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THREE-STEPS MODIFIED LEVENBERG-MARQUARDT METHOD
WITH A NEW LINE SEARCH FOR SYSTEMS OF NONLINEAR
EQUATIONS

Keyvan Amini*, Faramarz Rostami

Department of Mathematics, Faculty of Science, Razi University, Kermanshah, Iran

Abstract

Three steps modified Levenberg-Marquardt method for nonlinear equations introduced by Yang [18]. This
method uses the addition of the Levenberg-Marquardt (LM) step and two approximate LM steps as the trial
step at every iteration. Using trust region technique, the global and biquadratic convergence of the method
is proved by Yang. The main aim of this paper is to introduce a new line search strategy while investigate
the convergence properties of the method with this line search technique. Since the search direction of
Yang method may be not a descent direction, standard line searches can not be used directly. In this paper
we propose a new nonmonotone third order Armijo type line search technique which guarantees the global
convergence of this method while we use an adaptive LM parameter. It is proved that the convergence order
of the new method is biquadratic. Numerical results show the new algorithm is efficient and promising.

Keywords: Nonlinear equations, Levenberg-Marquardt method, Local error bound condition, Line search,
Global and biquadratic convergence.

1. Introduction
We consider the nonlinear system of equations
Flz) =0, 1)

where F': R™ — R" is a continuously differentiable function and F’(z) is Lipschitz continuous. Due to the
nonlinearity of F(x), (1) may have no solution. Throughout the paper, we let that the solution set of (1)
is nonempty and denote it by X*. There are many algorithms for solving the problem (1), for example:
Gauss-Newton method, Newton’s method, trust region methods, quasi-Newton methods and ete. ([3-9],
[16]). The Levenberg-Marquardt (LM) is one family of classical methods for solving problem (1). [10, 12].
This family, at every iteration, computes the trial step di by solving the linear system

(JET + \D)d = —JLFy, (2)

where Fj, = F(xy) and Jy = F'(x) is the Jacobian matrix of F' at xj and Ay is a nonnegative regularized
parameter. The LM step (2) is actually a modification of the Gauss-Newton step where parameter Ay is
introduced to prevent the steps from being too large when J}.J;, is singular or nearly singular. It is clear
that for Ay = 0, the LM method is reduced to Newton step when Jj is nonsingular. The LM method has
the quadratic convergence as the Newton method when the Jacobian matrix is nonsingular and Lipschitz
continuous at the solution. In [17], Yamashita and Fukushima proved the quadratic convergence for LM
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method with A\ = ||F(z)||? under the local error bound condition which is weaker than the nonsingularity
of the Jacobian at the solution. In [8], Fan and Yuan showed that a similar result is satisfied when A\, =
| F(x1)||° with § € [1,2] where numerical results show the choice § = 1 has the best results. In [6], Fan
introduced a modified Levenberg-Marquardt (MLM) method with cubic convergence. The MLM method in
each iteration, firstly, obtains dy; by solving (2), then with setting yx = xx + dix, solves the linear system

(JE Tk + M I)d = —JEF(yr), (3)
to obtains ds and sets
s = di + dop.
Fan showed that with choosing
Ao = pel| ]|

where py > 0 is updated at each iteration and ¢ € [1,2], the MLM method converges cubically under the
local error bound condition. It is noticeable that in the k-iteration, this method doesn’t need compute J(yx)
and only uses Jj, in (3) and so avoids of some Jacobian computation. Inspired by this fact, to reduce the cost
of Jacobian computation, Yang in [18], used another approximation step by solving the following system

(JETx + M D)d = —JFF(21), with 2, = yg + dog, (4)

and proposed the trail step as follows
di = dig + dok + dsy. (5)

The globally convergence of the method was described by using of a trust region technique. Under the
local error bound condition, Yang also showed the new method has biquadratic convergence. It is noticeable
that dj, defined by (5) is no longer a descent direction and so it is not easy to prove the global convergence of
the method with standard line searches. The main purpose of this paper is to introduce a new nonmonotone
line search and show this fact that the similar convergence properties can be proved as the trust region case
under local error bound condition. Note that if dj, is a descent direction of merit function ¢(z) = 1| F(z)||?
at xy, one can choose a steplength oy > 0 satisfying

I|F (x4 adi)|* < | Fel|® + 200F) Jidy, (6)
where o € (0,1) is a given constant, the next iterate is then determined as
Tht1 = Tk + apdy.

