Omin(Hm — [I; O)); % residual 2-norm

while r > tol

The original Arnoldi-type algorithm uses the residual 2-norm as a cheap convergence criterion, which is a by-product of
the small SVD [13]. However, as PageRank is the stationary distribution of a Markov chain, it is often normalized so that its
1-norm is one. Thus it is preferable to use the 1-norm as the stopping criterion [10]. To do this, one option is to evaluate the
residual 1-norm directly: r = ||Ax"T — xAT ||, /||x*T||1, however, we have to pay a superfluous matrix-vector product. Indeed,
the matrix-vector product can be realized implicitly [39]: From (2.1), we have

AT — X1 /1T 1 = (| Vin 1 [Ha W G,)] = VW G, m) [/ VW G, m) 1. (2.4)

Therefore, we can use residual 1-norm as stopping criterion in the Arnoldi-type algorithm, without additional matrix-vector
products [39].

G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212 3199
3. An Arnoldi-Extrapolation algorithm for PageRank

It is well known that the power method may perform poorly when the second largest eigenvalue is close to the largest
one [2]. This implies that the power method suffers from slow convergence when the damping factor is close to 1 [3,4], and
an alternative is the Arnoldi-type algorithm [13]. Unfortunately, the Arnoldi-type algorithm may not be efficient when m,
the dimension of the Krylov subspace is low, and when «, the damping factor is high [13,14].

In this section, we focus on improving the convergence of the Arnoldi-type algorithm. In the new algorithm, the
dimension of the Krylov subspace can be very moderate, so that the memorization cost is kept reasonable. Other advantages
of the proposed technique are the potential use on parallel architectures and its applicability for a wide range of the
parameter o which can be set close to 1.

The following theorem due to Bellalij et al. depicts the convergence of the Krylov subspace methods, which sheds light
on how to accelerate the convergence of the Arnoldi-type algorithm.

Theorem 1 ([40]). Let X, be a simple eigenvalue of A, and let x1, y1 be the right and left eigenvector associated with A\,
respectively. Assume that cos Z(y1,v1) # 0. Let Q1 = x1x’]" be the orthogonal projector onto the right eigenspace, and let
By = (I — QAU — Q1). Define

Em = pgpliﬂl lp(B1)U — Qp)v1ll2- (3.1)
p()qn;;l
Then, we have

Em
cos £(y1, v1)’
where &, denotes the orthogonal projection onto the subspace K, (A, v1).

I — Po)xill2 <

Remark 2. Theorem 1 indicates that in a restarted Krylov subspace method, the better the initial vector is, the faster the
convergence will be. One way to achieve this is to use the extrapolation methods [17-19,41,10].

3.1. An extrapolation procedure based on Ritz values

In this subsection, we present an extrapolation procedure that is based on the Ritz values. Heuristically, as the
convergence proceeds, the Arnoldi-type algorithm will provide better and better approximate eigenvalues to the
extrapolation procedure, and on the other hand, the extrapolation procedure will provide better and better initial guess
to the Arnoldi iteration.

For convenience, we denote by x*~? (i.e., xAT) the approximation from the Arnoldi-type algorithm. As was done in
[10], we make the assumption that xX*~1 can be expressed as a linear combination of the first three eigenvectors. That
is,

X(k_u = X1 + arXy + a3X3.
So we have

X(k) = AX(kil) = X1+ 0[2)\2)(2 + O[3)\.3X3,
and

X(’H—1> = AX(k) =X+ Olz)»%Xz + 013)»§X3.
It is easy to verify that

X xk+D (Ay +)L3)X(k) +)\2)\3X(k_1)
1=)
(1—=22)(1 = A3)

and
N X(k+]) — (}\,2 +)\3)X(k) +)\2}\.3X(k71)
X1 =
P — (A + 23)x® + Apasx®D)

provides a good approximation to the PageRank vector. Unfortunately, A, and A3 are not known in advance, and an obvious
situation is to replace them with their approximations. Recall from Section 2 that the second and third largest Ritz values
X2, A3 (|)~\2| > |X3|) are already available from the Arnoldi-type algorithm, which are nothing but the second and the third
largest eigenvalues of H, [34,35].

Since only two approximate eigenvalues are required for the extrapolation procedure discussed above, it is enough to
run the Arnoldi process with m = 3. This is favorable for huge matrices such as the Google matrices. Furthermore, the
extrapolation procedure can be easily extended to the case when x*~ being expressed as a linear combination of more

3200 G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212

than three eigenvectors. Now let us consider some practical implementations. Here we make the assumption that the largest
Ritz value A1 is real.

Case 1. Both 5\2 and)13 are real.
We make use of

XEED (5 4 Ta)x® 4 T Rax®D

X1 = = = pom— (3.3)
[XFFD — Ay + A3)x® + A A3x*=D]|
as an approximation to the PageRank vector.
Case 2.), and A3 are conjugate.
We make use of
(k+1) _ 3)0 % |25 (k=1)
X 2Re(A)x™ 4+ |Ao|°x
(A2) A2 (3.4)

X1 = = =
x5+ — 2 Re(Az)x® + A, [2x*=D]|4

as an approximation to the PageRank vector, where Re(X,) denotes the real part of Ao

One may argue that in Case 1, A, should be replaced by «, since the second largest eigenvalue of the Google matrix is
o [4]. However, we find experimentally that X, is still an appropriate choice. The reason is that the extrapolation formula is
related to both A, (=) and A3 (which is not known in advance), not 1, itself.

In practical computations, it is possible to have defective 1, or A3, and the extrapolation procedure may suffer from this.
Fortunately, we can deal with this difficulty as follows. Suppose that xX*~D = x; 4 a5, and x® = Ax*™D = x; 4+ aoxs.
So we can replace (3.3) and (3.4) with

_ x® _ gxk=1
X=—: (3.5)
11—«

An interesting question is how accurate should the Ritz values be in the worst case? Although it is difficult to answer this
question theoretically, numerical experiments given in Section 4 to show that the extrapolation procedure still works, even
if the Ritz values are not accurate enough. In practical implementations, we explore the extrapolation procedure as soon as
the residual norm is below 10~2. Numerical experiments demonstrate that this scheme is effective.

In summary, we present the following extrapolation procedure for the PageRank computation, where mod(-) denotes
the MATLAB command for modulus after division.

