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a b s t r a c t

Consider an n × n matrix A and a set Λ consisting of k ≤ n prescribed complex numbers.
Lippert (2010) in a challenging article, studied geometrically the spectral norm distance
from A to the set of matrices whose spectra included specified set Λ and constructed a
perturbationmatrix∆withminimum spectral norm such that A+∆ hadΛ in its spectrum.
This paper presents an easy practical computational method for constructing the optimal
perturbation ∆ by improving and extending the methodology, necessary definitions and
lemmas of previous related works. Also, some conceivable applications of this issue are
provided.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let A be an n× n complex matrix and let L be the set of complex n× nmatrices that have λ ∈ C as a prescribed multiple
eigenvalue. In 1999, Malyshev [1] obtained the following formula for the spectral norm distance from A to L:

min
B∈L

∥A − B∥2 = max
γ≥0

s2n−1


A − λI γ In

0 A − λI


,

where ∥ · ∥2 denotes the spectral matrix norm and s1(·) ≥ s2(·) ≥ s3(·) ≥ · · · are the singular values of the corresponding
matrix in nonincreasing order. Also he constructed a perturbation,∆, of matrix A such that A + ∆ belonged to the L and∆
was the optimal perturbation of the matrix A. Malyshev’s work can be considered as a solution toWilkinson’s problem, that
is, the computation of the distance from a matrix A ∈ Cn×n which has only simple eigenvalues, to the set of n × n matrices
with multiple eigenvalues. Wilkinson introduced this distance in [2] and some bounds were computed for it by Ruhe [3],
Wilkinson [4–7] and Demmel [8].

However, in a non-generic case, if A is a normal matrix then Malyshev’s formula is not directly applicable. Ikramov
and Nazari [9] showed this point and they obtained an extension of Malyshev’s formula for normal matrices. Furthermore,
Malyshev’s formula was extended by them [10] for the case of a spectral norm distance from A to matrices with a prescribed
triple eigenvalue. In 2011, under some conditions, a perturbation ∆ of matrix A was constructed by Mengi [11] such that
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∆ had minimum spectral norm and A +∆ belonged to the set of matrices that had a prescribed eigenvalue of prespecified
algebraic multiplicity. Moreover, Malyshev’s work also was extended by Lippert [12] and Gracia [13]. They computed a
spectral norm distance from A to the matrices with two prescribed eigenvalues.

Recently, Lippert [14] provided a geometric basis for the results obtained in [13,12] and also, he introduced a geometric
motivation for the smallest perturbation in the spectral norm such that the perturbed matrix had some given eigenvalues.

Denote by Mk the set of n × n matrices that have k ≤ n prescribed eigenvalues. This article, motivated by the above
spectrumupdating problems, studies and considers the spectral normdistance fromA toMk. In particular, it describes a clear
and intelligible computational technique for construction of∆ having minimum spectral norm and satisfying A +∆ ∈ Mk.
Expanding and improving the methodology used in [1,13,12,10,11] for the case of k ≤ n fixed eigenvalues, and presenting a
general solution for thematrix nearness problem in an evident computationalmanner are themain goals considered herein.
This paper is also intended to provide definitions and proofs in a broadway and give sufficient conditions with the intention
of encompassing the aforesaid works. On the other hand, in [10,14, Section 5] and [12, Section 6] it was mentioned that
the optimal perturbations are not always computable for the case of fixing three or more distinct eigenvalues. This paper,
provides two assumptions such that the optimal perturbation is always computable when these assumptions hold. It is
noticeable that if one or both conditions are not satisfied then still A+∆ ∈ Mk, but∆ has not necessary minimum spectral
norm. In this case we can have some lower bounds and ∥∆∥2 as an upper bound for the spectral norm distance from A to
A +∆ ∈ Mk. Meanwhile, a selection of possible applications of this topic is considered.

Note that if, in a special case, A is a normal matrix, i.e., A∗A = AA∗, thenwe cannot use themethod described in this paper
for the computation of the perturbation, immediately. In this case, by following the analysis performed in [15,9,16] one can
derive a refinement of our results for the case of normal matrices. Therefore, throughout of this paper, it is assumed that A
is not a normal matrix. Suppose now that an n × n matrix A and a set of complex numbers Λ = {λ1, λ2, . . . , λk} in which
k ≤ n, are given. Now for

γ = {γ1,1, γ2,1, . . . , γk−1,1, γ1,2, γ2,2, . . . , γk−2,2, . . . , γ1,k−1} ∈ C
k(k−1)

2 ,

define the nk × nk upper triangular matrix QA(γ ) as

QA(γ ) =



B1 γ1,1In γ1,2In . . . γ1,k−1In
0 B2 γ2,1In . . . γ2,k−2In
...

. . . B3
. . .

...

. . . γk−1,1In
0 . . . 0 Bk


nk×nk

, (1)

where γi,1, (i = 1, . . . , k − 1) are real variables and Bj = A − λjIn, (j = 1, . . . , k).
Clearly, QA(γ ) can be assumed as a matrix function of complex variables γi,j for i = 1, 2, . . . , k − 1, j = 1, 2, . . . , k − i.

Hereafter, for the sake of simplicity, the positive integer nk−(k−1) is denoted by κ . Assume that the spectral norm distance
from A to Mk is denoted by ρ2(A,Mk), i.e,

ρ2(A,Mk) = ∥∆∥2 = min
M∈Mk

∥A − M∥2 .