It is clear that this line search is suitable for descent directions while direction dj, defined by (5) may be not
necessarily a descent direction of the merit function ¢. Therefore, the standard line search techniques such
as (6) can not be used directly in this case. Li and Fukushima in [11], presented a nonmonotone line search
for nonlinear equations, that is,

1F (@ + adip)|* < (1+ er) [ Fill® — o10®[ldix]|* — 020 Fi %, (7)

where 01 and o9 are positive constants and the positive sequence {ej} satisfies

Z € < 00. (8)
k=0

Since the direction of MLM method contains two parts, motivated by (7), Zhou in [19], used a new non-
monotone second order Armijo type line search as follows

1P (@x + aday + o®dap)||* < (1+ ex) | Fkl|* — ora®||dir]|* — o207 || dak||* — o50” || Fil|?, (9)

where 01,02 and o3 are positive constants and the positive sequence {e;} satisfies (8). It is straightforward
to see that as a — 07T, the left-hand side of (9) goes to ||Fg||?, while the right-hand side tends to the positive
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constant (1 + €)||Fx||?. Thus, (9) is satisfied for all sufficiently small o > 0. Hence, one can obtains aj, by
means of a backtracking process. This line search can avoid the necessity of descent directions to ensure
that each iteration is well defined. After determination «y satisfying in (9), Zhou set

Tpi1 = Tp + apdip + @2dog, (10)

and proved that the cubic convergence of the MLM method is preserved under the local error bound con-
dition. The numerical experiments on the Extended Rosenbrock problem and Extended Powell Singular
problem with different starting points for different n values showed that this algorithm (Algorithm 2.1 in
[19]) performs well as the MLM algorithm. Inspired by (7) and (9), since the direction dj defined by (5)
contains three parts, an extension of line search (9) is as follows:

1F (@ +adii+o® dop+0dsp) || < (1+e) | Fi [ —o10? | di||* — 0207 ||da | * — 0307 || ds | — oa0®|| Fe[|*. (11)

This line search contains some disadvantages, for example when «y is small then ai and ai may be very
small , so a%d% and a%dgk may be smaller than the machine precision which causes to lose their roles. To
overcome this disadvantage, we use a new nonmonotone third order Armijo type line search:

Let o1 and o9 are positive constants, y is a very small positive constant, and dyj, dox and dsj, are computed
by solving (2), (3) and (4), respectively. We set

dir + dog + dsk if F¥Jg(d1g + dak + dsi) < —7,
dy = (12)
dig otherwise,
then we determine a positive steplength ay so that the following line search hold for oo = o, :

1P (zx + adp)l* < (1+ e) | Fill* = 0107 di]|* = o20?|| Fi 1%, (13)

where the positive sequence {e} satisfies (8).
In this paper we also use the following LM parameter

g i IEl > 1,
A = N||Fk||5"" with 8, = )

1 otherwise.

where p is a positive constant. This parameter is introduced by Amini and Rostami [1], to reduce some
disadvantages of the papular parameter A, = ug| Fk|| that is generally used in literatures. (For example see
[6, 7, 8, 18, 19]). This choice even when ||Fy| is very large, doesn’t permit A, to be large and so prevents
the LM step to be small too. [1].

The rest of the paper is organized as follows. In Section 2, we describe the new algorithm in more
details. In Section 3, we establish the global convergence of the proposed algorithm under some suitable
conditions. In Section 4, the biquadratic convergence of the new algorithm is proved under the local error
bound condition. Finally, some numerical experiments are given in Section 5.

2. The three steps modified Levenberg-Marquardt algorithm

In this section, we present the new algorithm.

Algorithm 2.1. The modified three-steps Levenberg-Marquardt with a new line search.

Input: 20 € R", > 0,v7>0,e>0,e>0, 01,00 >0, 7,p€ (0,1) and the sequence {e;} satisfying in (8).
Step 0 Set k := 0.
Step 1 Compute Fj, = F(zy) and J, = J(z).



If | JL Fy| < e, stop. Otherwise compute A, by (14).
Step 2
a) Obtain dix by solving the following linear system

(JE Tk 4+ M\ I)d = —JL Fy, (15)
b) Solve the linear system
(JiF Tk + M D)d = =T F(yg), (16)
to obtain dsg, where yr = z + dig.-

¢) Solve the linear system
(JE T + M D)d = —JLF (), (17)

to obtain ds, where zx = yr + do.

d) Set di, = diy + dog + dap.

Step 3 If
[ F(zk + di)ll < pl| Fr|l; (18)
then take ax = 1 and go to step 5. Otherwise go to step 4.
Step 4 Set
dyy + dox + dsg, if F¥Jg(d1g + dag + dsi) < —7,
di = (19)
dig otherwise.

Compute oy, = max{1,7',72, ..} with a = 1! satisfying
[F(r + ad)[[? < (1+ e[ Full® — o10®||di||* — o20?(| Fi |, (20)

where the positive sequence {¢;} satisfies (8).
Step 5 Set xpy1 = x) + apdy. Set k=k+1 and goto step 1.

Remark 2.1.

i) In step 4, when FT Jy(diy + dax, + dsx) < —7, it can be resulted that diy + day + dsi is a suitable
direction, so it is better that algorithm uses the direction dx = dyr + dor + ds.

i) As a — 0T, the left-hand side of (20), goes to || Fx||?> while the right-hand side tends to the positive
value (1 + ex)||Fk||?, thus (20) is satisfied for all sufficiently small o > 0. This shows that Algorithm 2.1 is
well defined.