Algorithm 3 (An Extrapolation Procedure Based on Ritz Eigenvalues).
function [x®,r, k, matvec, n] = ExtraRitz(A, x*= X5, A3, £, matvec, tol)

X0 = Axk=D.
matvec=matvec+1; % the number of matrix-vector products
r=[x® = xEDY /| CD
if tol <r < le — 2 & mod(matvec, £) == 0% Begin the extrapolation procedure
if)~L2 and ig, are nondefective
if both X, and X5 are real
xkD = Ax®).
matvec=matvec+1; o
x00 = xk+D G 4 R0 4 T haxkD:
endif
if A, and X5 are conjugate
xktD = Ax®).
matvec=matvec+1; _
x® = xk+D _ 2 Re(hy)x® + |1y |2x*D;
endif
else % X, or A3 is defective
x® = x® _ gxk=1.
end if
n = [x®|;
x® = 50 /.
k=k+1;
end if % End the extrapolation procedure

G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212 3201

At the first glance, it seems that the extrapolation procedure is a straightforward adaption of what was done in
[17-19,41,10]. The difference is that we exploit some approximate eigenvalues which are available from the Arnoldi-type
algorithm. The overhead of performing the extrapolation procedure comes primarily from one matrix-vector product (i.e.,
x*+D = Ax®) in addition to some vector-vector manipulations, in ©(n) flops. We would like to remind the reader that
the overhead in performing the quadratic extrapolation includes two matrix-vector products, as well as solving an n by 2
least-squares problem [10]. Therefore, our extrapolation procedure is cheaper than the quadratic extrapolation procedure.
For storage, we need to store (at most) three long vectors in Algorithm 3, while four long vectors are needed in the quadratic
extrapolation method.

As the extrapolation procedure discussed above does require an overhead, when it is combined with the Arnoldi-type
algorithm (which yields the Arnoldi-Extrapolation algorithm), a fair comparison with the original Arnoldi-type algorithm
should be in terms of the number of matrix-vector products and the CPU time used for convergence.

3.2, The main algorithm and practical implementations

The Arnoldi-type algorithm is a restarted Krylov subspace method for computing PageRank. In the algorithm, the Arnoldi
process is restarted every m steps. By varying m, one can change the number of iterations and also the execution time.
Numerical experiments show that increasing m decreases the number of iterations needed to converge, while increasing
the work and storage required per iteration [13,14].

Since the size of the Google matrix is very large, it is desirable to pick m as small as possible in practice. In this section,
we aim to speed up the computation of PageRank while keeping m very moderate, say, m = 3. The idea is to construct
an improved starting vector using the extrapolation procedure presented in Section 3.1, and compute a new Arnoldi
factorization with the new starting vector. This leads us to combine the Arnoldi-type algorithm with the extrapolation
procedure periodically, which gives rise to the Arnoldi-Extrapolation algorithm. However, the key issue is how to create
a heuristic procedure for determining when to flip flop between the extrapolation procedure and the Arnoldi iteration.
Heuristically, we will terminate the extrapolation procedure and switch to the Arnoldi-type algorithm, as soon as 1 is smaller
than a prescribed threshold tolnorm, refer to Algorithm 3.

In practical implementations, we set four parameters §, restart, maxit, and tolnorm to monitor the extrapolation method.
Denote by |[|r®||; the residual 1-norm of the current iteration, and by ||r*~"||; that of the previous iteration. We then
examine whether ||r®||;/|[r*V|; is larger than the prescribed threshold B, if so, set restart := restart + 1 and check
whether restart is larger than the pre-determined number maxit. If so, we flag the extrapolation method as exhausted and
trigger the Arnoldi-type algorithm, otherwise, keep on running the extrapolation method. Now we are ready to present the
main algorithm of this paper.

Algorithm 4 (An Arnoldi-Extrapolation Algorithm for Computing PageRank).

(1) Given v, the initial guess; tol, a user described tolerance; ¢, the number for applying the extrapolation procedure periodically;
four parameters 8, maxit, restart and tolnorm for monitoring the extrapolation procedure; Set m = 3 (the number of the Arnoldi
steps), k =0, r = 1, ry = r, and matvec=0, restart=0;

(2) while restart < maxit & r > tol

(3) x = Av; matvec=matvec+1; % the number of matrix-vector products

(4) r=lx—vll:/lvll;

(5) x=x/lIx|l1;

(6) if r/rg > B

(7) restart=restart+1;

(8) end if

(9) v=x;

(10) k =k + 1;

(11) ro =7,

(12) end while

(13) while r > tol % Begin the outer iteration

(14) Perform the Arnoldi process with x as the initial guess: [Vpi1, H,,, matvec] = Arnoldi(A, x, m, matvec);

(15) Compute all the eigenpairs of H, = I:Im(l : m,:), and select the second and third largest Ritz values, i.e., X2, A3 to
approximate A, and A3, respectively;

(16) Compute small SVD: H,, —[I; 0] = UTWT;

(17) v =V,W(, m); ZxT

(18) x = Vp1(HW(:, m)); ZAX

(19) r = |lx —v|l1/llvll1; %residual 1-norm of the Arnoldi-type algorithm

(20) x = x/||x|l1; % initial vector for the extrapolation procedure

(21) restart=0; % Apply the extrapolation procedure with x as the initial guess

(22) ro=r1;

(23) n=1;

3202 G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212

(24) while r>tol & restart<maxit & >=tolnorm

(25) [x,r, k, macvec, n] = Extrapolation(A, x, X, A3, k, £, matvec, tol);
(26) ifr/rg > B

(27) restart=restart+1;

(28) end if

(29) ro=r;

(30) end while % End the extrapolation procedure

(31) end while % End the outer iteration

We now describe some practical details, referring to the respective phases in Algorithm 4.

(1): This is the initialization phase of the algorithm. If a good initial guess for the PageRank vector is available, then we
use it. Note that r stands for the residual norm of the current iteration and ry for that of the previous iteration. The choice of
B is crucial in practice. It is well known that the asymptotic convergence rate of the power method is |A,|/|A1|. For Google
matrix, A; = 1, moreover, if P has at least two irreducible closed subsets, the second eigenvalue is « [4]. Therefore, it is
reasonable from a theoretical point of view that 8 should be smaller than ¢, and all what need is to satisfy 0 < 8 < «.In
practical computations, we can choose, say, 8 = « — 0.1 or & — 0.2. Although it is difficult to determining the optimal g
theoretically, the numerical experiments show insensitivity of the choice of 8 (as long as 8 is sufficiently smaller than «),
see Example 4 of Section 4. Moreover, setting 8 as, say, 0.8« or another multiple of @ may actually be easier to deal with
theoretically than setting it as « — 0.2 and so on.

(2)-(12): First we iterate a few times using the power method to get a rough convergence. Notice that this procedure
is performed only once throughout Algorithm 4. Steps (6)-(8) are devised for determining when to flip flop between the
power method and the Arnoldi-type algorithm.

(14)—(17): We run the Arnoldi-type algorithm with x as the initial vector. In Step (15) we evaluate all the Ritz pairs, in
©(m?) flops. In Step (16) we compute the small sized SVD, where W (:, m) denotes the right singular vector corresponding
to the smallest singular value.

(18)—~(20): We compute the residual 1-norm of x*T, and make use of AxAT as the initial vector for the extrapolation
procedure, see the discussions made in Section 2. Recall that the original Arnoldi-type algorithm exploits x* as the initial
guess for the next Arnoldi iteration.