Generally, this paper follows the plan including two main phases: Computing a lower bound, say α, for ∥∆∥2 and next
constructing a perturbation matrix∆ such that ∥∆∥2 = α, (or as close as possible to α) and A +∆ ∈ Mk. Due to this, some
lower bounds for 2-norm of the optimal perturbation ∆ are obtained in the next section. In Section 3, selected properties
of κth singular value of QA(γ ), i.e., sκ (QA(γ )), and its corresponding singular vectors are studied. These properties will be
used in Section 4, with the purpose of computing the optimal perturbation ∥∆∥2, having minimum 2-norm and satisfying
A + ∆ ∈ Mk. Finally, in Section 6, some numerical examples and imaginable implementation of the topic of the matrix
nearness problem are given to illustrate the validation and application of the presented method.

2. Lower bounds for the optimal perturbation

Let us begin by considering sκ (QA(γ ))which is the κth singular value of QA(γ ). First, note that sκ (QA(γ )) is a continuous
function of variable γ . Also, if we define the unitary matrix U of the form

U =


In 0

−In
In

. . .

0 (−1)k−1In


nk×nk

,
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where In is the n × n identity matrix, then it is straightforward to see that

UQA(γ )U∗
=


B1 −γ1,1In γ1,2In . . . γ1,k−1In
0 B2 −γ2,1In . . . γ2,k−2In
...

. . . B3
. . .

...

. . . −γk−1,1In
0 . . . 0 Bk


nk×nk

.

Since under a unitary transformation the singular values of a square matrix are invariant, it follows that sκ (QA(γ )) is
an even function with respect to all its real variables γi,1, (i = 1, . . . , k − 1). Therefore, without loss of generality, in the
remaining part of the paper, we assume that γi,1 ≥ 0, for every i = 1, . . . , k − 1.

Lemma 2.1. If A ∈ Cn×n has λ1, λ2, . . . , λk as some of its eigenvalues, then for all γ ∈ C
k(k−1)

2 , it holds that sκ (QA(γ )) = 0.
Proof. Suppose that λ1, λ2, . . . , λk are some of the eigenvalues of A corresponding to the associated eigenvectors
e1, e2, . . . , ek, respectively. Evidently,

Aei = λiei, and Bjei =

λi − λj


ei, i, j = 1, . . . , k. (2)

We have shown that QA(γ ) has k linearly independent eigenvectors corresponding to zero as one of its eigenvalues. This
implies that sκ (QA(γ )) = 0. Two cases are now considered.
Case 1. Let λ1, . . . , λk be k distinct eigenvalues of QA(γ ). Consequently, e1, . . . , ek are k linearly independent eigenvectors.
Consider now the nk × 1 vectors v1, v2, . . . , vk such that v1 = [e1, 0, . . . , 0]T and introduce the remaining vectors by the
following formula

vmj =


0 j > m
em j = m

1
λj − λm

m−j
p=1


γj,pv

m
p+j


em j = m − 1, . . . , 1,

(3)

where vmj denotes the jth component of vm. The elements of each vector vm should be computed recursively, starting from
the last component. Clearly, v1, v2, . . . , vk are k linearly independent vectors. Using (2) and (3), straightforward calculation
yields 

QA (γ ) v
m

i = Biv
m
i +

m−i
p=1


γi,pv

m
p+i


=

1
λi − λm

m−i
p=1


γi,pv

m
p+i


Biem +

m−i
p=1


γi,pv

m
p+i


= −

m−i
p=1


γi,pv

m
p+i


+

m−i
p=1


γi,pv

m
p+i


= 0.

Thus, the vectors v1, v2, . . . , vk satisfy QA(γ )v
m

= 0, (m = 1, . . . , k). Consequently, the dimension of the null space of
QA(γ ) is at least κ , which means that sκ (QA(γ )) = 0.
Case 2. Assume that some of the complex numbers λ1, λ2, . . . , λk are equal. Without loss of generality, we can assume that
λ1 is an eigenvalue of algebraicmultiplicity l, i.e.,λ1 = λ2 = · · · = λl. In this case, a newmethod is provided for constructing
the vectors associated with λ1, i.e., v1, v2, . . . , vl. Obviously, it is enough to construct a set of linearly independent vectors
{v1, v2, . . . , vl, vl+1, . . . , vk}, for which QA(γ )v

m
= 0, (m = 1, . . . , l). To do this, let e1 be the right eigenvector for λ1 and

let e1, ē1, ē2, . . . , ēl−1 form a chain of generalized eigenvectors of length l associated with λ1. So, we have

(A − λ1I) e1 = 0, (A − λ1I) ē1 = e1, and (A − λ1I) ēj = ēj−1, (j = 2, . . . , l).

