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THREE-STEPS MODIFIED LEVENBERG-MARQUARDT METHOD
WITH A NEW LINE SEARCH FOR SYSTEMS OF NONLINEAR

EQUATIONS

Keyvan Amini∗ , Faramarz Rostami

Department of Mathematics, Faculty of Science, Razi University, Kermanshah, Iran

Abstract

Three steps modified Levenberg-Marquardt method for nonlinear equations introduced by Yang [18]. This
method uses the addition of the Levenberg-Marquardt (LM) step and two approximate LM steps as the trial
step at every iteration. Using trust region technique, the global and biquadratic convergence of the method
is proved by Yang. The main aim of this paper is to introduce a new line search strategy while investigate
the convergence properties of the method with this line search technique. Since the search direction of
Yang method may be not a descent direction, standard line searches can not be used directly. In this paper
we propose a new nonmonotone third order Armijo type line search technique which guarantees the global
convergence of this method while we use an adaptive LM parameter. It is proved that the convergence order
of the new method is biquadratic. Numerical results show the new algorithm is efficient and promising.

Keywords: Nonlinear equations, Levenberg-Marquardt method, Local error bound condition, Line search,
Global and biquadratic convergence.

1. Introduction

We consider the nonlinear system of equations

F (x) = 0, (1)

where F : Rn → Rn is a continuously differentiable function and F ′(x) is Lipschitz continuous. Due to the
nonlinearity of F (x), (1) may have no solution. Throughout the paper, we let that the solution set of (1)
is nonempty and denote it by X∗. There are many algorithms for solving the problem (1), for example:
Gauss-Newton method, Newton’s method, trust region methods, quasi-Newton methods and etc. ([3-9],
[16]). The Levenberg-Marquardt (LM) is one family of classical methods for solving problem (1). [10, 12].
This family, at every iteration, computes the trial step dk by solving the linear system

(JT
k Jk + λkI)d = −JT

k Fk, (2)

where Fk = F (xk) and Jk = F ′(xk) is the Jacobian matrix of F at xk and λk is a nonnegative regularized
parameter. The LM step (2) is actually a modification of the Gauss-Newton step where parameter λk is
introduced to prevent the steps from being too large when JT

k Jk is singular or nearly singular. It is clear
that for λk = 0, the LM method is reduced to Newton step when Jk is nonsingular. The LM method has
the quadratic convergence as the Newton method when the Jacobian matrix is nonsingular and Lipschitz
continuous at the solution. In [17], Yamashita and Fukushima proved the quadratic convergence for LM
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method with λk = ‖F (xk)‖2 under the local error bound condition which is weaker than the nonsingularity
of the Jacobian at the solution. In [8], Fan and Yuan showed that a similar result is satisfied when λk =
‖F (xk)‖δ with δ ∈ [1, 2] where numerical results show the choice δ = 1 has the best results. In [6], Fan
introduced a modified Levenberg-Marquardt (MLM) method with cubic convergence. The MLM method in
each iteration, firstly, obtains d1k by solving (2), then with setting yk = xk + d1k, solves the linear system

(JT
k Jk + λkI)d = −JT

k F (yk), (3)

to obtains d2k and sets
sk = d1k + d2k.

Fan showed that with choosing
λk = µk‖Fk‖δ,

where µk > 0 is updated at each iteration and δ ∈ [1, 2], the MLM method converges cubically under the
local error bound condition. It is noticeable that in the k-iteration, this method doesn’t need compute J(yk)
and only uses Jk in (3) and so avoids of some Jacobian computation. Inspired by this fact, to reduce the cost
of Jacobian computation, Yang in [18], used another approximation step by solving the following system

(JT
k Jk + λkI)d = −JT

k F (zk), with zk = yk + d2k, (4)

and proposed the trail step as follows
dk = d1k + d2k + d3k. (5)

The globally convergence of the method was described by using of a trust region technique. Under the
local error bound condition, Yang also showed the new method has biquadratic convergence. It is noticeable
that dk defined by (5) is no longer a descent direction and so it is not easy to prove the global convergence of
the method with standard line searches. The main purpose of this paper is to introduce a new nonmonotone
line search and show this fact that the similar convergence properties can be proved as the trust region case
under local error bound condition. Note that if dk is a descent direction of merit function φ(x) = 1

2‖F (x)‖2

at xk, one can choose a steplength αk > 0 satisfying

‖F (xk + αdk)‖2 ≤ ‖Fk‖2 + 2σαFT
k Jkdk, (6)

where σ ∈ (0, 1) is a given constant, the next iterate is then determined as

xk+1 = xk + αkdk.