(21)—(30): We run the extrapolation procedure with x as the initial guess. Note that X2, A3 are available from Step (15).
Steps (26)-(28) are devised to determine when to flip flop between the extrapolation procedure and Arnoldi, and we
terminate the extrapolation procedure and run the Arnoldi-type algorithm as soon as n < tolnorm, where tolnorm is a
user described threshold.

A remarkable merit of Algorithm 4 is that one can choose very moderate m in practice. It is obvious that we only need to
store m + 1(=4) long vectors in the Arnoldi process, and to store three long vectors in the extrapolation method. Therefore,
the storage requirements of the Arnoldi-Extrapolation algorithm are (at most) four long vectors, which are the same as the
quadratic extrapolation procedure. Secondly, the new algorithm allows for easy parallelization, which is essential due to the
large-scale of the matrices in practical use. Finally, we point out that the computation of Ritz pairs, which are the eigenpairs
of a 3 by 3 upper Hessenberg matrix, is neglectable compared with the overall work per iteration.

In essence, the Arnoldi-Extrapolation algorithm and the Power-Arnoldi algorithm [14] are both hybrid algorithms in
which they combine two algorithms into a much efficient one. Indeed, both the algorithms can improve the convergence
rate by effectively increasing the gap ratio, see Theorem 5.3 of [14] and Theorem 3 of Section 3.3. The difference is
that the Arnoldi-Extrapolation algorithm knits an extrapolation procedure that based on Ritz values together with the
Arnoldi-type algorithm, while the Power-Arnoldi algorithm combines the power method with the thick-restarted Arnoldi
algorithm [15].

The storage requirements of the Arnoldi-Extrapolation and the Power-Arnoldi algorithms are the same, which are
approximately m+ 1 length-n vectors. However, the cost of the Power-Arnoldi algorithm is cheaper than that of the Arnoldi-
Extrapolation algorithm per cycle. First, it is obvious to see that the power method is cheaper than Algorithm 3. Second, the
thick restarted Arnoldi algorithm is cheaper than the regular explicitly restarted Arnoldi algorithm. Indeed, a superiority of
the thick restarted Arnoldi algorithm over the Arnoldi-type algorithm is that the former needs only m — p matrix-vector
products at each iteration after the first [15], while the latter uses m, where p (p < m) is the number of approximate
eigenvectors which are retained from one iteration to the next. However, the Arnoldi-Extrapolation is preferable when m is
relatively small. A numerical comparison of the two approaches are given in Example 2 of Section 4.

3.3. Convergence analysis

In this subsection, we consider the convergence of the Arnoldi-Extrapolation algorithm, and shed light on why it can
perform better than the Arnoldi-type algorithm and the power method. Let Ay = 1 > |Ay| > |A3| > --- > |XA,| be the
eigenvalues of the Google matrix. It was shown by [22, Theorem 8.2(ii)] that the second largest eigenvalue of the Google
matrix is semi-simple, and the Google matrix is partially diagonalizable. Here we make the assumption that the third largest
eigenvalue A5 is also semi-simple, so that the initial vector (which is from the previous Arnoldi iteration) for the extrapolation

G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212 3203

procedure can be expressed as
N
XAT = X1 + a2Xy + a3x3 + ZXJZ:,, (36)
j=4

where X; are the Jordan vectors satisfying AX; = XjJ;, (4 <j < s < n). It follows from Algorithm 4 that there exists d > 0
such that

X(k—]) — AdXAT, x(k) — Ad-HXAT, X(k+1) — Ad+2XAT. (37)

Suppose for the moment that we are so lucky that we know the exact eigenvalues A, and A3. The following proposition
shows that the spectrum of the Google matrix can be deflated effectively after the extrapolation procedure.

Proposition 1. Under the above assumptions, we have
xED (0 4 23)x® 4 ao03x% Y € span{xy, Xa, . .., X} (3.8)

Proof. By (3.6) and (3.7), we have

n
X(k_1> =X+ Olz)u%Xz =+ 013)\3)(3 + ZX]‘J]»de,
j=4

n
x® — X1 + oezkg“xz + agkgﬂxa, + ij]jd+lzj,

j=4
and
n
d+2 d+2 d+2
X(k+1) =X+ 0[2)\‘2+ X2 + 063)\.3+ X3 + ZX]JJ + Zj.
j=4
Therefore,

S
XD — (g + 290 + 025X = (1= 20)(1 = ha)s + DX = (o + 2l + dodalflz
j=4
€ span{xy, X4, ..., Xy}. O

Note that the initial vector X; (which is obtained from the extrapolation procedure) for the next Arnoldi iteration is
X(k+1) — (}\.2 + }\3)X(k) +)\2)\3)((’(71)
IO — (g + A3)x® 4 Ay hax Dy

It is well known that the set of diagonalizable matrices is dense in C"*" [2, p. 318]. Therefore, it is interesting to consider
the case when the Google matrix is diagonalizable. The following theorem indicates how good the subspace K, (A, X1) will
be under the above assumptions.

(3.9)

X

Theorem 2. Let %; be defined in (3.9). Let Q; = x;x!' be the orthogonal projector onto the right eigenspace, and let By =

(I — Q1A — Qq). Define

€m = pg}inl lp(B1)l2- (3.10)
p(/\ln)';
If Ais diagonalizable, and xAT = x; + Z};z ajx;, where x1, X, . . ., X, are eigenvectors corresponding to 1, Ay, ..., Ay, then
> €m RS 2 .
10 = Puixills < e Pl | D oyl = (ha + A2y + Aadal | -sin Lk,). (3.11)
1

j=4
where #,, denotes the orthogonal projection onto the subspace K (A, %1), and p = ||xX**tVD — (A5 + A3)x® + 2oh3x*=Dl, is
the scaling factor.

Proof. It follows from (3.2) that

. I — QX1 ll2
I = Pm)x:l2 < min [pB)ll2 - ———=——, (3.12)
PEPy_1 cos L(X1, e)
p(r1)=1
here we used the fact that the left eigenvector of A corresponding to 1ise = (1, 1, ..., 1)T. Therefore, if A is diagonalizable

and X = x; + Y, ajx;, then

3204 G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212
n
X(k_l) = AdXAT =X+ Olz)LgXZ + 013ng3 + ZOIJ')L?X],
j=4

n
k) _ pAd+1,AT _ d+1 d+1 d+1
x0 = pd+1xA =Xx;+axr," Xy +azA; X3+ E ajAj X,
j=4

and

n
X(k+]) = Ad+2XAT =Xx1 + O[z)\g+2X2 + (X3)\.g+2X3 + E aj)»fﬂxj.