Define the operator V as follows:

V[e1] = ē1 and V[ēi] = ēi+1, i = 1, . . . , l − 1. (4)

Now, let v1 = [e1, 0, . . . , 0]T and define the vectors , v2, . . . , vl by

vmj =


0 j > m
e1 j = m

−

m−j
p=1


γj,pV


vmp+j


j = m − 1, . . . , 1

,
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where vmj denotes the jth component of vm and analogous to Case 1 elements of each vector vm, can now be computed by
the above recursive relation, beginning from the last element. The remaining vectors associatedwith simple eigenvalues are
constructed by the method presented in Case 1. Linearity independence of vectors vi, (i = 1, . . . , l) is concluded by their
definition. Thus, v1, . . . , vk are linearly independent vectors. Also, calculations similar to what was performed in Case 1,
conclude that v1, . . . , vl are the l eigenvectors associated to zero as an eigenvalue of QA(γ ), i.e., QA(γ )v

i
= 0, for every

i = 1, . . . , l. �

Following corollary can be concluded by similar calculations of the above lemma.

Corollary 2.2. Let λ1, λ2, . . . , λk be some eigenvalues of A ∈ Cn×n. Then for all γ ∈ C
k(k−1)

2 we have

sn (A − λiI) = 0, i = 1, . . . , k,

s2n−1


A − λiI γ1,1I

0 A − λjI


= 0, i, j = 1, . . . , k,

s3n−2

A − λiI γ1,1I γ1,2I
0 A − λjI γ2,1I
0 0 A − λlI


= 0, i, j, l = 1, . . . , k,

...

sκ (QA(γ )) = 0.

(5)

Lemma 2.3. Suppose that A ∈ Cn×n has λ1, λ2, . . . , λk as some of its eigenvalues. If ∆ is the minimum norm perturbation such
that A +∆ ∈ Mk, then for every γ ,

∥∆∥2 ≥ sκ (QA(γ )) .

Proof. By Lemma 2.1, we know that sκ (QA+∆(γ )) = 0. Applying theWeyl inequalities for singular values (for example, see
Corollary 5.1 of [17]) to the relation QA+∆(γ ) = QA(γ )+ Ik ⊗∆, yields

sκ (QA(γ )) = |sκ (QA(γ ))− sκ (QA+∆(γ ))| ≤ ∥Ik ⊗∆∥2 = ∥∆∥2 . �

Similar calculations as performed above for the singular value sκ (QA(γ )), can be considered for remainder of the singular
values appearing in the left hand side of Eqs. (5). Thus, the following relations are deduced:

∥∆∥2 ≥ sn (A − λiI) , i = 1, . . . , k,

∥∆∥2 ≥ s2n−1


A − λiI γ1,1I

0 A − λjI


, i, j = 1, . . . , k,

∥∆∥2 ≥ s3n−2

A − λiI γ1,1I γ1,2I
0 A − λjI γ2,1I
0 0 A − λlI


, i, j, l = 1, . . . , k,

...

∥∆∥2 ≥ sκ (QA(γ )) .

Next corollary gives the main result of this section.

Corollary 2.4. Assume that A ∈ Cn×n and a set Λ consisting of k ≤ n complex numbers are given. Then for all γ ∈ C
k(k−1)

2 , the
optimal perturbation∆, satisfies

∥∆∥2 ≥ max {α1, α2, . . . , αk} , (6)

where

α1 = max {sn (A − λiI) , i = 1, . . . , k} ,

α2 = max

s2n−1


A − λiI γ1,1I

0 A − λjI


, i, j = 1, . . . , k


,

α3 = max


s3n−2

A − λiI γ1,1I γ1,2I
0 A − λjI γ2,1I
0 0 A − λlI


= 0, i, j, l = 1, . . . , k


,

...

αk = sκ (QA(γ )) .
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From this point, construction of an optimal perturbation is considered. This is completely dependent on dominance of
αi, (i = 1, . . . , k). First, let maximum of right hand side of (6) occur in αk = sκ (QA(γ )).

3. Properties of sκ(QA(γ)) and its corresponding singular vectors

In this section, we obtain further properties of sκ (QA(γ )) and its associated singular vectors. In the next section, this
properties are applied to construct the optimal perturbation∆. For our discussion, it is necessary to reform some definitions
and lemmas of [1,13,12,11].

Definition 3.1. Suppose that vectors

u(γ ) =

u1(γ )
...

uk(γ )

 , v(γ ) =

v1(γ )...
vk(γ )

 ∈ Cnk (uj(γ ), vj(γ ) ∈ Cn, j = 1, . . . , k),

is a pair of left and right singular vectors of sκ (QA(γ )), respectively. Define

U(γ ) = [u1(γ ), . . . , uk(γ )]n×k, and V (γ ) = [v1(γ ), . . . , vk(γ )]n×k.

Considering definition of the vectors u(γ ) and v(γ ), we have the following relations

QA(γ )v(γ ) = sκ (QA(γ )) u(γ ), (7)

QA(γ )
∗u(γ ) = sκ (QA(γ )) v(γ ), (8)

also without loss of generality, assume that u(γ ) and v(γ ) are unit vectors.
The following lemma, which can be verified by considering Lemma 3.5 of [12] (see also Lemma 3 of [13]), concludes that

there exists a finite point γ ∈ C
k(k−1)

2 where the function sκ (QA(γ )) attains its maximum value.

Lemma 3.2. sκ (QA(γ )) → 0 as |γ | → ∞.

Definition 3.3. Let γ∗ be a point where the singular value sκ (QA(γ )) attains its maximum value such that
k−1

i=1 γ∗ i,1 > 0
at this point. We set α∗

k = sκ (QA(γ∗)) .