It is clear that this line search is suitable for descent directions while direction dk defined by (5) may be not
necessarily a descent direction of the merit function φ. Therefore, the standard line search techniques such
as (6) can not be used directly in this case. Li and Fukushima in [11], presented a nonmonotone line search
for nonlinear equations, that is,

‖F (xk + αd1k)‖2 ≤ (1 + ǫk)‖Fk‖2 − σ1α
2‖d1k‖2 − σ2α

2‖Fk‖2, (7)

where σ1 and σ2 are positive constants and the positive sequence {ǫk} satisfies

∞∑

k=0

ǫk < ∞. (8)

Since the direction of MLM method contains two parts, motivated by (7), Zhou in [19], used a new non-
monotone second order Armijo type line search as follows

‖F (xk + αd1k + α2d2k)‖2 ≤ (1 + ǫk)‖Fk‖2 − σ1α
2‖d1k‖2 − σ2α

2‖d2k‖2 − σ3α
2‖Fk‖2, (9)

where σ1, σ2 and σ3 are positive constants and the positive sequence {ǫk} satisfies (8). It is straightforward
to see that as α → 0+, the left-hand side of (9) goes to ‖Fk‖2, while the right-hand side tends to the positive
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constant (1 + ǫk)‖Fk‖2. Thus, (9) is satisfied for all sufficiently small α > 0. Hence, one can obtains αk by
means of a backtracking process. This line search can avoid the necessity of descent directions to ensure
that each iteration is well defined. After determination αk satisfying in (9), Zhou set

xk+1 = xk + αkd1k + α2
kd2k, (10)

and proved that the cubic convergence of the MLM method is preserved under the local error bound con-
dition. The numerical experiments on the Extended Rosenbrock problem and Extended Powell Singular
problem with different starting points for different n values showed that this algorithm (Algorithm 2.1 in
[19]) performs well as the MLM algorithm. Inspired by (7) and (9), since the direction dk defined by (5)
contains three parts, an extension of line search (9) is as follows:

‖F (xk+αd1k+α2d2k+α3d3k)‖2 ≤ (1+ǫk)‖Fk‖2−σ1α
2‖d1k‖2−σ2α

2‖d2k‖2−σ3α
2‖d3k‖2−σ4α

2‖Fk‖2. (11)

This line search contains some disadvantages, for example when αk is small then α2
k and α3

k may be very
small , so α2

kd2k and α3
kd3k may be smaller than the machine precision which causes to lose their roles. To

overcome this disadvantage, we use a new nonmonotone third order Armijo type line search:
Let σ1 and σ2 are positive constants, γ is a very small positive constant, and d1k, d2k and d3k are computed
by solving (2), (3) and (4), respectively. We set

dk =





d1k + d2k + d3k if FT
k Jk(d1k + d2k + d3k) ≤ −γ,

d1k otherwise,
(12)

then we determine a positive steplength αk so that the following line search hold for α = αk :

‖F (xk + αdk)‖2 ≤ (1 + ǫk)‖Fk‖2 − σ1α
2‖dk‖2 − σ2α

2‖Fk‖2, (13)

where the positive sequence {ǫk} satisfies (8).
In this paper we also use the following LM parameter

λk = µ‖Fk‖δk with δk =





1
‖Fk‖ if ‖Fk‖ ≥ 1,

1 otherwise.
(14)

where µ is a positive constant. This parameter is introduced by Amini and Rostami [1], to reduce some
disadvantages of the papular parameter λk = µk‖Fk‖ that is generally used in literatures. (For example see
[6, 7, 8, 18, 19]). This choice even when ‖Fk‖ is very large, doesn’t permit λk to be large and so prevents
the LM step to be small too. [1].

The rest of the paper is organized as follows. In Section 2, we describe the new algorithm in more
details. In Section 3, we establish the global convergence of the proposed algorithm under some suitable
conditions. In Section 4, the biquadratic convergence of the new algorithm is proved under the local error
bound condition. Finally, some numerical experiments are given in Section 5.

2. The three steps modified Levenberg-Marquardt algorithm

In this section, we present the new algorithm.

Algorithm 2.1. The modified three-steps Levenberg-Marquardt with a new line search.

Input: x0 ∈ Rn, µ > 0, γ > 0, ε > 0, ǫ > 0, σ1, σ2 > 0, r, ρ ∈ (0, 1) and the sequence {ǫk} satisfying in (8).
Step 0 Set k := 0.
Step 1 Compute Fk = F (xk) and Jk = J(xk).
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If ‖JT
k Fk‖ ≤ ε, stop. Otherwise compute λk by (14).