=4
Some elementary algebra manipulation yields
n
)2] = p_] {(] —)\.2)(1 -)\,3)X] + Zaj[)“;j+2 — ()\,2 +)»3))\,]‘,1+1 +)\.2)\,3)\,;1])(]} . (313)
j=4

So we have

n
U= Q% = p 'Y A2 — (g + A A + 00230010 — x1x))x;,
j=4

and

n
D 40} = O+ As)ky + Aol
j=4

(0 —QRill2 < pMral®- -sin Z(x1, %), (3.14)

where we used sin £(xq, X)) = [|(I — xlx{)xjnz. O

Remark 3. A number of papers give a detailed analysis of minimum of ||[p(A)v]||, or ||p(A)||> under a normalization
assumption of the form p(0) = 1.In [42], it is shown that for any polynomials p, there holds

[p@All> < 11.08 sup |p(z)],
zeW(A)

where 'W(A) denotes the numerical range of A [42]. This bound can be easily applied to Theorem 2 for estimating €.

However, it is one thing to know that an approximation exists in a Krylov subspace and another to have it in
hand [35]. It is necessary to consider the convergence of the Rayleigh-Ritz procedure itself. Using X; as the initial guess
for the next Arnoldi iteration, the Arnoldi process constructs an orthogonal basis for the Krylov subspace X, (A, X1) =

span{Xq, AX1, ..., A" 1%, }. Therefore, for any u € X, (A, X1), there is a polynomial p(A) € P,_1, such that u = p(A)X;.
Hence,
(A—Du = (A—DpA)x,
= p(A)(A — Dx;. (3.15)
Note that

n
A=Dx = p7" 1Y A D = 402 + As) + Aahslxi — D oAIIAT — A0 + As) + Aahslx;

n

j=4 j=4
n
=p! Zaj()»fﬂ -)\j‘-i)[)»jz — Aj(A2 + A3) + A2Aslx;. (3.16)
j=4

So we have
n
A—Du=p~ Y O = AD7 = 202 + hs) + Aadsl - p(hy)x;,
j=4
and

n
-1 i . d+1 _ 4d 3 2 .
4= Dullz < p™" max |p<x,)|j;|a,| I —)02 — 02 + A3) + Aahsl. (3.17)

G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212 3205

On the other hand, we have from (3.13) that
u = pAx

n
=o' 11 = A = A+ MaA)p(Dx1 + D M A — (o + As)hy + 2adslp(hy)x,
j=4

p(1) 1—22 — A3+ A2h3
B p(ra) aah[AG — (ha + As)ha + Aads]
=p [Xl Xg4 -0 Xn] . .
PO | 0nAd[A2 — (Ay + A3)An + A2hs]
So we obtain
lullz = o~ omin([X1, X4, XaDIP(D] |1 = (hz + A3) + Aahsl. (3.18)
Note that 1 > |A3| > |A3|,and 1 — (A; + A3) + X243 # 0, and we have from (3.17) and (3.18) that

n
> lal |kf+] — M7 = A0 + A3) + Aghs

(A — Dull> =4
—————— < max |[q(}))| - , (3.19)
llull2 4sj<n Omin([X1, X4, ..., X D1 — (A2 + A3) + AzA3]
where q(;) = p(A;)/p(1) € Pn_1 satisfying q(1) = 1.
As a conclusion, we obtain the following theorem, whose proof is along the line of Theorem 2 of [38].
Theorem 3. Under the above assumptions, then for the Arnoldi-Extrapolation method, there holds
min [[(A—Dull; < min max [qgA)]- & (3.20)
ueXm(A.xq), 9€Pp—1. L€C(0,|rg]) omin([X1, X4, . .., X))
llulp =1 a(h=1
. e ol T2 12200 +23) 0023 4C00. D) denotes the circl ter the origin and radius
where £ = Zj:4 = 05175)7973] , and C(0, |14|) denotes the circle of center the origin and radius |A4|.

Remark 4. Theorem 3 indicates that the Arnoldi-Extrapolation converges with increasing m. Notice that 1 is not enclosed
by C (0, |X4]), so it follows from [43, Lemma 4.3] that

min _ max [q(p)| = 3™,

9€Pm—1. 1€C(0,[r4])

q(h=1
and |Aj| < aforj=2,3,...,n,sothat is uniformly bounded from above. However, we should reminder the reader that
how rapidly the right hand side of (3.20) tends to zero, also depends on the condition number of X; = [x1, X4, ..., X,]. If X3
were ill-conditioned, the right hand side would tend to zero slowly.

Denote by § = omax([X2, X3, ..., Xx]) - (1 +) /Z}l:z |etj]?, using the same trick, we can prove that for the Arnoldi-type
algorithm, there holds

min _ [[(A—Dull; < min max [q(})]- (3.21)
T q€Pm—1 1eC(0,a)

ueXm(Ax2)

Umin([xla X2, 00ey Xn])
lullp=1 a(h=1

Compared with (3.21), Theorem 3 indicates that the Arnoldi-Extrapolation algorithm benefits from the deflation of
spectrum. This explains in some degree why our new algorithm often performs better than the Arnoldi-type algorithm
and the power method for the PageRank problem.

Remark 5. We would like to remind the reader that the Jordan structure of Google matrix is absolutely crucial for
understanding sensitivity and stability of the PageRank vector [26,14,29], and it is not sufficient to consider the case of
a diagonalizable Google matrix. When the matrix involved is nondiagonalizable, the convergence of the Krylov methods is
still an interesting topic hitherto [44,45,43,35].

4. Numerical experiments

In this section we report some numerical experiments to show the numerical behavior of the Arnoldi-Extrapolation
algorithm. All the numerical results are obtained with a MATLAB 7.0 implementation on a 1.6 GZ dual core Intel(R)
Pentium(R) processor with 1 G main memory. We stress that the performance of the algorithms relies on the computational
environment, the initial vector used, as well as the stopping criterion chosen, and so on.

3206 G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212

Table 1
Stanford-Berkeley Web matrix, tol = 1077,
Power Qua-Ext Arn-typ Arn-Ext

o =0.85
Mat-Vec 78(81) 65(69) 93(96) 60(61)
CPU 27.9(26.5) 26.7(24.5) 48.9(47.0) 25.6(24.0)
Speeduparn-typ - - - 47.6%
o =0.90
Mat-Vec 119(125) 99(101) 141(144) 86(104)
CPU 42.5(40.9) 40.6(35.9) 74.3(70.1) 37.2(40.4)
Speeduparn-typ - - - 49.9%
o =0.95
Mat-Vec 241(260) 195(202) 279(282) 167(171)
CPU 86.2(85.0) 80.0(72.0) 147.6(137.6) 71.9(66.2)
Speeduparn-typ - - - 51.3%
o =0.99
Mat-Vec 1202(1379) 831(881) 1221(1242) 470(549)
CPU 429.7(450.3) 341.2(314.7) 647.4(607.3) 205.6(213.9)
Speeduparn-typ - - - 68.2%

Example 1: Numerical results of the four algorithms on the 683446 x 683446 Stanford-Berkeley Web matrix, where those in parentheses are in terms of
residual 2-norms.

For the sake of justice, the same starting vector X' = e/| e||; is used for all the algorithms. The stopping criteria are the
residual 1-norms

[Ax® — x®© 11 /11x®]l; < tol,

where x® are the approximations obtained by the current iteration of the involved algorithms, and tol is a user described
tolerance. As was done in [13,41,9,10,14], we choose ¢ = 0.85, 0.9, 0.95 and 0.99, respectively, in all the numerical
experiments.

