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a b s t r a c t

We consider the process of chemical vapor deposition on a trenched Si substrate.
To understand the process (including e.g. the layer conformality) at the trench scale
(microscale), we need solutions at both the trench and reactor scales (macroscale). Due to
the hugedifference in size of these scales, straightforwardnumerical computations are very
challenging. To overcome this difficulty, we consider a multiscale approach by introducing
an intermediate scale (the mesoscale). We start with a time-continuous model describing
the transport processes and then perform time discretization. At each time step, using
the ideas of domain decomposition inspired from Lions (1988) [4], we provide iterative
coupling conditions for these three different scales. Using a weak formulation for the time-
discrete equations, we prove the convergence of this iterative scheme at each time step.
The approach also provides an alternative proof for the existence of the solutions for the
time-discrete formulation.

© 2012 Elsevier B.V. All rights reserved.

1. The motivation

This work is motivated by the chemical vapor deposition (CVD) processes involved in the manufacturing of 3D all-
solid-state batteries. In such a process, a carrier gas flows through a tube with rectangular cross-section (the reactor). A
silicon (Si) substrate is placed at the bottom of the reactor. The carrier gas transports small amounts of reactive substances,
the precursors. These precursors react at the substrate, which becomes the lower part of the reactor boundary, where a
solid layer is produced [1–3]. This leads to an overall transport process with reactions at the boundary. The details of the
mathematical models are provided in Section 3.

To increase the energy storage capacity of the batteries, the geometry of the Si substrate is made complex. To increase
the surface area, trenches are etched in the Si substrate, which therefore has a rough surface instead of being flat. The typical
size of a trench is of the order ofmicrometers (∼10µm), whereas the substrate size is of the order of∼30 cm. This evidently
indicates the existence of two distinct scales in the problem: the trench scale (referred to as themicroscale) and the reactor
scale (themacroscale).

For a thorough understanding of the CVD process, and in particular the conformality of the deposited layers, one needs an
accurate computation of the solution at the trench scale. However, this requires computing the solution at the reactor scale
as well. The scale difference (an order of ∼104) makes a direct numerical simulation computationally demanding because
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Fig. 1. Schematic for the multiscale computation method.

of the very fine mesh required for resolving the trench scale. Alternatively, we can zoom in on a small region of the reactor
near the region of interest, the substrate. This introduces an intermediate scale, henceforth referred to as themesoscale. Next
we zoom in on a small region of the mesoscale where the trenches (the microscale) can be identified. These three domains
are thus formed as a result of successive zooming in, so the trenches are resolved only at the microscale, and the mesoscale
is used only for exchanging the information from the macroscale to the microscale. To compute the solution at each scale,
conditions of coupling between the different scales are needed. In doing this, we use ideas from the domain decomposition
method.

Our aim here is to provide a numerical scheme allowing us to compute the detailed solutions at each scale. The focus
being on the numerics for the transport equations, we consider a simple flow model, allowing a complete decoupling
from the transport equations. Moreover, the flow is computed only at the macroscale and projected further at the
mesoscale. However, the transport equations describing the concentration of the reactants (precursor) are defined for all
the three scales. The coupling between different scales is through the boundary conditions providing the continuity of the
concentration and that of the normal fluxes. To achieve this, we first perform the time discretization of the model. Then,
at each time step, an iterative non-overlapping domain decomposition algorithm [4] is considered. The iteration involves
a linear combination of the normal fluxes and the concentrations at the separating boundaries, allowing a decoupling of
the models at the different scales. For the iterative scheme, rigorous convergence results are obtained by compactness
arguments. This approach allows a comparison of the numerical results with the experimental results, and identifying
parameters such as the diffusion coefficient and the reaction rate constants for the deposition process. This can hence be
used to predict the deposition under alternative conditions and also for different geometries.

Below we briefly describe the geometry in Section 2 and provide the mathematical model in Section 3. In Section 4,
we give the definitions of the weak solutions for both the time-continuous and the time-discrete equations. Next, the
iterative non-overlapping domain decomposition algorithm is considered. This is followed by the proof of convergence of
this iterative numerical method.