It is easy to verify that if α∗

k = 0, then λ1, λ2, . . . , λk are some eigenvalues of QA(γ ). Therefore, in what follows we
assume that α∗

k > 0. Moreover, suppose that α∗

k is a simple (not repeated) singular value of QA(γ∗).
Investigating other properties of sκ (QA(γ )) and its associated singular vectors requires results deduced in Theorems 2.10

and 2.11 of [11].

Theorem 3.4. Let A(t) : R → Cn×n be an analytic matrix-valued function. There exists a decomposition A(t) = U(t)S(t)V (t)∗,
where U(t) : R → Cn×n, V (t) : R → Cn×n are unitary and analytic, S(t) is diagonal and analytic for all t. Assume that
ul(t), vl(t) are the lth columns of U(t) and V (t), respectively, and sl(t) is the signed singular value at the lth diagonal entry
of S(t). Using the product rule and the fact that A(t)vl(t) = sl(t)ul(t), it is straightforward to deduce

dsl(t)
dt

= Re

ul(t)∗

dA(t)
dt

vl(t)

. (9)

In particular, if sl(t∗) > 0 at a local extremum t∗, and sl(t∗) is a simple singular value, then

dsl(t∗)
dt

= Re

ul(t∗)∗

dA(t∗)
dt

vl(t∗)


= 0. (10)

Sun [18] has shown that a simple singular value has an analytic expansion for the derivative formula similar to what is
mentioned in (9). In this case, we can differentiate a singular value along the tangent dA(t)

dt from A(t) and find a singular value
decomposition that expresses the derivative as right hand side of (9). The first part of the above theorem (Theorem 2.10
of [11]) implies that for one parameter A(t)’s, Sun’s formulas will still work, as long as U ’s and V ’s are chosen correctly.
Moreover, the second part of Theorem 3.4 (Theorem 2.11 of [11]) assures that singular vectors ul(t∗) and vl(t∗) for which
Eq. (10) is satisfied when sl(t∗) > 0, can be found. On the other hand, suppose we are given an n parameter family
A(t1, . . . , tn), and it is desired to find singular vectors u’s and v’s such that ∂s

∂ti
= Re(u∗ ∂A

∂ti
v), (i = 1, . . . , n). In this case,

Theorem 3.4 cannot be always applied. The k eigenvalue case needs to deal with this failure analyticity. Fortunately, we can
cope with this essential flaw by assuming that α∗

k is an isolated singular value (as this qualification is considered). Now, it
should be noted that γi,1, (i = 1, . . . , k − 1) are pure real variables, while other components of the vector γ are complex
variables. If we set γi,j = γi,j,R + iγi,j,I , for j > 1, then it can be assumed that γ has (k − 1)2 real components. Following
lemma is deduced from applying Theorem 3.4 to QA(γ ).
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Lemma 3.5. Let γ∗ and α∗

k be as defined in Definition 3.3, and let α∗

k > 0 be a simple singular value of QA(γ∗). Then there exists
a pair u1(γ∗)

...
uk(γ∗)

 ,
v1(γ∗)

...
vk(γ∗)

 ∈ Cnk (uj(γ∗), vj(γ∗) ∈ Cn, j = 1, . . . , k),

of left and right singular vectors of α∗

k , respectively, such that

1. ui(γ∗)
∗vi+j(γ∗) = 0, i = 1, . . . , k − 1, j = 1, . . . , k − i, and

2. ui(γ∗)
∗uj(γ∗) = vi(γ∗)

∗vj(γ∗), i, j = 1, . . . , k.

Proof. To prove first part of the lemma, two cases are considered.

Case 1. At first assume that j > 1.
By applying Lemma 2.10 of [11], for both of the real and imaginary parts of γ∗ i,j = γ∗ i,j,R + iγ∗ i,j,I we have Re(ui(γ∗)

∗

vi+j(γ∗)) = 0, and Re(iui(γ∗)
∗vi+j(γ∗)) = 0, respectively. This means that ui(γ∗)

∗vi+j(γ∗) = 0.

Case 2. Consider the case for which j = 1.
Applying Lemma 2.10 of [11] for real numbers γ∗ i,1, (i = 1, . . . , k − 1), concludes that Re(ui(γ∗)

∗vi+1(γ∗)) = 0.
So, first part of lemma is proved if we show that ui(γ∗)

∗vi+1(γ∗) is a real number. Let us introduce the 1 × nk vectors
ui,i(γ∗) = [0, . . . , 0, ui(γ∗)

∗, 0, . . . , 0] and vi,i(γ∗) = [0, . . . , 0, vi(γ∗)
∗, 0, . . . , 0] where ui(γ∗)

∗ and vi(γ∗)
∗ are the ith

components. By multiplying (7) by ui,i(γ∗) and (8) by vi,i(γ∗) both from the left, following results are obtained, respectively,

ui(γ∗)
∗Bivi(γ∗)+

k−i
p=1


γ∗ i,pui(γ∗)

∗vi+p(γ∗)


= α∗

kui(γ∗)
∗ui(γ∗), (11)

vi(γ∗)
∗B∗

i ui(γ∗)+

i−1
p=1


γ̄∗p,i−pvi(γ∗)

∗up(γ∗)


= α∗

kvi(γ∗)
∗vi(γ∗), (12)

Conjugating (11), subtracting it from (12) and considering results obtained in Case 1 leads to the following relation