For convenience, in all the tables below we have abbreviated the power method, the quadratic extrapolation method [10],
the Arnoldi-type algorithm [13], the Power-Arnoldi algorithm [14], and the Arnoldi-Extrapolation algorithm as Power, Qua-
Ext, Arn-typ, Power-Arn and Arn-Ext, respectively. We denote by Mat-Vec the number of matrix-vector products, and by
CPU the CPU time used in seconds.

In this paper, we set the default valuesm = 3,¢ = 4, 8 = o — 0.2, maxit = 6 and tolnorm = 0.1 for the Arnoldi-
Extrapolation algorithm. For the sake of justice, in all the numerical experiments, we choose m = 3 for the Arnoldi-type
algorithm, and exploit the quadratic procedure every 6 matrix-vector products in the quadratic extrapolation method, unless
otherwise stated.

Example 1. In this example, we compare the power method, the quadratic extrapolation algorithm, the Arnoldi-type algo-
rithm, as well as the Arnoldi-Extrapolation algorithm for the PageRank problem. The test matrix is the 683,446 by 683,446
Stanford-Berkeley Web matrix provided by Kamvar (available from http://www.stanford.edu/~sdkamvar/research.html). It
contains 683,446 pages and 7.6 million links. All the algorithms will be terminated as soon as the residual norms are below
tol = 1077,

In order to describe the efficiency of the new algorithm, we define

CPUAm—typ - CPUArn»Ext
CPUprm-1yp

Speeduppygyp = , (4.1)
to be the speedups of the Arnoldi-Extrapolation algorithm with respect to the Arnoldi-type algorithm in terms of CPU time.
Table 1 reports the results obtained.

It is easy to see from Table 1 that the Arnoldi-Extrapolation algorithm performs the best in most cases, both in terms of
matrix-vector products and CPU time, especially when the damping factor is close to 1. For example, when o = 0.99, the
speedup relative to the Arnoldi-type algorithm is up to 68.2%. In other words, the new algorithm is about three times faster
than the Arnoldi-type algorithm, even if the storage requirements are the same for the two algorithms.

We also report the numerical results obtained in terms of residual 2-norm. One observes that when using residual
2-norm, it costs us a little more matrix-vector products to achieve the same accuracy. To be more precise, when the damping
factor is moderate, say 0.85, the matrix-vector products used are comparable, however, when the damping factor is high,
say 0.99, the difference becomes more evident. Moreover, it is interesting to see that if one algorithm outperforms the
other with residual 1-norm, then it does so by residual 2-norm. The careful reader may also notice that the algorithms with
residual 1-norm can be more time consuming than those with residual 2-norm, even when the former require fewer matrix-
vector products than the latter. It seems the reason is that the computation of 1-norm of a long column vector is more time
consuming than that of 2-norm of the vector with MATLAB.

http://www.stanford.edu/~sdkamvar/research.html

G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212 3207

Table 2
Wikipedia-20051105 Web matrix, tol = 1075,
Power Qua-Ext Power-Arn Arn-Ext

o =0.85
Mat-Vec 52 45 40 35
CPU 106.3 97.5 99.4 88.4
Speeduppow-arn - - - 11.1%
o =0.90
Mat-Vec 77 69 63 46
CPU 157.6 149.6 158.1 101.0
Speeduppow-arn - - - 36.1%
o =0.95
Mat-Vec 151 140 95 76
CPU 308.8 303.8 241.0 168.7
Speeduppow-Ar - - - 30.0%
o =0.99
Mat-Vec 720 681 330 266
CPU 1474.0 1476.4 850.6 597.4
Speeduppow-Ar - - - 29.8%

Example 2: Numerical results of the four algorithms on the 1,634,989 x 1,634,989 Wikipedia-20051105 Web matrix, tol = 1075,

Example 2. This example aims to compare the new algorithm with the Power-Arnoldi algorithm proposed recently
by the authors [14]. The test matrix is the Wikipedia-20051105 Web matrix provided by Gleich, which is available
from http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html. The matrix is of size 1,634,989 x 1,634,989,
containing 19,753,078 nonzero elements.

We run the power method, the quadratic extrapolation algorithm, the Power-Arnoldi algorithm, as well as the Arnoldi-
Extrapolation algorithm on this problem. All the algorithms will be stopped as soon as the residual 1-norms are below
tol = 1075, Similarly, so as to describe the efficiency of the Arnoldi-Extrapolation algorithm with respect to the Power-
Arnoldi algorithm, we define

CPUpow-arn — CPUgm-,
Speeduppow,Am _ Pow-Arn Arn-Ext , (4.2)

CPUI’cow—Arn
to be the speedups of the new algorithm in terms of CPU time.

Table 2 lists the results. Several comments are in order. First, when the damping factor is moderate, say, « = 0.85, the
speedup is marginal, however, when the damping factor is close to 1, the speedup is impressive. Second, although the two
methods are different in terms of cost per iteration (recall that the storage requirements are the same), we see from Table 2
that the Arnoldi-Extrapolation algorithm is superior to the Power-Arnoldi algorithm. For example, when @ = 0.90 and 0.95,
the speedups are 36.1% and 30%, respectively. This illustrates that the Arnoldi-Extrapolation algorithm works better when
m is small, which is favorable for extremely large sparse matrices such as Web matrices. Third, the number of matrix-vector
products shows the numerical behavior of the algorithms in some sense. As we have pointed out in Section 2, the inner
products add a substantial amount of computational work. Indeed, the speedups in terms of matrix-vector products are
lower than those defined by CPU time in (4.2).

Example 3. The Arnoldi-Extrapolation algorithm is parameter-dependent. In this example, we try to show that the
performance of the Arnoldi-Extrapolation algorithm is insensitive to the choice of tolnorm, refer to Step (24) of Algorithm 4.
The test matrix is the California Web matrix (available from http://www.cs.cornell.edu/Courses/~cs685/~2002fa/), which is
a widely used test problem [6,11,25,14]. It contains 9664 nodes and 16,150 links. We run the power method, the quadratic
extrapolation algorithm, the Arnoldi-type algorithm (with m = 3, 4, 5, 6), and the new algorithm on this problem. All the
algorithms are stopped as soon as the residual norms are below tol = 1078, Tables 3 and 4 give the results.

Two remarks are given. First, one observes from Table 3 that the numerical behavior of the Arnoldi-type algorithm
strongly relies on the choice of m, i.e., the dimension of the Krylov subspace. For example, when m is relatively small, say m =
3, the Arnoldi-type algorithm is not better than power method. However, as m increases, the improvement is impressive.
Second, as we expected, the new algorithm outperform the other algorithms in many cases. Specifically, it is interesting to
see that the Arnoldi-Extrapolation algorithm with m = 3 even performs better than the Arnoldi-type algorithm withm = 6.