3. Global convergence

In this section, we show Algorithm 2.1 is globally convergence. Firstly, we define

Qo = {z | |[F(2)|l < e/?| |} (21)
where € is a positive constant such that
Z er < e < 00. (22)
k=0

To study the global convergence of Algorithm 2.1, we need the following assumptions.

4



Assumption 3.1 There exists a neighborhood €2 of €y such that both F(z) and its Jacobian J(x) are
Lipschitz continuous on it, i.e., there exists a positive constant L such that

1E(y) = F(o)ll < Llly —xl,  Va,y €, (23)

and
[J(y) — J(@)|| < Llly —z||, Vz,y €. (24)

Due to the lipschitz continuous of F) it is clear that
|J(x)|| <L, VzxeQ. (25)

Now we can state two following lemmas that show the sequence {z}, generated by Algorithm 2.1, is belong
to Qo and the sequence || F|| is convergence.

Lemma 3.1. (4, Lemma 3.3]). Let {ar} and {ri} be positive sequences satisfying ax+1 < (1 + ri)ar + &
and Y o o i < 0o Then {ai} converges.

Lemma 3.2. Let the sequence {xy} be generated by Algorithm 2.1, then
(a) the sequence ||Fy|| converges and xy € Qo for all k > 0.
(b) the sequence || Fy|| is bounded, that is, there exists a constant M > 0 such that
\El <M, Vo0 (26)

PRrROOF. From (18)- (20), we have
[ Ferall* < (1 + en) 1 Fxll?,

this inequality together with (22) and Lemma 3.1 imply that {||Fy||?} and so {||Fk||} are convergence.
Moreover, from the last inequality, we deduce that

k
1Fisa]] < (L4 )2 Fe) < -~ <TI0+ )2 Foll,
=0

this inequality along with arithmetic-geometric means inequality and (22) results

k
1 k41 € k41 e
F < — 1 )2 || Foll < (1 2 || Fol| < ez||F
1Pl £ (0 70+ ) TR < 0+ ) T < 1A

which means x € Qg for all k. The proof of (a) is completed. Part (a) together with the definition of Qg
implies that the sequence || F}|| is bounded. O

Lemma 3.3. Let the sequence {xy} be generated by Algorithm 2.1. If (18) holds for infinite k, then ||F||
is convergence to zero.

PROOF. Denote the index sets
sz{kgj | (18)holds}7 GjZ{O,l,---,j}\Hj, =12,

If (18) holds for infinite k, then as j — oo, |H;| — oo, where |H;| is the number elements of H;. From (18)-
(20), we have

1Fesill < (TT @+ ) TT o)llFol

1€Gy i€ Hy,
= ([T a+e)”?)p™ R
1€Gy

<ezpll| Ry =0 as k — oo

So, || Fx|| — 0. O



The following theorem shows that the sequence {z}}, generated by Algorithm 2.1, converges to a sta-
tionary point of the merit function.

Theorem 3.4. Under the conditions of Assumption 3.1, Algorithm 2.1 either terminates in finite iterations
or satisfies

lim inf IJ§ Fe|| = 0. (27)
PRrROOF. By contradiction, suppose there exist 7 > 0 and an integer k such that
|JEF| > 7, Yk>k (28)

This along with (25) implies that
1Fel > L™ 7 (29)

holds for sufficiently large k. So, by lemma (3.3), the inequality (18) holds only for finite k. On the other
hand the relations (20), (22) and (26) result

o0
YAl Fell? < oo,
k=0

which implies limy_ oo || Fg|| = 0. This relation together with (29) yields

lim o = 0. (30)

k—o0
If B Ji(dig + dok + dsi) < —7, from the line search (20), we have
1F (g, + andi)|* = |1 Fell® > —ai (aulldil® + o2l Fel®) + ekl Fel?

> —ai(o1]ldil|* + o2 Fi[[?),

while @ = <&. This inequality along with (23) concludes

ak(orlldel|* + o2l | Fi]|*) > —(I1F 2k + a@wdi) |* = [1Fe]]?)

= —2F] (F(xk + ady) — Fi) — | F(ax + axdy) — Fi|?
> 2FL(F(xy, + ardy) — Fr) — L2a2 | dg || (31)

On the other hand, by the mean value theorem, we have
1
FE(F(Z‘]C + @kdk) — Fk) = @kaTJkdk + FkT/ (J(Z‘k + t@kdk) — Jk)dkdkdt.
0
Substituting dj, together with (24) and (26), result
1
B (F(wx + agdy) = Fi) < By Tk + dox + dge) + S LMag | de )%,
_ 1 9 2
< —apy+ §LMak||dk|| . (32)

Combining (31) and (32) results

ar(oulldell® + ool Fi|*) + L2ai | di|* > 2auy — LMag] i,

or equivalently
@k((ol + LM + L2)||dk||2 + 02||Fk||2) > 27.
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So, it is cocluded that
2y
(01 + LM + L?)||dp|* + o2 Fil|*”

Similarly, if F,?Jk (dig + dog + dsi) > — then the relations (19) and (20), imply

ap >

1F (zr + ardu)|I” = [ Ell? > —ai (ol dul? + o2l Fi|*) + exl| Fil®
> —aj(o1]dw® + o2l Fx1?),
where aj, = %£. This relation along with (23) concludes that
ap(o1lldull? + o2l Eull?) > —(1F (x5 + andiw) I = [ F5]]?)