γ∗ i,1ui(γ∗)
∗vi+1(γ∗) = α∗

k


ui(γ∗)

∗ui(γ∗)− vi(γ∗)
∗vi(γ∗)


, (13)

clearly, the right hand side of (13) is a real number which implies that ui(γ∗)
∗vi+1(γ∗) is also real. Thus first part of the

lemma is proved completely.
Now attempt to prove second part of the lemma. Multiplying (7) by ui,j(γ∗) from the left where ui(γ∗)

∗ is in the jth place,
and multiplying (8) by vj,i(γ∗) from the left where vj(γ∗)

∗ is in the ith place, leads to similar results as in (11) and (12),
respectively. Performing similar calculations as first part of the proof, leads to

ui(γ∗)
∗Bjvi(γ∗)− ui(γ∗)

∗Bivj(γ∗) = α∗

k


ui(γ∗)

∗ui(γ∗)− vi(γ∗)
∗vi(γ∗)


,

which can be written as
λi − λj


ui(γ∗)

∗vj(γ∗) = α∗

k


ui(γ∗)

∗ui(γ∗)− vi(γ∗)
∗vi(γ∗)


.

The left hand side of this equation is equal to zero. In fact, the assertion is obvious when i = j. For i ≠ j, assume i < j then
considering first part of the proof. Thus proof is completed by keeping in mind that α∗

k > 0. �

Corollary 3.6. Let suppositions of Lemma 3.5 hold. Then the matrices U(γ∗) and V (γ∗) (recall Definition 3.1 but for γ = γ∗),
satisfy U(γ∗)

∗U(γ∗) = V (γ∗)
∗V (γ∗).

Lemma 3.7. Suppose that assumptions of Lemma 3.5 are satisfied. Then the two matrices U(γ∗) and V (γ∗) have full rank.

Proof. This result can be verified by considering Lemma 4.4 of [12]. �

4. Construction of the optimal perturbation

Let γ∗ and α∗

k be as defined in Definition 3.3, and let α∗

k > 0 be a simple singular value of QA(γ∗). In this section, a
perturbation ∆ ∈ Cn×n is constructed such that it satisfies ∥∆∥2 = α∗

k , and perturbed matrix A + ∆ has k prescribed
eigenvalues. Suppose that the matrices U(γ∗) and V (γ∗) are as in Corollary 3.6 and define

∆ = −α∗

kU(γ∗)V (γ∗)
Ď, (14)



E. Kokabifar et al. / Journal of Computational and Applied Mathematics 298 (2016) 53–63 59

where V (γ∗)
Ď denotes the Moore–Penrose pseudoinverse of V (γ∗). From Corollary 3.6 it can be deduced that the two

matrices U(γ∗) and V (γ∗) have the same nonzero singular values. So, there exists a unitary matrix W ∈ Cn×n such that
U(γ∗) = WV (γ∗). Notice that Lemma 3.7 implies V (γ )ĎV (γ ) = Ik. Therefore,

∥∆∥2 =
−α∗

kU(γ∗)V (γ∗)
Ď

2 = α∗

k

WV (γ∗)V (γ∗)
Ď

2 = α∗

k ,

and
∆V (γ∗) = −α∗

kU(γ∗) ⇔ ∆vi(γ∗) = −α∗

kui(γ∗), i = 1, . . . , k. (15)
Using (7) and (15) for every i = 1, . . . , k, yields

(Bi +∆) vi(γ∗) = −

k−i
p=1

γ∗ i,pvi+p(γ∗). (16)

By Lemma 3.7, we know that vi(γ∗), (i = 1, . . . , k) are linearly independent vectors. Consequently, (Bi +∆) vj(γ∗) is a
nonzero vector for every i, j ∈ {1, . . . , k}, except for the case i = j = k. Now, define the k vectors ψk, ψk−1, . . . , ψ1 by

ψk = vk(γ∗), and ψi =


k

p=i+1


Bp +∆


vi(γ∗), i = k − 1, . . . , 1, (17)

note that again applying (16) concludes ψk, ψk−1, . . . , ψ1 as k nonzero vectors. It can be easily verified that (Bi +∆) and
Bj +∆


are commuting matrices, i.e.,

(Bi +∆)

Bj +∆


=

Bj +∆


(Bi +∆) , i, j = 1, . . . , k. (18)

Let us now, show that A +∆ ∈ Mk. First, form (7) (but for γ = γ∗) and (15) we have
(Bk +∆) ψk = (Bk +∆) vk(γ∗) = α∗

kuk(γ∗)− α∗

kuk(γ∗) = 0,
next by considering Eqs. (7), (16) and (18) we can derive that

(Bk−1 +∆) ψk−1 = (Bk−1 +∆) (Bk +∆) vk−1(γ∗)

= (Bk +∆) (Bk−1 +∆) vk−1(γ∗)

= (Bk +∆)

−γ∗1,k−1vk(γ∗)


= 0,

using the above results and performing analogous calculations, concludes
(Bk−2 +∆) ψk−2 = (Bk−2 +∆) (Bk−1 +∆) (Bk +∆) vk−2(γ∗)

= (Bk +∆) (Bk−1 +∆) (Bk−2 +∆) vk−2(γ∗)

= (Bk +∆) (Bk−1 +∆)

−γ∗1,k−2vk−1(γ∗)− γ∗2,k−2vk(γ∗)


= (Bk +∆) (Bk−1 +∆)


−γ∗1,k−2vk−1(γ∗)


+ (Bk−1 +∆) (Bk +∆)


−γ∗2,k−2vk(γ∗)


= 0.