Step 2
a) Obtain d1k by solving the following linear system

(JT
k Jk + λkI)d = −JT

k Fk, (15)

b) Solve the linear system

(JT
k Jk + λkI)d = −JT

k F (yk), (16)

to obtain d2k, where yk = xk + d1k.

c) Solve the linear system
(JT

k Jk + λkI)d = −JT
k F (zk), (17)

to obtain d3k, where zk = yk + d2k.

d) Set dk = d1k + d2k + d3k.
Step 3 If

‖F (xk + dk)‖ ≤ ρ‖Fk‖, (18)

then take αk = 1 and go to step 5. Otherwise go to step 4.
Step 4 Set

dk =





d1k + d2k + d3k if FT
k Jk(d1k + d2k + d3k) ≤ −γ,

d1k otherwise.
(19)

Compute αk = max{1, r1, r2, ...} with α = ri satisfying

‖F (xk + αdk)‖2 ≤ (1 + ǫk)‖Fk‖2 − σ1α
2‖dk‖2 − σ2α

2‖Fk‖2, (20)

where the positive sequence {ǫk} satisfies (8).
Step 5 Set xk+1 = xk + αkdk. Set k=k+1 and goto step 1.

Remark 2.1.

i) In step 4, when FT
k Jk(d1k + d2k + d3k) ≤ −γ, it can be resulted that d1k + d2k + d3k is a suitable

direction, so it is better that algorithm uses the direction dk = d1k + d2k + d3k.
ii) As α → 0+, the left-hand side of (20), goes to ‖Fk‖2 while the right-hand side tends to the positive

value (1 + ǫk)‖Fk‖2, thus (20) is satisfied for all sufficiently small α > 0. This shows that Algorithm 2.1 is
well defined.

3. Global convergence

In this section, we show Algorithm 2.1 is globally convergence. Firstly, we define

Ω0 = {x | ‖F (x)‖ ≤ eǫ/2‖F0‖} (21)

where ǫ is a positive constant such that
∞∑

k=0

ǫk ≤ ǫ < ∞. (22)

To study the global convergence of Algorithm 2.1, we need the following assumptions.
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Assumption 3.1 There exists a neighborhood Ω of Ω0 such that both F (x) and its Jacobian J(x) are
Lipschitz continuous on it, i.e., there exists a positive constant L such that

‖F (y)− F (x)‖ ≤ L‖y − x‖, ∀x, y ∈ Ω, (23)

and
‖J(y)− J(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Ω. (24)

Due to the lipschitz continuous of F, it is clear that

‖J(x)‖ ≤ L, ∀x ∈ Ω. (25)

Now we can state two following lemmas that show the sequence {xk}, generated by Algorithm 2.1, is belong
to Ω0 and the sequence ‖Fk‖ is convergence.

Lemma 3.1. ([4, Lemma 3.3]). Let {ak} and {rk} be positive sequences satisfying ak+1 ≤ (1 + rk)ak + rk

and
∑∞

k=0 rk < ∞ Then {ak} converges.

Lemma 3.2. Let the sequence {xk} be generated by Algorithm 2.1, then

(a) the sequence ‖Fk‖ converges and xk ∈ Ω0 for all k ≥ 0.

(b) the sequence ‖Fk‖ is bounded, that is, there exists a constant M > 0 such that

‖Fk‖ ≤ M, ∀k ≥ 0. (26)

Proof. From (18)- (20), we have
‖Fk+1‖2 ≤ (1 + ǫk)‖Fk‖2,

this inequality together with (22) and Lemma 3.1 imply that {‖Fk‖2} and so {‖Fk‖} are convergence.
Moreover, from the last inequality, we deduce that

‖Fk+1‖ ≤ (1 + ǫk)1/2‖Fk‖ ≤ · · · ≤
k∏

i=0

(1 + ǫi)1/2‖F0‖,

this inequality along with arithmetic-geometric means inequality and (22) results

‖Fk+1‖ ≤ (
k∑

i=0

1
k + 1

(1 + ǫi))
k+1
2 ‖F0‖ ≤ (1 +

ǫ

k + 1
)

k+1
2 ‖F0‖ ≤ e

ǫ
2 ‖F0‖,

which means xk ∈ Ω0 for all k. The proof of (a) is completed. Part (a) together with the definition of Ω0

implies that the sequence ‖Fk‖ is bounded. �

Lemma 3.3. Let the sequence {xk} be generated by Algorithm 2.1. If (18) holds for infinite k, then ‖Fk‖
is convergence to zero.

Proof. Denote the index sets

Hj = {k ≤ j | (18)holds}, Gj = {0, 1, · · ·, j} \Hj , j = 1, 2, · · ·.

If (18) holds for infinite k, then as j →∞, |Hj | → ∞, where |Hj | is the number elements of Hj . From (18)-
(20), we have

‖Fk+1‖ ≤ (
∏

i∈Gk

(1 + ǫi)1/2
∏

i∈Hk

ρ)‖F0‖

= (
∏

i∈Gk

(1 + ǫi)1/2)ρ|Hk|‖F0‖

≤ e
ǫ
2 ρ|Hk|‖F0‖ → 0 as k →∞.