= —ZFE(F(xk + @kdlk) — Fk) — ||F($k + dkdlk) — Fk”2
> 2F1(F(xy, + agdiy) — Fi) — L*a2||dye || (34)
On the other hand, using (24), (26) and (15) results

1
FE(F((Ek + dkdlk) — Fk) = FEJkdkdlk + Fg/ (J((Ek = tdkdlk) — Jk)dkdlkdt
0

1
< Fl apdyg + §LM0_éi||d1k”2

= —apdl (JE Ji + N D)day, + %LMainlkHQ. (35)
The relations (34) and (35) conclude that
ar((o1 + LM + L?)||dig||? + o2 || Fi||?) > 2dL(JE Tk + MeD)dig > 20k dar|?
while the last inequality is induced from the positive definitive of J, g Ji. So, we have

2X|lda
(01 4+ LM + L?)||d1x||? + o2|| Fr||*

Qg >

(36)

Now, let J; = UXVT be the singular value decomposition (SVD) of Ji, where U, V are two orthogonal
matrixes and ¥ = diag(o1, 02, ...,05,) with o1 > 09 > ... > 0, > 0. Then

I(TE T+ M) TH = IV E2 + M) TV = (52 + M) 7 = o }(03 +MDTI SN (37)
This inequality together with (14), (15), (25) and (26) implies that

ldwll = (I T + M) TEFell < 1T T+ )™ Tl || Fel

Q L _
< LA IE = ;IIFkII1 o

<L, (38)
7

where My = max{1, M}. Now, from (15), (16), (23), (37), and (25), we have
k]l = (T T + M)~ T F (i) |

<NTE Tk + M) TE(E (i) — Fi)ll + (T8 T + AeD) ™ T F|
< LNl dagll + lldagll



L2
= (7
pl| F 12
If || F%|| < 1 then (14) implies ¢ = 1. This along with (29) and (39) conclude that

+ Dllda- (39)

L3
<(—+1 4
o} < (- + 1) (40)

holds for sufficiently large k.
On the other hand if || Fk|| > 1 then §; =

| , 50 ||F%]|% > 1 and by (39), we have

L2
l[dar|| < (7 + Dl dur- (41)

The relations (40) and (41) imply that
L2
ldzll < (=7-Ma + Dldag| (42)

holds for sufficiently large k, where M, = maz{1, £}.
In a similar way, from (14), (17), (25), (26) and (2 ) it is easily seen that

L2
[ dar]| < (IMZ +1)% [l (43)

holds for sufficiently large k.
If liminf o ||dik|| = O , then we have from (15) and (25) that

lin inf | JEFy| = lim inf |(JE Ty 4 A I)dix|| = 0,

which is a contradiction to (28). Hence there exists a constant 8 > 0 such that

likm inf ||dix]| > B

Consequently, we can deduce from the above inequality together with (38), (42), (43), (26), (33) and (36),
that {a} is bounded away from zero. This contradicts (30) and the proof is completed. g

4. Biquadratic convergence.

In this section, we show that the convergence rate of Algorithm 2.1 is biquadratic. First, we prove some
useful lemmas then we show 6 = 1 and oy = 1, for sufficiently large k. By these facts we can establish
the biquadratic convergence of Algorithm 2.1 using completely same arguments as [18]. We need some
assumptions.

Definition 4.1. Let N be a subset of R™ such that N N X* # ¢, we say that ||F(z)|| provides a local error
bound on N for (1), if there exists a positive constant ¢ > 0 such that

|F(z)|| > cdist(x, X*), Vax €N, (44)
where dist(z, X) = infyex|y — z||.
In the sequel, we denote Ty, the vector in X* satisfying

||i‘k — ka = dist(mk, X*). (45)



Assumption 4.1

(a) There exists a solution z* € X™* of (1).

(b) F(z) and J(x) are Lipschitz continuous on N(x*,b), i.e., there exists a positive constant L > 0
such that

I1F(y) = F(2)| < Llly —xll,  Va,y € N(z",b), (46)

and
|J(y) = J(@)| < Llly — |, Va,y € N(z*,b), (47)

where 0 < b < 1and N(z*,b) ={z € R" | |z —a*| <b}.
(c) ||F(x)|| provides a local error bound on N(z*,b) for (1).