By following similar computations it is straightforward to verify that
(Bi +∆) ψi = 0,⇔ (A +∆)ψi = λiψi, i = k, . . . , 1,

This means that each λi, (i = 1, . . . , k) is an eigenvalue of A +∆ corresponding to each ψi as an associated eigenvector.
The main results of this section are summarized in the next theorem.

Theorem 4.1. Let A ∈ Cn×n and k ≤ n complex numbers λ1, λ2, . . . , λk be given. If γ∗ is a point where the singular value
sκ (QA(γ )) attains its maximum value, such that

k−1
i=1 γ ∗ i,1 > 0, and if α∗

k > 0 is a simple singular value, then A + ∆ ∈ Mk
and ∥∆∥2 = α∗

k , where∆ is given by (14).

Remark 4.2. In this section, our discussion concerned the construction of an optimal perturbation∆, benefiting the results
obtained in the previous section. In particular, one of the most significant issues in Section 3, is defining the two quantities
γ∗ and α∗

k (see Definition 3.3) and using Theorem 3.4 which results in further consequences. Actually, we should follow
analogousmethod, similar towhat is described in Sections 3 and 4, if construction of the optimal perturbation corresponding
to every αi, (i = 1, . . . , k) (see Corollary 2.4) is desired. However, many numerical experiments were tried and noticed that
α∗

k is greater than other α∗

i except in very rarely examples, and with an insignificant difference. Where α∗

i , (i = 1, . . . , k)
are defined similar to Definition 3.3. Nevertheless, if α∗

k is considered it will do and will include the majority of cases.

Remark 4.3. In the method described above, two sufficient conditions are provided such that the optimal perturbation is
computable if the assumptions hold. Nevertheless, in some experiments, especially for large enough k, onemay observe that
one or both of the two conditions are not satisfied. In this situation, it is clear that the method introduced in Section 4 still
works and A + ∆ ∈ Mk, whereas ∥∆∥2 may not necessarily be minimum. Here, we can consider lower bounds computed
in Section 2 and ∥∆∥2 as an upper bound for the distance ρ2(A,Mk).
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5. Conclusion

Lippert [14] in a hard challenging paper established a geometric motivation for spectral norm distance from A ∈ Cn×n

to the set Mk of matrices that have k prescribed eigenvalues. In this work, a clear computational method for obtaining
the optimal perturbation ∆ such that A + ∆ ∈ Mk was presented. For the spectral norm distance from A to Mk, some
lower bounds were obtained. Furthermore, an optimal perturbation to A, such that the perturbed matrix has the same k
eigenvalues, was constructed under two qualifications, that were, α∗

k be a simple singular value and
k−1

i=1 γ ∗ i,1 ≠ 0. We
presented a numerical techniquewhich can be considered as a generalization of results obtained in [13,12,11]. Finally, it was
pointed out that if one or both of the two assumptions are violated then the procedure described in Section 4 still works,
but the perturbation ∆ is not necessarily optimal. In this situation, ∥∆∥2 is as an upper bound for ρ2(A,Mk) whereas, we
have lower bounds obtained in Section 2 for this distance. However, finding the minimum norm perturbation ∆ whenk−1

i=1 γ ∗ i,1 = 0, or α∗

k has multiplicity greater than one, remains for a future investigation.

6. Applications and numerical experiment

In this section, we are interested to present some conceivable applications of the topic of the paper. In addition, a
numerical experiment is applied to illustrate the validity of themethod described in previous sections and clarify our aim. All
computations were performed inMATLABwith 16 significant digits, however, for simplicity all numerical results are shown
with 4 decimal places. Also, OCTAVE can perform similar computations. Let us review concisely themain topic of the article.
In this paper, we computed the distance for A ∈ Cn×n to n × n matrices that had k ≤ n given complex numbers λ1, . . . λk
in their spectrum, while constructing an associated perturbation of A was also considered. Nevertheless, another aspect of
the problem may be investigated. Let us now concentrate on the subject of finding a matrix with some ordered eigenvalues,
and consider some topics and utilizations of matrices, that at the moment of this writing we find important for our aim and
may be of general interest to the readers as well. However, the matrix nearness problems have received much attention of
several researchers and has met many applications. A basic reference for the theory and applications of the problem is [19]
and references therein.
Inverse eigenvalue problem. One of the straightforward usage of aforesaid viewpoint is computing a matrix that has some
prespecified eigenvalues, which is known as inverse eigenvalue problem. An inverse eigenvalue problem (IEP) concerns the
reconstruction of a matrix from prescribed spectral data. The spectral data involved may consist of the complete or only
partial information of eigenvalues or eigenvectors. Inverse eigenvalue problem has a long list of applications in areas such
as control theory,mechanics, signal processing and numerical analysis. Two acceptable references for theory and application
of inverse eigenvalue problem are [20,21]. Assume now, we are asked to find a matrix having given scalars λ1, . . . , λl ∈ C
where l ≤ n, as its eigenvalues. To do this, by using the technique explained in this paper, one can consider an arbitrary
matrix, namely, A in the craved size. Next, by following procedure described in Section 4, the desired matrix which has
λ1, . . . , λl as some of its eigenvalues is computable.