In Fig. 1, we plot the matrix-vector products required by tolnorm = 0, 0.1, 0.2, ..., 1. Recall that choosing tolnorm = 0
corresponds to without the threshold > tolnorm, refer to Step (24) of Algorithm 4. On the other hand, a higher tolnorm (e.g.,
tolnorm = 1) corresponds to the condition for exploiting extrapolation procedure is stringent. We see from Fig. 1 that the
number of matrix-vector products is insensitive to the choice of tolnorm, especially when the damping factor is moderate,
say 0.85 and 0.90.

Another interesting question is whether the threshold > tolnorm is necessary in practice. To see this, for « = 0.95, we
depict in Fig. 2 the convergence history of the Arnoldi-Extrapolation algorithm with and without the threshold. It is obvious
to see that the new algorithm converges irregularly without the threshold, which implies that the threshold is indispensable.

http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html
http://www.cs.cornell.edu/Courses/~cs685/~2002fa/

3208 G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212

Table 3

Arnoldi-type algorithm on California matrix.
(3 0.85 0.90 0.95 0.99
m=3 102 156 312 1419
m=4 64 88 172 796
m=>5 55 80 130 500
m==6 42 60 108 252

Example 3: Matrix-vector products of the Arnoldi-type algorithm (with various m) on the 9664 x 9664 California Web matrix, tol = 1078,

Table 4

Three algorithms on California matrix, tol = 1078,
o 0.85 0.90 0.95 0.99
Power 73 112 228 1104
Qua-Ext 65 99 207 963
Arn-Ext 37 57 55 94

Example 3: Matrix-vector products of the three algorithms on the 9664 x 9664 California Web matrix, tolnorm = 0.1 for the Arnoldi-Extrapolation
algorithm.

Number of Matrix-vector Products

20
0
tolnorm
Fig. 1. Example 3: Matrix-vector products for various tolnorm in the Arnoldi-Extrapolation algorithm, tol = 1078,

0

10

— - — - without
with

107

107

Residual norms

-10 L L L L

0 20 40 60 80 100
Matrix—vector products

Fig. 2. Example 3: Convergence curves of the Arnoldi-Extrapolation algorithm with and without the threshold 5 > tolnorm, @ = 0.95, tol = 1078,

G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212 3209

Table 5

Three algorithms on the CS-Stanford Web matrix.
o4 0.85 0.90 0.95 0.99
B=a 84 123 232 1144
B=a—-0.1 54 67 90 198
B=a—02 50 60 90 188
B=a—0.3 52 62 91 188
B=a—-04 52 61 94 190
B=a—0.5 52 61 90 190
Power 84 123 232 1144
Arn-typ 96 138 255 1158

Example 4: Number of matrix-vector products of the Arnoldi-Extrapolation algorithm, the power method, and the Arnoldi-type algorithm, tol = 108,

1200 : : : :
1000 | I =o |
@ [=—0.1
3 Cp=a-0.2
g 800 :]B=(X—0.3 4
5 [p=0-0.4
8 I =005
X 600 f |
I
E
k]
5 400 1
e}
£
=}
=z

200 o085 0.95 1

Fig. 3. Example 4: The CS-Stanford Web matrix: Matrix-vector products versus 3; « = 0.85, 0.90, 0.95, 0.99.

Example 4. The test matrix is the CS-Stanford Web matrix, which is available from http://www.cise.ufl.edu/research/
sparse/matrices/~Gleich/index.html. It contains 9914 nodes and 35,555 links. We see from Step (26) of Algorithm 4 that
the convergence of Algorithm 4 depends on the choice of 8. In this example, we try to show that the performance of the
new algorithm is also insensitive to the choice of 8, and what we should do is to set 8 to be smaller than «. To do this, we
pick 8 =a,0 — 0.1, — 0.2, ..., ¢ — 0.5, respectively.

We run the power method, the Arnoldi-type algorithm, and the Arnoldi-Extrapolation algorithm on this Web matrix. The
convergence tolerance is tol = 1078, Table 5 lists our results. In Fig. 3 we depict the bar graph of the number of matrix-vector
products versus 8, for o = 0.85, 0.90, 0.95 and 0.99, respectively. Recall that the asymptotic convergence rate of the power
method is « [2], this implies that when 8 = «, the Arnoldi-Extrapolation algorithm is nothing but the power method,
see Steps (2)-(12) of Algorithm 4. We can see from Table 5 and Fig. 3 that the performance of the Arnoldi-Extrapolation
algorithm is insensitive to the choice of 8, and it is necessary that 8 be smaller than «.

Example 5. In this example, we aim to show that the number of matrix-vector products required by the Arnoldi-
Extrapolation algorithm is (relatively) insensitive to the choice of the convergence tolerance. The test matrix is the Epa
Web matrix, which is available from http://www.cs.cornell.edu/~Courses/cs685/2002fa. It contains 4772 nodes and 8965
links.

We run the power method, the quadratic extrapolation method, the Arnoldi-type algorithm, and the Arnoldi-
Extrapolation algorithm on this example. In order to show that the performance of the Arnoldi-Extrapolation algorithm
is (relatively) insensitive to the choice of tol, we choose tol to be 1076, 107, ..., 1071°, respectively, and define

Mat-Veci=1e—10 — Mat-Veci—1e—6

incr-mv =)
Mat-Vecip—1e—6

as the increase of the number of matrix-vector products when tol = 10~1° vs. tol = 1078, Table 6 lists the results.

Itis seen from Table 6 that the Arnoldi-Extrapolation algorithm is (relatively) insensitive to the choice of tol. For instance,
when ¢ = 0.95, the increase of the power method and the quadratic extrapolation algorithm are 101.7% and 145.6%,
respectively, while that of the Arnoldi-Extrapolation algorithm is only 50%. This shows that the new algorithm may be

http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html
http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html
http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html
http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html
http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html
http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html
http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html
http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html
http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html
http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html
http://www.cise.ufl.edu/research/sparse/matrices/~Gleich/index.html
http://www.cs.cornell.edu/~Courses/cs685/2002fa