2. The mathematical model

In this section we give a simplifiedmathematical model for themotivating application. This model describes the reactive
flow inside a reactor, with reactions taking place on the substratewhich is a part of the boundary. Before giving the equations
we give some details regarding the geometry of the system, justifying the multiscale approach. The scales introduced
above (macroscale, mesoscale and microscale) involve three domains, Ω1, Ω2 and Ω3. Their boundaries are denoted by
∂Ωj, j = 1, 2, 3, respectively. Each boundary ∂Ωj includes a part ΓjR where reactions (depositions) take place. For the
other parts of boundaries, let us first consider the microscale. We define Γ2 = ∂Ω3 \ Γ3R, where the variables in Ω2
and Ω3 are coupled. For the mesoscale, we define two parts of ∂Ω2, namely, Γ1 and Γ2. These provide the coupling with
Ω3 and Ω1, respectively. In other words, Γ2 = ∂Ω3 ∩ ∂Ω2 (the interface between the microscale and the mesoscale),
while Γ1 = ∂Ω1 ∩ ∂Ω2 (the interface between the macroscale and the mesoscale). Fig. 1 displays these regions and the
nomenclature.
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3. The equations

The mathematical model consists of two components: the flow and the reactive transport. The reactive substance
(precursor) is transported to the substrate through a combined effect of convective flow and the molecular diffusion. The
flowvelocity of the carrier gas is described by theNavier–Stokes system,while the reactive transport processes are described
by the linear convection–diffusion equation.

3.1. The flow component

The focus here is on the numerics for the reactive transport component. For the flow we consider a simplified setting,
allowing a decoupling from the transport part. For instance, thermal effects are disregarded. Next, as suggested by the
numerical evidence, the flow is absent in the trenches and therefore the flow is considered only at the macroscale and
the mesoscale, where no roughness is encountered at the boundary. Further simplifications include that the flow is laminar
and incompressible, and no gravity effects are taken into account. It is also assumed that the concentration of the precursor
is much smaller than that of the carrier gas and, hence, the flow is not affected by the adsorption of the precursors. Finally,
we only consider a steady state; hence the flow problem needs to be solved only once (at the beginning). Under the above
assumptions, the flow component of the model reads

Continuity: ∇ · q = 0,

Momentum: ρq · ∇q = ∇ ·

µ(∇q + ∇qT ) − µ(∇ · q)I


− ∇P,

(3.1)

in the simple domain Ω1 ∪ Ω2 ∪ Γ1, where q is the gas velocity and P its pressure. For the boundary conditions, we provide
a parabolic inlet for the velocity (at Γi) and use no-slip boundary conditions at the side walls. We prescribe pressure at the
outlet Γo.

q = qd on Γd; P = P0 on Γo; and q = 0 on Γ2 ∪ Γ1R ∪ Γ2R ∪ Γn,

and, for instance, in 2D, the choice of parabolic inlet profile gives qd = Q (ℓ2
− y2)e1, where Q is a positive constant and e1

is a unit vector along the x-direction.

3.2. The reactive transport/deposition equations

For the CVD model we restrict to the basic equations, including the convective transport and the molecular diffusion,
neglect the reactions taking place in the gas phase and consider the situation where the precursor has only one species.
Inside the domainΩi, its concentration is denoted by ui, where i = 1, 2, 3 is indexing the scale. For the boundary conditions
we assume that the deposition takes place only on the bottom plate (the substrate). For simplicity, we assume a first-order
kinetics.

3.2.1. The macroscale equations
With T > 0 standing for the maximal time, at the reactor scale the precursor is modeled by the linear

convection–diffusion equation

∂tu1 − ∆u1 + q · ∇u1 = 0 in Ω1 × (0, T ] (3.2)

coupled with the reactive boundary conditions

− ν · ∇u1 = CRu1 on Γ1R × (0, T ], (3.3)

where CR is the (positive) reaction constant. The macroscale equations are coupled with the microscale ones at Γ1 ⊂ ∂Ω1.
The boundary ∂Ω1 = Γd ∪ Γn ∪ Γo ∪ Γ1R ∪ Γ1 and the boundary part Γd has non-zero measure where Dirichlet boundary
conditions are prescribed, and for Γn ∈ Γo homogeneous Neumann boundary conditions (−ν · ∇u3 = 0) are taken.