It is clear that the Lipschitzness of the Jacobian results
IF(y) = F(z) = J(2)(y — @)l < Llly — «l*, ~ Va,y € N(z*,b). (48)
Lemma 4.1. Let Assumption 4.1 hold, then we have
pl' < A < Lpl|Zy — x|,
where T' = min{1, c||Zy, — x|}

PROOF. If ||Fg|| < 1 then 0 = 1 and Ax = pl||Fx||, in this case the local error bound condition (44) along
with (46) and F'(Zy) = 0, conclude that

cpllZr — il < Ak < Lpl| Tk — o). (49)

But if || Fx|| > 1 then we have 0 < m < 1, thus

1
1= || Bl < Bl 7T < ||yl

and so
1< N < pl| B -

Using (46) and F(Z) = 0, we get
0 M < Lulz — i) (50)

If we set I' = min{1, ¢||Zr — ||} from (49) and (50) we get
pl < Ap < Lpl|zg — 2k
which completes the proof. (I

Lemma 4.2. Let Assumption 4.1 hold, then there exists a positive constant ¢; > 0 such that the inequality
T —1 4T L.
(T T + M D) ™ T || §C1+E||xk—xk||

holds for all sufficiently large k, where T' = min{1, c|Zr — x| }.

PROOF. According to the result given by Behling and Tusem in [2, Theorem 1] and without loss of generality,
we can assume rank(J(Z)) =r forall T € N(z*,b) (| X*. Suppose the SVD of J(Z) is

o oHvlT

J(@):[UhUQ][ R %T}:Ulzlv;’
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where U = [Uy,Us] and V = [V4, V5] are two orthogonal matrixes and ¥y = diag(61, 02, ...,0,) with o1 >
09 > ... > 0, > 0. Correspondingly, we consider the SVD of J(z) by

S0 0] [ W
J(x) =[U1,Us,Us] | 0 B 0| | V5" | = ThShVi + Uaa Vs, (51)
0 00|V

where U = [Uy,Usz,U;] and V' = [V4, V3, V3] are two orthogonal matrixes and ¥y = diag(o1,02,...,0.)
with o1 > 09 > ... > 0, > 0, and 3o = diag(0r41, Or42, ...; Oriq) With 0rp1 > 0pgpa > .0 2 0ppq > 0.

In the following, for clearness, we also neglect the subscription k in the decomposition of J(xy) and still
write Ji as same as (51)

T = U Vi + Up B VF. (52)
So, we have
(22 + M) 715 Uy
I(JE Tk + D) T = |[[Va, Ve, Va] (B3 + Xe]) 715, ui |
0 ur
(52 4 A D) 13y
< (33 + Med) 715, [
0

BT+ 1A 2l (53)

By the theory of matrix perturbation [15] and the Lipschitzness of J, we have
Idiag(S1 = B1, B2, 0)|| < [Tk — Jiell < Ll|Zx — ],

which yields ~
12— Si)l < Llze—all  and | Zal| < L7 — 2]l (54)

Since {x)} converges to the solution set X*, we assume that L||Z) — x| < % holds for all sufficiently large
k. Then it follows from (54) that

2
il < =, 55
S Tl < 5, ()
moreover, for sufficiently large k, we have from (54) and Lemma 4.1 that
_ o] L
Al = 22l L 56
If we set ¢ = % then from (53), (55) and (56), we get
NIT T4 M D) IT < 01+ el O

The following lemma describes an important property for the directions di, dar and dsp.

Lemma 4.3. Under the condition of Assumption 4.1, for sufficiently large k, we have
(@) [ldukll = olllzr — zil),
() lldarll = o([|zr — xxl)),
(©) lldskll = o[z — z|)-

10



PROOF. The proof of (a) and (b) is similar to Lemma 3.3 in [19]. Here we proof (c). From (17), (48), (16)
and Lemma 4.2, we have

dsill = [I(Ji Je + Med) ™ T F (20
< NI T Xed) T T (F (z1) = F (i) — Trdae) |1 (T3 Te+ e D) ™ TEF i) 141 Tt e D) ™ T Tedare|
< L||dog [P (JE T 4+ M) 7 TE || 4 2] | dax |
L
< L(er + M—FH% — ||| dal|* + 2||dax],

by the last inequality and (b), we get
ldsr || = o(l|Zr — 2 |)- (57)

The proof is completed. U
Lemma 4.4. Under the condition of Assumption 4.1, for sufficiently large k, we have

(@) [UWUT F(zi)ll = ollzn — @n),

(b) U2U5 F (z)|| = oll|z — @),

(c) UsUSF(z)]l = ol|zx — ).
PROOF. The proof is similar to Lemma 3.4 in [18]. O
The following result can be found in [6].

Lemma 4.5. Under the condition of Assumption 4.1, for sufficiently large k, we have

(@) [IU2U3 Fill = o([lzx — ),

(0) 1 Fk + Jkdig|l = o(|Zk — wxl]),
(¢) [1F(yi)ll = o(l|Zx — xxl]),
(d) I1F(yx) + Jrdor |l = o||Zx — wl]).