3210 G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212
Table 6
The Epa Web matrix.
Power Qua-Ext Arn-typ Arn-Ext
o =0.85
tol = 1076 56 32 51 33
tol = 1077 70 33 60 36
tol = 1078 84 39 69 39
tol = 107° 98 46 78 46
tol = 1071° 112 57 84 51
incr-mv 100% 78.1% 64.7% 54.5%
o =0.90
tol = 1076 86 33 63 38
tol = 1077 107 41 78 43
tol = 1078 129 56 81 50
tol = 10~° 150 68 90 56
tol = 10710 172 77 96 62
incr-mv 100% 133.3% 52.4% 63.2%
o =0.95
tol = 107 173 57 105 40
tol = 1077 217 75 123 42
tol = 10~8 261 99 141 51
tol = 10~° 305 118 159 60
tol = 10~1° 349 140 180 60
incr-mv 101.7% 145.6% 71.4% 50%
o =0.99
tol = 107 837 219 366 60
tol = 1077 1062 266 441 82
tol = 1078 1289 291 528 84
tol = 10~? 1517 311 609 87
tol = 1071° 1746 341 690 97
incr-mv 108.6% 55.7% 88.5% 61.7%
Example 5: Number of matrix-vector products of the four algorithms with various tol.
0=0.85 0=0.90
1010 1010
Power Power
2 Arn-typ 2 Arn-typ
§ 100 —— Armn-Ext % 100 —— Arn-Ext
c c
5 \ 5)
\ N
2 107 S % 107° ~
[0} Q
14 x
107 107
0 50 100 150 0 50 100 150 200
Matrix—vector multiplications Matrix—vector multiplications
0 0=0.95 ” o=0.99
10 10
Power Power
g . —— Arn-typ g . —— Am-typ
s 10 — — Arn-Ext s 10 — — Arn—-Ext
c c
© - © |
'g -10 \ ‘g -10 N
‘% 10 ‘% 10
[0] O
14 'q
107 107

100 200 300 400

Matrix—vector multiplications

0 500

1000 1500 2000

Matrix—-vector multiplications

Fig.4. Example 5: Convergence history of the three algorithms, tol = 1071°,

an appropriate choice if high accuracy is required. We also see that the Arnoldi-Extrapolation algorithm and the quadratic
extrapolation algorithm is comparable when the damping factor is moderate, say 0.85 and 0.90. However, when the damping
factor is high, say 0.95 and 0.99, the Arnoldi-Extrapolation algorithm performs better than the quadratic extrapolation
algorithm. Fig. 4 depicts the convergence history of the power method, the Arnoldi-type algorithm, and that of the Arnoldi-
Extrapolation algorithm when tol = 1071, It is seen that the Arnoldi-type algorithm converges faster than the power
method, while the Arnoldi-Extrapolation algorithm performs the best.

G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212 3211

Table 7

The Epa Web matrix, o = 0.99, tol = 1070,
Arn-iter)~L] Xz):3
k=1 0.99425579 + 0.00517722i 0.99425579 — 0.00517722i —0.98952571
k=2 0.99869648 0.98666627 —0.76885465
k=3 1.000362797 —0.52743885 + 0.38646943i —0.52743885 — 0.38646943i
k=4 1.00004813 —0.87405315 0.80196775
k=5 1.00000033 0.98687139 —0.93940623
k=6 1.00000051 0.68708428 —0.38020555
k=7 0.99999999 —0.96018465 —0.43214249
k=8 1.00000000 0.98736737 —0.47434176

Example 5: Ritz values obtained from the kth Arnoldi-iteration during the Arnoldi-Extrapolation algorithm. The exact eigenvalues are A1 = 1, A, = 0.99,

A3 = —0.99,i = +/—1.

The extrapolation procedure developed in Section 3.1 is based on Ritz values. Therefore, an interesting question is how
accurate should the Ritz values be in the worst case. In Table 7 we list the three largest Ritz values obtained from the kth
Arnoldi iteration during the Arnoldi-Extrapolation iterations. Notice that the extrapolation procedure was not applied when
k = 1, where the largest Ritz values are complex. We see from Table 7 and Fig. 4 (the right-bottom figure) that the Arnoldi-
Extrapolation algorithm still works, even if the Ritz values are not accurate enough.

5. Conclusion and future work

The Arnoldi-type algorithm may not be efficient for the PageRank problem when the damping factor is high and the
dimension of search subspace is small. In this paper, we investigate an Arnoldi-Extrapolation algorithm for improving the
efficiency of the Arnoldi-type algorithm. We first present an extrapolation procedure based on Ritz values. We then consider
how to periodically knit this extrapolation procedure together with the Arnoldi-type algorithm. The resulting algorithm
is the Arnoldi-Extrapolation algorithm. In the new algorithm, the dimension of the Krylov subspace can be chosen very
moderate, so that the memorization cost is kept reasonable. Other advantages of the proposed technique are the potential
use on parallel architectures and its applicability for a wide range of the parameter o which can be set close to 1. Numerical
experiments demonstrate that the new algorithm is often more powerful than the Arnoldi-type algorithm and the power
method.

However, there is still a lot of work needs to be done. For instance, how to understand the convergence of the Arnoldi-
Extrapolation algorithm when the Google matrix is nondiagonalizable? How accurate should the Ritz values be in the worst
case? How to pick the optimal parameters for this algorithm? The Google matrix has an abundance of structure which is failed
to be exploited in the new algorithm. In a realistic Web graph, more than half of the rows in A are the same, due to the large
number of Web pages such as pdf or jpeg files that have no outlinks [23,11,24]. The Google matrix can be reordered according
to dangling nodes and non-dangling nodes of the matrix [23,12,7,11,24], which reduces the computation of the PageRank to
that of solving a much smaller problem. Indeed, the new algorithm can also be utilized in combination with these reordering
schemes. We expect the resulting algorithm is promising. Furthermore, with some modifications, the Arnoldi-Extrapolation
algorithm can also be applied to the GeneRank problem [46]. This is under investigation and is definitely a part of our future
work.

Acknowledgements

We would like to express our sincere thanks to the Guest Editor Professor S. Serra-Capizzano and the referee for their
detailed comments that enabled us to greatly improve the presentation of this paper.

The first author was supported by the National Science Foundation of China under grant 10901132, the Natural
Science Foundation for Colleges and Universities in Jiangsu Province under grant 08KJB110012, the Qing-Lan Project of
Jiangsu Province under grant QL200612, and the Natural Science Foundation of Xuzhou Normal University under grant
08XLYO01. The second author was supported by the National Natural Science Foundation of China under grant 10871051,
Shanghai Education Committee (Dawn Project under grant 08SG01), Shanghai Science & Technology Committee under grant
09DZ2272900 and Doctoral Program of the Ministry of Education under grant 20090071110003.

References

[1] L. Page, S. Brin, R. Motwami, T. Winograd, The Pagerank citation ranking: Bring order to the web, Technical report, Computer Science Department,
Stanford University, 1998.

[2] G. Golub, C. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore and London, 1996.
[3] L. Eldén, The eigenvalues of the Google matrix, Technical Report, LITH-MAT-RC2004-01.
[4] T.Haveliwala, S. Kamvar, The Second eigenvalue of the Google matrix, Stanford University Technical Report, 2003.