3.2.2. The mesoscale equations
At the mesoscale we use the same equation for the precursor:

∂tu2 − ∆u2 + q · ∇u2 = 0 in Ω2 × (0, T ] (3.4)

and the reactive boundary conditions:

− ν · ∇u2 = CRu2 on Γ2R × (0, T ]. (3.5)

Coupling conditions are imposed along Γ2 ∪ Γ1, as explained in the next section.
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3.2.3. The microscale equations
The geometrical dimensions of themicroscale are comparable to themean free path length of the gas particles. Thismeans

that the diffusion is no longer Fickian, but involves the Knudsen diffusion coefficient, a parameter that can be determined by
comparing with experimental results. Further, we ignore the convective term for the transport in the trench as the velocity
is negligible. Also, the flux at the mesoscale automatically takes into account the flux due to convection. The deposition
process inside the trench is described by the following equations:

∂tu3 = DT∆u3 in Ω3 × (0, T ] (3.6)

where DT is the diffusion coefficient, and outside the trench we use the Fickian diffusion while inside the trench we use a
different diffusion coefficient. For the boundary conditions we prescribe

− ν · ∇u3 = CRu3 on Γ3R × (0, T ] (3.7)

where Γ3R is the surface on which reactions take place. The remaining boundary part ∂Ω3 \ Γ3R is involved in the coupling
with the mesoscale, as explained below.

Remark 3.1. Note that we have the same structure for the equations defined for the macroscale as well as the mesoscale.
This is due to the fact that the ratio of microscale to macroscale is of the order 104 and a two-step domain decomposition
algorithm would require very small discretization to allow coupling with the microscale boundaries. To overcome this
discretization restriction, we propose a three-stage numerical scheme for computing the solution.

3.2.4. The coupling conditions
The different scales are coupled by the boundary conditions at non-reactive surfaces.Weprovide coupling conditions that

are natural for this setting of the problem, namely, the flux continuity and the continuity of the concentrations. Specifically,
after having fixed the normal ν to Γ1 and into Ω1, we have the following coupling conditions:

ν · (−∇u2 + qu2) = ν · (−∇u1 + qu1) on Γ1 (3.8)

and

u1 = u2 on Γ1. (3.9)

Similar coupling conditions are imposed at the interface Γ2 between the microscale and mesoscale:

u2 = u3 and ν · (−∇u2 + qu2) = −DTν · ∇u3 on Γ2. (3.10)

Having specified the boundary conditions, the model is closed by the initial conditions:

u1(0, ·) = u0
1, u2(0, ·) = u0

2, u3(0, ·) = u0
3. (3.11)

For more general coupling conditions (transmission problems), we refer the reader to [5,6].

4. The numerical scheme

In this section we analyze the numerical scheme for solving the reactive transport model component problem, set up
in the three subdomains of the reactor. The scheme is based on the Euler implicit time stepping. We start by defining
the concept of weak solution for both the time-continuous and the time-discrete cases. Then, for the resulting sequence
of time-discrete problems we give an iterative domain decomposition scheme, and prove its convergence on the basis of
compactness arguments.

4.1. The weak form

We start with the concept of the weak solution for the coupled model in (3.2)–(3.11), using standard notation in the
functional analysis. In particular, H1(Ωi) is the Sobolev space of functions defined on Ωi and having L2 weak derivatives. By
H1

0,ΓD
(Ωi)wemean the function in H1(Ωi) having a vanishing trace on ΓD, and H−1(Ωi) is its dual. Further, L2(0, T ; X) is the

Bochner space of functions valued in X , and (·, ·)U denotes the inner product in L2(U) (with U a bounded domain) or the
duality pairing between H1

0,ΓD
and its dual. Finally we define the spaces

Vi = {ui ∈ L2(0, T ;H1
0,ΓD

(Ωi)) | ∂tui ∈ L2(0, T ;H−1(Ωi))}, i = 1, 2, or 3.