Lemma 4.6. Let Assumption 4.1 hold. Then for sufficiently large k, we have
(@) [F@z0)ll = o(l[Zx — k),
() 1F(zk) + Jrdak| = o([|Zx — zxl])-

PROOF. According to the definition of zj, (47), Lemma 4.3 and Lemma 4.5 , we have
IE(zi) Il = [1F(yr + dai) |

(
< 1 F(yx) + I (ye)dor || + Ll|dak]*
< |F(ye) + Jrdail| + 17 (yx) — Tl lldarl + Ll dar |
< |IF(yx) + Tudar || + Lllduglll|da | + Ll da >
= o(||zk — axl)-

If we set @i (d) = || F(2x) + Jrd||? + Ak||d||?, it is obviously from (17) that daj is the minimizer of ¢k. So we
have

17 (21) + Judsill < Vpr(dsr) < v/or(0) = [|F (zi)l| = ol — ), (58)
where the last equality is deduced from part (a). O
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Lemma 4.7 shows that the unit step is always accepted for sufficiently large k while Lemma 4.8 shows, for
sufficiently large k, éx = 1.

Lemma 4.7. Let Assumption 4.1 hold. Then for sufficiently large k, we have ayp = 1.
PROOF. From (48), (58), Lemma 4.3 and Lemma 4.5, we have
|F'(zx + dik +dok +dsi) || < || F(xk +dik +dok +dsk) — Fi — Ji(dig + dog +dsi) || + | Fi + Tk (dik + dok + dsi) ||

< Ll|du + dok + dai||* + |1 Fre + Jrdirl| + |1 F (yr) + Jedoll + | F (21) + Jedsrll + | F ()|l + 1F(z) |
= o([lzx — zx|)-
Therefore, there exist a positive sequence {ry} convergence to zero such that

| F(zk + dig + dok + dsi)|| < rllZe — el < ¢ e Frll, (59)

where the last inequality uses the error bound condition.
Since r;, — 0 and c¢p is positive constant, there exists ko € N such that

rE < Cp, Vk > k. (60)
The relations (59)-(60) imply
| F'(xr + dig + dog + dsi) || < pl| Fill, Vk > ko.

So (18) holds for all sufficiently large k, which means «p = 1 for sufficiently large k and the proof is
completed. (I

Lemma 4.8. Let Assumption 4.1 hold and the sequence {xy} is generated by Algorithm 2.1, then the set
D={keN: |F(xy)| > 1} is finite.

PROOF. By contradiction, suppose the set D is infinite. This along with lemma 4.7 imply that there exists
k1 € N such that
|Fell =1, VEk=> k. (61)

By theorem 3.4, the sequence {zj} is converge to x,. Because F is Lipschitz continuous, by (46), there
exists a constant L so that
[ F(z)ll = |1F(zr) — F(z)l| < Lok — 2., (62)

this inequality along with (61) concludes that

1

low— ol =7, YEZh,

which is a contradiction to the fact that xx — .. This shows the assumption is incorrect and the proof is
completed. O

The following theorem shows the convergence rate of Algorithm 2.1 is biquadratic.

Theorem 4.9. Under the condition of Assumption 4.1, the convergence rate of Algorithm 2.1 is biquadratic.

PROOF. From Lemmas 4.7 and 4.8, we deduce d; = 1 and ay, = 1, for sufficiently large k. Thus theorem can
be established using completely same arguments as [18], so we omit the proof here. O
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5. Numerical experiments

In this section, we report some numerical experiments to show that Algorithm 2.1 is an effective algo-
rithm for solving nonlinear equations and in particular, it works quite well on singular test problems. In the
sense we compare Algorithm 2.1 with four well known modified Levenberg-Marquardt algorithms, we use
the following abbreviations for these algorithms while the used value for parameters are also mentioned.

MLMY: Modified Levenberg Marquardt algorithm introduced by Yang [18] while
po=10"% p1 =025 p,=0756=1, uy =1072, m = 1075,

MLMZ: Modified Levenberg Marquardt algorithm introduced by Zhou [19] while

0.5%
o1 =03=03=0.005,p=08,7r=050=1,pu=10"% ¢ = o

MLM: Modified Levenberg Marquardt algorithm introduced by Fan [6] while
po=10"% p; =0.25, p, =0.75, uy =1073, m=10"% 6 =1.

AMLM: Accelerating Modified Levenberg Marquardt algorithm introduced by Fan [7] while
po=10"% p1 =0.25, po =0.75, u; =1073, m=10"% 6=1, a=5.

MLMN: Algorithm 2.1 with

0.5"
o1 =03=0.005,p=0.8,7r=05~vy=10"1% =107 ¢ = o

In the sequel we compare Algorithm 2.1 with MLM, AMLM, MLMY and MLMZ on some singular test
problems which similar to [14], are constructed by modifying the standard test problems given in [13] by

the following form .
F(z) = F(z) — J(a*)A(AT A) 7T AT (& — z¥),

where F'(x) is a standard test function, A € R”™** hag full column rank with 1 < k < n and z* is a solution
of the equation F'(z) = 0. Obviously

J(@*) = J(z*)(I — A(AT A)~1AT),

has rank n — k and F(z*) = 0. However, F'(z) may have roots that are not roots of F(z). We constructed
a set of singular problems while J(z*) has rank n — 1, by choosing

A=[1,1,..,1]T e R,

All codes are written in MATLAB R2009 programming environment on a personal PC with 2.5 GHz, 4
GB RAM, using Windows 7 operation system. The algorithms are terminated when the number of iterations

exceeds 500 or
| JEFy| < 107°.