3212 G. Wu, Y. Wei / Journal of Computational and Applied Mathematics 234 (2010) 3196-3212

[5] P.Berkhin, A survey on PageRank computing, Internet Math. 2 (1) (2005) 73-120.
[6] A.Langville, C. Meyer, Google’s PageRank and Beyond: The Science of Search Engine Rankings, Princeton University Press, 2006.
[7] A.Langville, C. Meyer, Deeper inside PageRank, Internet Math. 1 (3) (2005) 335-380.
[8] A.Langville, C. Meyer, A survey of eigenvector methods of web information retrieval, SIAM Rev. 47 (1) (2005) 135-161.
[9] S.Kamwvar, T. Haveliwala, G. Golub, Adaptive methods for the computation of PageRank, Linear Algebra Appl. 386 (2004) 51-65.
[10] S.Kamvar, T. Haveliwala, C. Manning, G. Golub, Extrapolation methods for accelerating PageRank computations, in: Twelfth International World Wide
Web Conference, 2003.
[11] A.Langville, C. Meyer, A reordering for the PageRank problem, SIAM J. Sci. Comput. 27 (6) (2006) 2112-2120.
[12] S. Kamvar, T. Haveliwala, C. Manning, G. Golub, Exploiting the block structure of the web for computing PageRank, Stanford University Technical
Report, SCCM-03-02, 2003.
[13] G. Golub, C. Greif, An Arnoldi-type algorithm for computing PageRank, BIT 46 (2006) 759-771.
[14] G.Wu, Y. Wei, A Power-Arnoldi algorithm for computing PageRank, Numer. Linear Algebra Appl. 14 (2007) 521-546.
[15] R.Morgan, M. Zeng, A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity, Linear Algebra Appl. 45 (2006)
96-113.
[16] K.Avrachenkov, N. Litvak, D. Nemirovsky, N. Osipova, Monte Carlo methods in PageRank computation: When one iteration is sufficient, SIAM J. Numer.
Anal. 45 (2) (2007) 890-904.
[17] C.Brezinski, M. Redivo-Zaglia, Rational extrapolation for the PageRank vector, Math. Comput. 77 (2008) 1585-1598.
[18] C. Brezinski, M. Redivo-Zaglia, The PageRank vector: Properties, computation, approximation, and acceleration, SIAM]. Matrix Anal. Appl. 28 (2006)
551-575.
[19] C. Brezinski, M. Redivo-Zaglia, S. Serra-Capizzano, Extrapolation methods for PageRank computations, C. R. Acad. Sci. Pairs, Ser. 1340 (2005) 393-397.
[20] G. Corso, A. Gulli, F. Romani, Fast PageRank via a sparse linear system, Internet Math. 2 (3) (2006) 251-273.
[21]]. Ding, A. Zhou, A spectral theorem for rank-one updated matrices with some applications, Appl. Math. Lett. 20 (2007) 1223-1226.
[22] R.Horn, S. Serra-Capizzano, A general setting for the parametric Google matrix, Internet Math. 3 (4) (2008).
[23] I Ipsen, T. Selee, PageRank computation, with special attention to dangling nodes, SIAM J. Matrix Anal. Appl. 29 (4) (2007) 1281-1296.
[24] Y. Lin, X. Shi, Y. Wei, On computing PageRank via lumping the Google matrix,]. Comput. Appl. Math. 224 (2009) 702-708.
[25] A.Langville, C. Meyer, Updating the stationary vector of an irreducible Markov chain with an eye on Google’s PageRank, SIAM]. Matrix Anal. 27 (4)
(2006) 968-987.
[26] S. Serra-Capizzano, Jordan canonical form of the Google matrix: A potential contribution to the PageRank computation, SIAM Matrix Anal. Appl. 27
(2)(2005) 305-312.
[27] S. Serra-Capizzano, Google PageRanking problem: The model and the analysis, in: A. Frommer, M. Mahoney, D. Szyld, Proceedings of the Dagstuhl
Conference in Web Retrieval and Numerical Linear Algebra Algorithms, 2007.
[28] G. Wu, Eigenvalues and Jordan canonical form of a successively rank-one updated complex matrix with applications to Google’s PageRank problem,
J. Comput. Appl. Math. 216 (2008) 364-370.
[29] G. Wu, Y. Wei, Comments on Jordan Canonical form of the Google matrix, SIAM J. Matrix Anal. Appl. 30 (1) (2008) 364-374.
[30] A.Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, in: Classics in Applied Mathematics, 9, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1994, Revised reprint of the 1979 original.
[31] C.Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.
[32] P.Boldi, M. Santini, S. Vigna, A deeper investigation of PageRank as a function of the damping factor, in: A. Frommer, M. Mahoney, D. Szyld, Dagstuhl
Seminar Proceedings: Web Information Retrieval and Linear Algebra Algorithms, 2007.
[33] H. Zhang, A. Goel, R. Govindan, K. Mason, B. Van Roy, Making eigenvector-based reputation system robust to collusion, 2004, available from
www.stanford.edu/group/reputation/WAW-adapt.ps.
[34] Z. Bai,]. Demmel,]. Dongarra, A. Ruhe, H. van der Vorst (Eds.), Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM,
Philadelphia, 2000.
[35] G. Stewart, Matrix Algorithms: Vol. Il Eigensystems, SIAM, Philadelphia, PA, 2001.
[36] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, PA, 2003.
[37] D.Gleich, L Zhukov, P. Berkhin, Fast parallel PageRank: A linear system approach, Yahoo! Techniqual Report, 2005.
[38] Z.Jia, Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems, Linear Algebra Appl. 259 (1997) 1-23.
[39] G. Wu, Y. Zhang, Y. Wei, Accelerated Arnoldi algorithms for computing stationary distribution with application to the PageRank and the GeneRank
problems (submitted for publication).
[40] M. Bellalij, Y. Saad, H. Sadok, On the convergence of the Arnoldi process for eigenvalue problems, Report umsi-2007-12, Minnesota Supercomputer
Institute, University of Minnesota, Minneapolis, MN, 2007.
[41] T. Haveliwala, S. Kamvar, D. Klein, C. Manning, G.H. Golub, Computing PageRank using power extrapolation, Stanford University Technical Report,
2003.
[42] M. Crouzeix, Numerical range and functional calculus in Hilbert space, J. Funct. Anal. 244 (2007) 668-690.
[43] Y. Saad, Numerical methods for large eigenvalue problems, in: Algorithms and Architectures for Advanced Scientific Computing, Manchester
University Press, 1992.
[44] C. Beattie, M. Embree,]. Ross, Convergence of restart Krylov subspaces to invariant subspaces, SIAM Matrix Anal. Appl. 25 (2004) 1074-1109.
[45] C. Beattie, M. Embree, D. Sorensen, Convergence of polynomial restart Krylov methods for eigenvalue computation, SIAM Rev. 47 (2005) 492-515.
[46] J. Morrison, R. Breitling, D. Higham, D. Gilbert, GeneRank: Using search engine for the analysis of microarray experiments, BMC Bioinform. 6 (2005)
233-246.

http://www.stanford.edu/group/reputation/WAW-adapt.ps

	An Arnoldi-Extrapolation algorithm for computing PageRank
	Introduction
	The Arnoldi-type algorithm for computing PageRank
	An Arnoldi-Extrapolation algorithm for PageRank
	An extrapolation procedure based on Ritz values
	The main algorithm and practical implementations
	Convergence analysis

	Numerical experiments
	Conclusion and future work
	Acknowledgements
	References