Also, let ΩT
i := Ωi × (0, T ), Γ T

iR = ΓiR × (0, T ) and assume that u0
i ∈ H1

0,ΓD
(Ωi) for all i. Furthermore, for q we assume

that q ∈ H(div; Ω1 ∪ Ω2)


L∞(Ω1 ∪ Ω2). Adopting the standard definition, H(div; Ω) consists of vector valued functions
having divergence in L2(Ω).
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Definition 4.1. A weak solution of (3.2)–(3.11) is a triple (u1, u2, u3) ∈ V1 × V2 × V3 satisfying the initial conditions
ui(0, ·) = u0

i (i = 1, 2, or 3), the boundary conditions

u1 = u2 at Γ1, u2 = u3 at Γ2,

and

(∂tu1, φ1)ΩT
1

+ (∇u1, ∇φ1)ΩT
1

+ (q∇u1, φ1)ΩT
1

+ (CRu1, φ1)Γ T
1R

+ (∂tu2, φ2)ΩT
2

+ (∇u2, ∇φ2)ΩT
2

+ (q∇u2, φ2)ΩT
2

+ (CRu2, φ2)Γ T
2R

+ (∂tu3, φ3)ΩT
3

+ (DT∇u3, ∇φ3)ΩT
3

+ (CRu3, φ3)Γ T
3R

= 0 (4.1)

for all φi ∈ L2(0, T ;H1
0,ΓD

(Ωi)) such that φ1 = φ2 at Γ1 and φ2 = φ3 at Γ2.

In this section the equalities at the non-reactive interfaces Γ1 and Γ2 should be interpreted in the sense of traces. Next
we consider the Euler implicit time discretization of (4.1). To this end we take N ∈ N and define △t = T/N . With tk = k △t
and uk

i approximating ui(tk) (i = 1, 2, or 3; k = 1, . . . ,N), the time-discrete solution triple at t = tk is defined by:

Definition 4.2. Given uk−1
i ∈ H1

0,ΓD
(Ωi) we seek uk

i ∈ H1
0,ΓD

(Ωi) satisfying

uk
1 = uk

2 at Γ1, uk
2 = uk

3 at Γ2,

and
1
△t

(uk
1 − uk−1

1 , φ1) + (∇uk
1, ∇φ1) + (q∇uk−1

1 , φ1) + (CRuk
1, φ1)Γ1R

+
1
△t

(uk
2 − uk−1

2 , φ2) + (∇uk
2, ∇φ2) + (q∇uk−1

2 , φ2) + (CRuk
2, φ2)Γ2R

+
1
△t

(uk
3 − uk−1

3 , φ3) + (DT∇uk
3, ∇φ3) + (CRuk

3, φ3)Γ3R = 0 (4.2)

for all φi ∈ H1
0,ΓD

(Ωi), such that φ1 = φ2on Γ1 and φ2 = φ3 on Γ2.

Note that in either the time-continuous case or the time-discrete one, the equations set up in each subdomain are coupled
by imposing explicitly the continuity of the concentrations at the non-reactive surfacesΓ1∪Γ2. The flux continuity is instead
a consequence of the fact that the test functions φi are also equal along these surfaces. In this way, the boundary terms along
Γ1 ∪ Γ2 can only vanish if the outwards normal components of the fluxes cancel each other.

The numerical iterative scheme considered here also provides proof for the existence of the time-discrete formulation.
Moreover, one can treatmore complicated reaction rates (for example, Lipschitz reaction rates) by considering Euler explicit
time stepping in the reaction term. For numerical reasons, we formulate the original problem in the three (non-overlapping)
domains. This allows separating the computations at the trench scale from those at the reactor scale without requiring any
correlation between the meshes employed at the different scales. Having introduced the weak solutions above, we now
consider a numerical scheme for computing the solution at each time step and investigate its convergence. To simplify the
presentation we fix a time step tk and define

vi := uk
i , i = 1, 2, 3,

so that all the estimates are obtained in terms of vi.

4.2. The iterative domain decomposition scheme

Herewe describe the iterative scheme used for solving the time-discrete problem (4.2). The scheme is inspired from [4,7].
To understand its background, we consider first the strong form of the equation and define the quantities (ν1 is the normal
to Γ1 and into Ω1; ν2 is normal to Γ2 and into Ω2)

g21 := ν1 · (−∇v2) + λv2 and g12 := ν1 · ∇v1 + λv1 on Γ1, (4.3)
g23 := ν2 · ∇v2 + λv2 and g32 := −ν2 · (DT∇v3) + λv3 on Γ2, (4.4)

where λ > 0 is a positive constant. For the convergence proof, it suffices to have λ > 0; however, its value influences the
speed of convergence [8]. Note that the gij terms depend on the time step k and define (decoupling) boundary conditions
at the non-reacting interfaces. To ensure that solving the decoupled problems provides a solution of the originally coupled
one, additional conditions will be given later.