Table 1 list the numerical results for five algorithms on the five test problems with different starting
points and different n values. All test problems are run for seven starting points —100xqg, —10xg, —xy,

xo, 10z, 100zo, 1000z, where ¢ is suggested in [13]. In Table 1, ” NF” and ” NJ” represent the numbers
of function evaluations, Jacobian evaluations and "NS?” returns Y (yes) or N(no) while ”Y” shows the cor-
responding method is converged to x* and ”"N” shows that it is converged to another solution. Besides, the
sign 7 —” indicates that the number of iterations exceeds 500 or one method failures. Note that, for general
nonlinear equations, the evaluations of the Jacobian are usually n times of the function evaluations. So, we
use the values ”NT = NF + NJxn” for comparisons of the total evaluations. From Table 1, we see that Al-
gorithm MLMN is competitive with the other methods, in the number of failures. Furthermore, the following
observations can be resulted that show the new algorithm is efficient and performs well for singular problems.
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1. The MLMN algorithm is the best algorithm, in terms of the number of total evaluations, among the
considered algorithms for almost 77% of the test problems while MLM, AMLM, MLMY and MLMZ solve
16%, 17%, 53% and 19% of the problems in the least number of total evaluations, respectively.

2. For Helical valley and Extended Helical valley problems, MLMN algorithm could successfully find z*
in 8 cases of 14 cases, while MLM, AMLM, MLMY and MLMZ could successfully find z* in 7, 6, 5 and 7
cases, respectively.

Conclusions
In this paper, we proposed a new three-steps modified Levenberg-Marquardt algorithm for solving systems
of nonlinear equations. This algorithm uses a new nonmonotone line search and an adaptive LM parameter.
Under suitable assumptions, the proposed algorithm is shown to be globally convergent. The biquadratic
convergence of the new algorithm is also obtained under the local error bound condition, which is weaker
than the nonsingularity at the Jacobian. Numerical experiments demonstrated that the developed algorithm
outperforms the other similar algorithms.
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Table 1: Numerical results for singular nonlinear equations with rank (F’(z*)) =n —1