Example 6.1. Assume that we have been asked to provide a matrix having five given scalars {1− i, 0, 2,−3,
√
2i}, as some

of its eigenvalues. For doing this, we can consider an arbitrary n-square matrix A for n ≥ 5. Next, by following the procedure
described in Section 4, we obtain a matrix which possesses the desired property.

For instance, let n = 6 and consider the 6 × 6 matrix

A =


10 −2 1 −2 8 10
−1 −4 −1 7 −4 10
4 −5 −5 8 −2 7
6 −3 8 8 8 4
2 3 5 2 1 9
8 3 2 10 2 2

 ,
that is randomly generated byMATLAB. Employing theMATLAB function fminconwhich finds a minimum of a constrained
nonlinear multi-variable function, for positive values αi, (i = 1, 2, 3, 4) introduced in Corollary 2.4, we have

α1 = 0.1589, α2 = 0.3559, α3 = 0.6898, α4 = 1.2636; γ ∈ C
k(k−1)

2 .

In addition, we derive that sκ(QA(γ )) attains its maximum value at

γ∗ = {7.6550, 11.9794, 13.6277, 9.4679,−0.1266 − 1.2906 i,−3.5116 + 0.3821 i,
− 1.9574 + 1.0271 i,−4.1763 − 0.0478 i, 1.2353 − 0.3886 i,−1.6664 − 0.6315 i},

where, the κth singular value of QA(γ∗) is isolated and

α∗

5 = sκ (QA (γ∗)) = s26 (QA (γ∗)) = 2.6089.
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Fig. 1. The graph of the sκ (QA (γ )).

Clearly, α∗

5 is strictly greater than αi, for every i = 1, 2, 3, 4. Also, in Fig. 1 the graph of the sκ (QA (γ )) is plotted for

|γ | ∈ [0, 30] that can confirm Lemma 3.2, where |γ | =


i,j


γi,j
2 1

2
.

Now, by pursuing the method explained in Sections 3 and 4 we are able to compute the full rank matrices U(γ∗) and
V (γ∗) satisfyingU(γ∗)

∗U(γ∗)− V (γ∗)
∗V (γ∗)


2 = 7.9700 × 10−4,

which verifies Corollary 3.6. Moreover, we obtain the perturbation matrix ∆ in (14) such that ∥∆∥2 = 2.6089 and the
spectrum of A +∆ is

σ (A +∆) = {23.9851 − 0.0094 i,−3, 1 − 1 i, 2, 0, 0.4142 i},

where

∆ =


1.7737 −0.1429 −0.3737 −1.2738 −0.4630 −0.6863

−0.0726 2.3853 0.4469 0.0497 −0.4936 0.4190
−0.4187 −0.8046 2.1643 −0.5331 −0.6578 0.3661
−0.0537 −0.3145 0.00645 1.8435 −0.17917 −1.0578
−0.6451 0.1944 0.1928 −0.7446 2.1703 −0.3585
−0.7070 −0.5467 −1.1922 −0.2208 −0.4246 1.6481



+


0.0512 −0.0085 −0.0171 −0.0277 −0.0115 −0.0199

−0.0116 0.0682 0.0111 −0.0100 −0.0141 0.0283
−0.0215 −0.0272 0.0759 −0.0261 −0.0274 0.0273
0.0060 −0.0151 −0.0170 0.0628 −0.0041 −0.0441

−0.0206 0.0172 0.0135 −0.0314 0.0913 −0.0218
−0.0206 −0.0059 −0.022 −0.0033 −0.0302 0.0553

 i.

Approximating a matrix with another one that has prescribed eigenvalues. In many applications of matrices, particularly in
optimization problems, we are concerned with a matrix that must have some assumptions on its eigenvalues. Suppose, for
instance, that f (x) is a function that we want to maximize or minimize it. In the various method for optimizing f (x), it is
necessary that ∇

2f be a positive definite matrix. A matrixM is positive definite if and only if any eigenvalue ofM is greater
than zero. However, ∇2f may not be positive definite for some cases. In such problems, some approaches will be applied to
overcome this difficulty which all of them benefit the constructing of a correctionmatrix∆M that ensures all eigenvalues of
M +∆M are greater enough than zero. For a symmetric matrixM , we can obtain the correction matrix∆M with minimum
Euclidean norm and Frobenius norm by using the techniques performed in Section 3.4 of [22]. Now, our procedure for a
general non-positive definite matrix M , can be applied. First, construct the matrix ∆M and then replace M by a positive
definite approximation M + ∆M , in which all negative eigenvalues in M are replaced by arbitrary (large enough) positive
numbers, while keeping its other (positive) eigenvalues unchanged.
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Example 6.2. Consider the non-positive definite matrix

A =

3 6 9 10
4 1 −1 −2
7 5 0 −4
4 −3 −1 6

 ,
which is a random matrix generated by MATLAB and its eigenvalues are 12.9377, 7.0550,−0.3641 and −9.6286. Assume
now the setΛ = {12.9377, 7.0550, ε, ε}, in order to construct a positive definite approximation of Awhere ε = 1×10−4, is
chosen arbitrarily. Using the MATLAB function fmincon, one can derive that the function s13(QA(γ )) attains its maximum
value at the finite point