Before constructing the nth iterate, we remark on the following notation used here. By gji ∈ H1/2 we imply that
{g12, g21} ∈ H1/2(Γ1) and {g23, g32} ∈ H1/2(Γ2). On the basis of the above we let n ∈ N denote the iteration index and
construct the nth iterate as the solution of:
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Problem Pn. Given vn−1
i ∈ H1

0,ΓD
(Ωi) and gn−1

ji ∈ H1/2 (i, j = 1, 2, 3, |i − j| = 1), find vn
i ∈ H1

0,ΓD
(Ωi) such that

1
△t

(vn
1, φ1)Ω1 + (∇vn

1, ∇φ1)Ω1 + (CRv
n
1, φ1)Γ1R + (gn

12, φ1)Γ1 =
1
△t

(uk−1
1 , φ1)Ω1 − (q∇uk−1

1 , φ1)Ω1 , (4.5)

1
△t

(vn
2, φ2)Ω2 + (∇vn

2, ∇φ2)Ω2 + (CRv
n
2, φ2)Γ2R + (gn

21, φ2)Γ1 + (gn
23, φ2)Γ2

=
1
△t

(uk−1
2 , φ2)Ω2 − (q∇uk−1

2 , φ2)Ω2 , (4.6)

1
△t

(vn
3, φ3)Ω3 + (DT∇vn

3, ∇φ3)Ω3 + (CRv
n
3, φ3)Γ3R + (gn

32, φ3)Γ2 =
1
△t

(uk−1
3 , φ3)Ω3 (4.7)

for all φi ∈ H1
0,ΓD

(Ωi), such that φ1 = φ2 on Γ1 and φ2 = φ3 on Γ2. Furthermore, for gij, |i − j| = 1, the update takes place
according to

gn
ij := 2λvn−1

j − gn−1
ji . (4.8)

The iterative scheme requires a starting triple (v0
1, v

0
2, v

0
3). Since the problemunder consideration is, in fact, an evolution one,

a good option is v0
i = uk−1

i . However, this choice is not required for the convergence proof below. Also, with uk−1
i ∈ H1

0,ΓD
,

the initial datum for gij need not be in H1/2
Γ1/Γ2

. Therefore, to start the iteration, we choose g0
ij = −ν · ∇v0

i + λv0
i for i ≠

3; and g0
32 = −ν · DT∇v0

3 + λv0
3 whenever uk−1

i has sufficient regularity, and otherwise smooth it by convolution to ensure
that g0

ij ∈ H1/2
Γ1/Γ2

. For the notation, we recall that k is the time step and n stands for the iteration index. Thus vn
i stands for

uk,n
i , the nth iterate at time step t = tk. Note that at each iterative step n, the equations are decoupled by the boundary

conditions obtained from the previous iterative step. Furthermore, the indices i, j refer to the enumeration of subdomains.

Remark 4.1. As stated earlier in the definition of Problem Pn, we assume that uk−1
i ∈ H1

0,ΓD
(Ωi). Moreover, choosing the

initial data, by smoothing if necessary, we have g0
ij ∈ H1/2

Γ1/Γ2
. With the boundary conditions decoupled for the Problem Pn,

the standard elliptic theory provides existence and uniqueness of the solution triple vn
i .

Remark 4.2. Note that the explicit discretization of the convective term requires the CFL condition to be satisfied for stability
reasons. This may seem restrictive especially in view of spatial discretization of Ω2 being much smaller compared to the
macroscale discretization. However, note that with the parabolic inlet profile of the fluid velocity (and no-slip boundary
condition), q itself is much smaller in Ω2, in fact of the order of |Ω2|. Thus, the CFL restriction is quite reasonable with

△t ≤ min


h2

Q |Ω2|
,
h1

Q


where h1 and h2 refer to the sizes of spatial discretization of Ω1 and Ω2, respectively.

Before giving a rigorous convergence proof, we give a formal justification of the iterative scheme. Assuming that vn
i → vi

and gn
ij → gij, passing to the limit in the updates (4.8) gives

gij = 2λvj − gji.