MLMZ MLMY MLM AMLM MLMN
Problem n Zo NF/NJ/NT NS?| NF/NJ/NT NS?| NF/NJ/NT NS?| NF/NJ/NT NS!| NF/NJ/NT NS?
Rosenbrock 2 | -100 23/12/47 Y 34/12/58 Y 27/14/55 Y 27/14/55 Y 37/13/63 Y
-10 25/13/51 Y 28/10/48 Y 23/12/47 Y 23/12/47 Y 31/11/53 Y
-1 19/10/39 Y 28/10/48 Y 21/11/43 Y 21/11/43 Y 19/7/33 Y
1 21/11/43 Y 25/9/43 Y 21/11/43 Y 21/11/43 Y 25/9/43 Y
10 25/13/51 Y 31/11/53 Y 25/13/51 Y 25/13/51 Y 31/11/53 Y
100 29/15/59 Y 37/13/63 Y 29/15/59 Y 29/15/59 Y 37/13/63 Y
1000 37/19/75 Y 43/15/73 Y 35/18/69 Y 35/18/69 Y 43/15/73 Y
Extended 500 | -100 | 59/22/11059 Y 349/84/42349 Y 313/110/55313 Y | 363/114/57363 Y 40/14/7040 Y
Rosenbrock -10 27/14/7027 Y 202/53/26702 Y 25/13/6525 Y 25/13/6525 Y 34/12/6034 Y
-1 25/13/6525 Y 34/12/6034 Y 25/13/6525 Y 25/13/6525 Y 25/9/4525 Y
1 25/13/6525 Y 31/11/5531 Y 25/13/6525 Y 25/13/6525 Y 31/11/5531 Y
10 29/15/7529 Y 37/13/6537 Y 29/15/7529 Y 29/15/7529 Y 34/12/6034 Y
100 35/18/9035 Y 43/15/7543 Y 37/18/9037 Y 37/18/9037 Y 40/14/7040 Y
1000 | 74/31/15574 Y 76/22/11076 Y 39/20/10039 Y 39/20,/10039 Y 46/16/8046 Y
Powell singular 4 | -100 23/12/71 Y 28/10/68 Y 23/12/71 Y 23/12/71 Y 28/10/68 Y
-10 19/10/59 Y 22/8/55 Y 19/10/59 Y 19/10/59 Y 22/8/55 Y
-1 13/7/41 Y 16/6/40 Y 13/7/41 Y 13/7/41 Y 16/6/40 Y
1 13/7/41 Y 16/6/40 Y 13/7/41 Y 13/7/41 Y 16/6/40 Y
10 19/10/59 Y 22/8/55 Y 19/10/59 Y 19/10/59 Y 22/8/55 Y
100 | 23/12/71 Y 28/10/68 Y 23/12/71 Y 23/12/71 Y 28/10/68 Y
1000 27/14/83 Y 34/12/82 Y 27/14/83 Y 27/14/83 Y 34/12/82 Y
Extended 500 | -100 | 25/13/6525 Y 31/11/5531 Y 25/13/6525 Y 25/13/6525 Y 31/11/5531 Y
Powell singular -10 19/10/5019 Y 25/9/4525 Y 19/10/5019 Y 19/10/5019 Y 25/9/4525 Y
-1 15/8/4015 Y 19/7/3519 Y 15/8/4015 Y 15/8/4015 Y 19/7/3519 Y
1 15/8/4015 Y 19/7/3519 Y 15/8/4015 Y 15/8/4015 Y 19/7/3519 Y
10 19/10/5019 Y 25/9/4525 Y 19/10/5019 Y 19/10/5019 Y 25/9/4525 Y
100 25/13/6525 Y 31/11/5531 Y 25/13/6525 Y 25/13/6525 Y 31/11/5531 Y
1000 | 29/15/7529 Y 37/13/6537 Y 29/15/7529 Y 29/15/7529 Y 37/13/6537 Y
Powell badly 2 -100 - - - - -
-10 - - - - -
-1 R - - - -
1 R - - - -
10 - - - - -
100 - - - - 1895/138/2169 N
1000 - - - - 3712/269/4252 N
Extended 500 | -100 | 241/99/49741 N - - - -
Powell badly -10 | 113/34/17113 N S - - -
-1 74/19/9574 N 868/195/98368 N - - 13/5/2513 N
1 16/8/4016 N 523/138/69523 N - - 10/4/2010 N
10 - - - - 20/7/3520 N
100 - - - - 16/6/3016 N
Wood 4 | -100 31/16/95 Y 40/14/96 Y 31/16/95 Y 31/16/95 Y 40/14/96 Y
-10 27/14/83 Y 34/12/82 Y 27/14/83 Y 27/14/83 Y 34/12/82 Y
-1 21/11/65 Y 25/9/61 Y 21/11/65 Y 21/11/65 Y 25/9/61 Y
1 23/12/71 Y 28/10/68 Y 23/12/71 Y 23/12/71 Y 28/10/68 Y
10 27/14/83 Y 34/12/82 Y 27/14/83 Y 27/14/83 Y 34/12/82 Y
100 31/16/95 Y 40/14/96 Y 31/16/95 Y 31/16/95 Y 40/14/96 Y
1000 35/18/107 Y 43/15/103 Y 35/18/107 Y 35/18/107 Y 43/15/103 Y
Extended 500 | -100 | 35/18/9035 Y 43/15/7543 Y 33/17/8533 Y 33/17/8533 Y 43/15/7543 Y
Wood -10 29/15/7529 Y 37/13/6537 Y 29/15/7529 Y 29/15/7529 Y 37/13/6537 Y
-1 23/12/6023 Y 28/10/5028 Y 23/12/6023 Y 23/12/6023 Y 28/10/5028 Y
1 25/13/6525 Y 31/11/5531 Y 25/13/6525 Y 25/13/6525 Y 31/11/5531 Y
10 29/15/7529 Y 37/13/6537 Y 29/15/7529 Y 29/15/7529 Y 37/13/6537 Y
100 33/17/8533 Y 40/14/7040 Y 33/17/8533 Y 33/17/8533 Y 43/15/7543 Y
1000 - 46/16/8046 Y 37/19/9537 Y 37/19/9537 Y 46/16/8046 Y
Helical valley 3 | -100 11/6/29 N 25/9/52 Y 9/5/24 N 9/5/24 N 16/6/34 Y
-10 17/9/44 Y 28/7/49 N 23/11/56 Y 23/11/56 Y 10/4/22 Y
-1 1/1/4 Y 1/1/4 Y 1/1/4 Y 1/1/4 Y 1/1/4 Y
1 11/6/29 N 10/4/22 N 11/6/29 N 11/6/29 N 13/5/28 N
10 9/5/24 N 28/10/58 Y 11/6/29 N 11/6/29 N 28/10/58 Y
100 | 21/11/54 Y 25/7/46 N 17/8/41 N 13/7/34 N 16/6/34 N
1000 11/6/29 N 16/6/34 N 29/12/65 Y 27/12/63 Y 16/6/34 N
Extended 501 | -100 | 29/15/7544 Y 19/7/3526 N 25/13/6538 Y 25/13/6538 Y 19/7/3526 Y
Helical valley -10 19/7/3526 N 13/5/2518 N 11/6/3017 N 11/6/3017 N 13/5/2518 Y
-1 1/1/502 Y 1/1/502 Y 1/1/502 Y 1/1/502 Y 1/1/502 Y
1 11/6/3017 N 16/6/3022 N 13/7/3520 N 13/7/3520 N 13/5/2518 N
10 11/6/3017 N 13/5/2518 N 11/6/3017 N 11/6/3017 N 34/12/6046 Y
100 25/13/6538 Y 37/12/6049 Y 25/13/6538 Y 25/13/6538 Y 19/7/3526 N
1000 31/16/4047 Y 34/10/5044 N 27/14/7041 Y 15/8/4023 N 19/7/3526 N
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