γ∗ = {6.6686, 8.2009, 7.9580, 0.5925 − 0.0021 i,−2.3778 − 0.0009 i, 1.4475 − 0.0009 i},

where the 13th singular value of QA(γ∗) is isolated and α∗

4 = s13(QA(γ∗)) = 5.1231. By applying the technique presented in
the paper, the matrix∆ in (14) is computed as follows:

∆ =

 3.4650 −1.1376 1.2052 3.3916
0.2301 1.4468 −4.5382 1.8719

−0.2479 4.6130 1.9171 1.1181
−3.7579 −1.2664 0.7100 3.1641

+

−0.0011 −0.0004 −0.0006 −0.0025
−0.0022 −0.0012 −0.0019 −0.0046
0.0006 −0.0005 0.0005 0.0035
0.0001 −0.0010 0.0005 0.0018

 i,

which satisfies ∥∆∥ ≃ α∗

4 and 12.9377, 7.0550, 10−4, 10−4 are eigenvalues of A + ∆. Clearly, A + ∆ is a positive definite
matrix.

Our next numerical experiment is borrowed from Section 9.2 of [14] with the aim of comparing the presented method
with other related existing methods.

Example 6.3. The second numerical example in [14, Section 9.2] concerns a spectral norm distance from the Frankmatrix of
order 12, F12, to thematrices with four fixed eigenvaluesΛ = {0.1, 0.1i,−0.1,−0.1i}. The Frankmatrix of order n, denoted
by Fn, is an n-square upper Hessenberg matrix with determinant 1. The MATLAB command gallery(′frank′, n) returns Fn
whose all eigenvalues are real, positive and very ill-conditioned.

The procedure established in [14] concludes that the optimal 2-norm distance from F12 to the matrices havingΛ in their
spectrum is 6.9 × 10−4. Now, applying the presented method gives us that

γ∗ = {3.7874, 2.7734, 1.6624,−0.3556 + 0.0022 i,−0.1644 − 0.1657 i,−0.0149 + 0.0214 i},

is the finite point in which the several variable function sκ

QF12(γ )


attains its maximum value. Also, α∗

4 = s45(QA(γ∗)) =

6.8970 × 10−4, is an isolated singular value of constant matrix sκ

QF12(γ∗)


. Furthermore, the 12 × 4 matrices U(γ∗) and

V (γ∗) are full rank and satisfy ∥U(γ∗)
∗U(γ∗)− V (γ∗)

∗V (γ∗)∥ = 1.5710 × 10−6, which verifies Corollary 3.6. Additionally,
it is straightforward to confirm that the perturbation ∆ in (14) satisfies ∥∆∥2 = 6.8970 × 10−4 and the perturbed matrix
A +∆ hasΛ as its spectrum.

Moreover, this idea can be implemented in areas such as solving a singular or ill condition system of linear equations,
i.e., Ax = b for some A ∈ Cn×n, and studying the solutions of fast–slow systems. These two issues are reviewed briefly in the
following.

Notice that, singular square matrices are a thin subset of the space of all square matrices and adding a tiny random
perturbation to a singular matrix makes it nonsingular. But the perturbed matrix, namely, Ã may not be useful in practice.
In other words, we will able to compute a solution for Ãx = b, but that solution may be meaningless. This failure, in general,
is caused mainly by changing all eigenvalues of A and being large enough the condition number of Ã in which the smallest
eigenvalue of Ã has a significant effect. It seems that we can cope simultaneously with these failures by applying themethod
explained in Section 4. For the case of a singular (ill condition) system we construct a perturbation in which all zero (small
enough) eigenvalues inA are replaced by nonzero (large enough) numbers. Nevertheless, it should be noted that the accuracy
and credibility of the solution depends extremely on the problemwe are trying to solve. This topic is known as regularization,
however, it may have different names in different contexts.

On the other hand, consider the fast–slow systems. In order to apply somemethods for studying the solutions of fast–slow
systems, we must have a matrix that has no eigenvalues on the imaginary axis [23]. We can overcome this problem, by
constructing a perturbation of the matrix such that all its eigenvalues are the same and changing only the eigenvalues
which are on the imaginary axis. See [24–26] and references therein for theory and applications of fast–slow systems.
Low-rank approximation problem. Suppose that A ∈ Cm×n and a positive integer r < min{m, n} are given. In mathematics,
low-rank approximation problem concerns finding a matrix D ∈ Cm×n such that rank(D) = r and D is nearest matrix to A,
i.e., ∥A − D∥ ≥ 0 is as small as possible and ∥ · ∥ can in general be any matrix norm. The problem is used for mathematical
modeling, data and image compression, noise reduction, system and control theory, computer algebra and so on. Many dif-
ferent techniques are provided for computing amatrix with another one of the same size that has reduced rank. See [27–30]
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as the suggested references on the low-rank approximation problem and its applications. However, we can use the results
obtained in this paper for computing a low-rank approximation of a given square matrix. To do this, by applying the proce-
dure described, we can set λ1 = · · · = λm = 0 wherem ≤ k. Now if its corresponding eigenvectorsψ1, . . . , ψm introduced
in (17) satisfy rank ([ψ1, . . . , ψm]) = τ , then it is clear that rank of the perturbed matrix A +∆ is almost n − τ .
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