In other words, at Γ1 we have

g12 = 2λv2 − g21, and g21 = 2λv1 − g12,

implying v2 = v1. Once the continuity is established, the following simple calculation establishes the equality of the normal
components of the diffusive fluxes at Γ1:

ν1 · ∇v1 − ν1 · ∇v2 + λ(v1 + v2) = g12 + g21 = 2λv1 = λ(v1 + v2).

The justification of the coupling conditions at Γ2 is completely similar.
In the formal definition of gij above, we have only included the normal diffusive fluxes. This is because equality of the

normal components of the diffusive fluxes together with the continuity of concentration also implies the equality of the
normal fluxes. Clearly,

ν1 · (−∇u2 + qu2) = ν1 · (−∇u1 + qu1) on Γ1

and similarly for Γ2.
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4.3. The convergence proof

We follow the ideas in [4], and the main ideas of the proof are obtaining a priori estimates for vn
i and using compactness

arguments to show the H1 convergence in space. Application of compact embeddings and trace inequalities leads to
establishing convergence on the boundaries. It is subsequently not particularly difficult to prove that the limits satisfy the
time-discrete formulation (4.2).

We have the following theorem:

Theorem 4.1. As n → ∞, the solutions vn
i satisfying (4.5)–(4.7) converge weakly in H1(Ωi) to vi satisfying (4.2).

4.3.1. A priori estimates
To prepare the proof of Theorem 4.1, we define the following:

eni := vn
i − vn−1

i (i = 1, 2, 3), (4.9)

en1,Γ1
:= gn

12 − gn−1
12 , en2,Γ1

= gn
21 − gn−1

21 , (4.10)

en3,Γ2
:= gn

32 − gn−1
32 , en4,Γ2

= gn
23 − gn−1

32 , (4.11)

enΓ1
:=

(en1,Γ1

)2 + (en2,Γ2
)2
1/2

, enΓ2
:=

(en3,Γ2

)2 + (en4,Γ2
)2
1/2

. (4.12)

With these definitions in mind, we have the following lemma.

Lemma 4.1. A constant C > 0 depending on the starting triple (v0
1, v

0
2, v

0
3) exists such that the boundary errors introduced

in (4.9) satisfy

N
n=1


∥en1∥

2
Γ1

+ ∥en2∥
2
Γ1

+ ∥en2∥
2
Γ2

+ ∥en3∥
2
Γ2


≤ C . (4.13)

Proof. Subtracting (4.5) for vn−1
1 from the one for vn

1 gives

1
△t

(vn
1 − vn−1

1 , φ1)Ω1 + (∇vn
1 − ∇vn−1

1 , ∇φ1)Ω1 + CR(v
n
1 − vn−1

1 , φ1)Γ1R

+ λ(vn
1 − vn−1

1 , φ1)Γ1 − (gn
12 − gn−1

12 , φ1)Γ1 = 0. (4.14)

Taking in the above φ1 = en1 leads to

1
△t

∥en1∥
2
Ω1

+ ∥∇en1∥
2
Ω1

+ CR∥en1∥
2
Γ1R

+ λ∥en1∥
2
Γ1

= (en1,Γ1
, en1)Γ1 . (4.15)

In a similar manner one gets

1
△t

∥en2∥
2
Ω2

+ ∥∇en2∥
2
Ω2

+ CR∥en2∥
2
Γ2R

+ λ∥en2∥
2
Γ1

+ λ∥en2∥
2
Γ2

= (en2,Γ1
, en2)Γ1 + (en3,Γ2

, en3)Γ2 , (4.16)

and

1
△t

∥en3∥
2
Ω3

+ ∥DT∇en3∥
2
Ω3

+ CR∥en3∥
2
Γ3R

+ λ∥en3∥
2
Γ2

= (en4,Γ2
, en3)Γ2 . (4.17)

Recalling the notation in (4.10)–(4.12), we have

(en+1
Γ1

)2 = (gn+1
12 − gn

12)
2
+ (gn+1

21 − gn
21)

2

= (2λ(vn
2 − vn−1

2 ) − gn
21 + gn−1

21 )2 + (2λ(vn
1 − vn−1

1 ) − gn
12 + gn−1

12 )2

= (2λ(vn
2 − vn−1

2 ) − en2,Γ1
)2 + (2λ(vn

1 − vn−1
1 ) − en1,Γ1

)

= (en1,Γ1
)2 + (en2,Γ1

)2 + 4λ(λ(vn
1 − vn−1

1 ) − en1,Γ1
)(vn

1 − vn−1
1 ) + 4λ(λ(vn

2 − vn−1
2 ) − en2,Γ1

)(vn
2 − vn−1

2 ).

By (4.12) this gives

(en+1
Γ1

)2 − (enΓ1
)2 = 4λ(λen1 − en1,Γ1

, en1)Γ1 + 4λ(λen2 − en2,Γ1
, en2)Γ1 .

Similarly,

(en+1
Γ2

)2 − (enΓ2
)2 = 4λ(λen2 − en3,Γ2

, en2)Γ2 + 4λ(λen3 − en4,Γ2
, en3)Γ2 .
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With the above, adding (4.15)–(4.17) gives

1
△t

∥en1∥
2
Ω1

+ ∥∇en1∥
2
Ω1

+ CR(∥en1∥
2
Γ1R

+ ∥en2∥
2
Γ2R

+ ∥en3∥
2
Γ3R

) +
1
△t

∥en2∥
2
Ω2

+ ∥∇en2∥
2
Ω2

+
1
△t

∥en3∥
2
Ω3

+ ∥∇en3∥
2
Ω3

+
1
4λ


∥en+1

Γ1
∥
2
Γ1

− ∥enΓ1
∥
2
Γ1


+

1
4λ


∥en+1

Γ1
∥
2
Γ2

− ∥enΓ2
∥
2
Γ2


= 0.

Summing the above over n = 1 · · ·N leads to

∥eN+1
Γ1

∥
2
+ ∥eN+1

Γ2
∥
2
+ 4λ

N
n=1


∥∇en1∥

2
+ ∥∇en2∥

2
+ ∥∇en3∥

2
+

4λ
△t

N
n=1


∥en1∥

2
Ω1

+ ∥en2∥
2
Ω2

+ ∥en3∥
2
Ω3


+ CR(∥en1∥

2
Γ1R

+ ∥en2∥
2
Γ2R

+ ∥en3∥
2
Γ3R

) = ∥e0Γ1
∥
2
Γ1

+ ∥e0Γ2
∥
2
Γ2

. (4.18)

By assumptions on the initial data, one has ∥e0Γ1
∥Γ1 + ∥e0Γ2

∥
2
Γ2

≤ C (C depends on the initial datum). An application of the
trace theorem in view of the above inequality gives

N
n=1


∥en1∥

2
Γ1

+ ∥en2∥
2
Γ1

+ ∥en2∥
2
Γ2

+ ∥en3∥
2
Γ2


≤ C, (4.19)

which concludes the proof. �

Lemma 4.1 implies that the series on the left of (4.13) is finite; therefore the (error) terms are converging to 0. However,
this is not sufficient for proving the desired convergence result.

Lemma 4.2. With the solution triple (vn
1, v

n
2, v

n
3) solving Problem Pn (n ≥ 1), one has

3
i=1

∥vN
i ∥

2
H1(Ωi)

+

N
n=1


∥vn+1

1 − vn
2∥

2
Γ1

+ ∥vn+1
2 − vn

1∥
2
Γ1

+ ∥vn+1
1 − vn

3∥
2
Γ2

+ ∥vn+1
3 − vn

2∥
2
Γ2


≤ C (4.20)

with C independent of N and depending on the initial data.
Proof. We start by observing that

gn+1
12 − gn−1

12 = 2λvn
2 − 2λvn−1

1 , gn+1
21 − gn−1

21 = 2λvn
1 − 2λvn−1

2 ,

gn+1
23 − gn−1

23 = 2λvn
3 − 2λvn−1

2 , gn+1
32 − gn−1

32 = 2λvn
2 − 2λvn−1

3 .

Further, we have the elementary identities

(vn+1
i − vn−1

i , vn+1
i ) =

1
2
∥vn+1

i ∥
2
+

1
2
∥vn+1

i − vn−1
i ∥

2
−

1
2
∥vn−1

i ∥
2,

(∇(vn+1
i − vn−1

i ), ∇vn+1
i ) =

1
2
∥∇vn+1

i ∥
2
+

1
2
∥∇(vn+1

i − vn−1
i )∥2

−
1
2
∥∇vn−1

i ∥
2,

(vn+1
i + vn−1

i − 2vn
j , v

n+1
i ) =

1
2
∥vn+1

i ∥
2
+

1
2
∥vn−1

i ∥
2
− ∥vn

j ∥
2
+ ∥vn+1

i − vn
j ∥

2
−

1
2
∥vn+1

i − vn−1
i ∥

2.

We now proceed as in Lemma 4.1 and subtract (4.5)–(4.7) for vn−1
i from the one for vn+1

i , test the resulting with φ = vn+1
i ,

and double the result and sum it over n = 1, . . . ,N to obtain

1
△t

3
i=1


∥vN+1

i ∥
2
Ω1

+ ∥vN
i ∥

2
Ω1


+

3
i=1


∥∇vN+1

i ∥
2
Ω1

+ ∥∇vN
i ∥

2
Ω1


+

1
△t

N
n=1

3
i=1

∥vn+1
i − vn−1

i ∥
2
Ωi

+

N
n=1

3
i=1

∥∇vn+1
i − ∇vn−1

i ∥
2
Ωi

+

3
i=1


∥vN+1

i ∥
2
ΓiR

+ ∥vN
i ∥

2
ΓiR

+

N
n=1

∥vn+1
i − vn−1

i ∥
2
ΓiR



+ 2
N

n=1


∥vn+1

1 − vn
2∥

2
Γ1

+ ∥vn+1
2 − vn

1∥
2
Γ1

+ ∥vn+1
2 − vn

3∥
2
Γ2

+ ∥vn+1
3 − vn

2∥
2
Γ2


≤ C +

N
n=1


∥vn+1

1 − vn−1
1 ∥Γ1 + ∥vn+1

2 − vn−1
2 ∥Γ1 + ∥vn+1

2 − vn−1
2 ∥Γ2 + ∥vn+1

3 − vn−1
3 ∥Γ2


.
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Using (4.19) in the above yields

3
i=1


∥vN

i ∥
2
Ωi

+ ∥∇vN
i ∥

2
Ωi


+

N
n=1


∥vn+1

1 − vn
2∥

2
Γ1

+ ∥vn+1
2 − vn

1∥
2
Γ1

+ ∥vn+1
1 − vn

3∥
2
Γ2

+ ∥vn+1
3 − vn

2∥
2
Γ2


≤ C (4.21)

with C independent of N and depending only on the initial data. �

4.3.2. Proof of Theorem 4.1

Proof. Lemma 4.2 provides enough compactness for passing to the limit. Note that (4.21) implies that there exists a
subsequence again denoted by vn

i such that

vn
i → vi weakly in H1(Ωi)

and, hence, strongly in L2(Ωi). Further, to establish the continuity of the concentration at the boundaries, let us take, for
instance,

∥v1 − v2∥Γ1 ≤ ∥v1 − vn+1
1 ∥Γ1 + ∥vn+1

2 − v2∥Γ1 + ∥vn+1
1 − vn+1

2 ∥Γ1

whereby the last term on the right hand side vanishes because of estimate (4.21). The vanishing of the first two terms is a
consequence of the weak convergence in H1 leading to L2 strong convergence at the boundaries. Similarly, v2 = v3 at the
boundary Γ2.

From the preceding discussions, we conclude that the triple (v1, v2, v3) ≡ (uk
1, u

k
2, u

k
3) satisfies

1
△t

(uk
1 − uk−1

1 , φ1)Ω1 + (∇uk
1, ∇φ1)Ω1 − (q∇uk−1

1 , φ1)Ω1

+ (CRuk
1, φ1)Γ1R +

1
△t

(uk
2 − uk−1

2 , φ2)Ω2 + (∇uk
2, ∇φ2)Ω2 − (q∇uk−1

2 , φ2)Ω2

+ (CRuk
2, φ2)Γ2R +

1
△t

(uk
3 − uk−1

3 , φ3)Ω3 + (DT∇uk
3, ∇φ3)Ω3 + (CRuk

3, φ3)Γ3R = 0 (4.22)

for all φi ∈ H1(Ωi) such that φ1 = φ2 at Γ1 and φ2 = φ3 at Γ2. �
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