So, ‖Fk‖ → 0. �
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The following theorem shows that the sequence {xk}, generated by Algorithm 2.1, converges to a sta-
tionary point of the merit function.

Theorem 3.4. Under the conditions of Assumption 3.1, Algorithm 2.1 either terminates in finite iterations
or satisfies

lim inf
k→∞

‖JT
k Fk‖ = 0. (27)

Proof. By contradiction, suppose there exist τ > 0 and an integer k̂ such that

‖JT
k Fk‖ ≥ τ, ∀ k > k̂. (28)

This along with (25) implies that
‖Fk‖ ≥ L−1τ (29)

holds for sufficiently large k. So, by lemma (3.3), the inequality (18) holds only for finite k. On the other
hand the relations (20), (22) and (26) result

∞∑

k=0

α2
k‖Fk‖2 < ∞,

which implies limk→∞ αk‖Fk‖ = 0. This relation together with (29) yields

lim
k→∞

αk = 0. (30)

If FT
k Jk(d1k + d2k + d3k) ≤ −γ, from the line search (20), we have

‖F (xk + ᾱkdk)‖2 − ‖Fk‖2 > −ᾱ2
k(σ1‖dk‖2 + σ2‖Fk‖2) + ǫk‖Fk‖2

> −ᾱ2
k(σ1‖dk‖2 + σ2‖Fk‖2),

while ᾱk = αk

r . This inequality along with (23) concludes

ᾱ2
k(σ1‖dk‖2 + σ2‖Fk‖2) > −(‖F (xk + ᾱkdk)‖2 − ‖Fk‖2)

= −2FT
k (F (xk + ᾱkdk)− Fk)− ‖F (xk + ᾱkdk)− Fk‖2

≥ −2FT
k (F (xk + ᾱkdk)− Fk)− L2ᾱ2

k‖dk‖2. (31)

On the other hand, by the mean value theorem, we have

FT
k (F (xk + ᾱkdk)− Fk) = ᾱkFT

k Jkdk + FT
k

∫ 1

0

(J(xk + tᾱkdk)− Jk)ᾱkdkdt.

Substituting dk together with (24) and (26), result

FT
k (F (xk + ᾱkdk)− Fk) ≤ ᾱkFT

k Jk(d1k + d2k + d3k) +
1
2
LMᾱ2

k‖dk‖2,

≤ −ᾱkγ +
1
2
LMᾱ2

k‖dk‖2. (32)

Combining (31) and (32) results

ᾱ2
k(σ1‖dk‖2 + σ2‖Fk‖2) + L2ᾱ2

k‖dk‖2 > 2ᾱkγ − LMᾱ2
k‖dk‖2,

or equivalently
ᾱk((σ1 + LM + L2)‖dk‖2 + σ2‖Fk‖2) > 2γ.
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So, it is cocluded that

ᾱk >
2γ

(σ1 + LM + L2)‖dk‖2 + σ2‖Fk‖2
. (33)

Similarly, if FT
k Jk(d1k + d2k + d3k) > −γ then the relations (19) and (20), imply

‖F (xk + ᾱkd1k)‖2 − ‖Fk‖2 > −ᾱ2
k(σ1‖d1k‖2 + σ2‖Fk‖2) + ǫk‖Fk‖2

≥ −ᾱ2
k(σ1‖d1k‖2 + σ2‖Fk‖2),

where ᾱk = αk

r . This relation along with (23) concludes that

ᾱ2
k(σ1‖d1k‖2 + σ2‖Fk‖2) > −(‖F (xk + ᾱkd1k)‖2 − ‖Fk‖2)

= −2FT
k (F (xk + ᾱkd1k)− Fk)− ‖F (xk + ᾱkd1k)− Fk‖2

≥ −2FT
k (F (xk + ᾱkd1k)− Fk)− L2ᾱ2

k‖d1k‖2. (34)

On the other hand, using (24), (26) and (15) results

FT
k (F (xk + ᾱkd1k)− Fk) = FT

k Jkᾱkd1k + FT
k

∫ 1

0

(J(xk + tᾱkd1k)− Jk)ᾱkd1kdt

≤ FT
k Jkᾱkd1k +

1
2
LMᾱ2

k‖d1k‖2

= −ᾱkdT
1k(JT

KJk + λkI)d1k +
1
2
LMᾱ2

k‖d1k‖2. (35)

The relations (34) and (35) conclude that

ᾱk((σ1 + LM + L2)‖d1k‖2 + σ2‖Fk‖2) > 2dT
1k(JT

KJk + λkI)d1k > 2λk‖d1k‖2,

while the last inequality is induced from the positive definitive of JT
k Jk. So, we have

ᾱk >
2λk‖d1k‖2

(σ1 + LM + L2)‖d1k‖2 + σ2‖Fk‖2
. (36)

Now, let Jk = UΣV T be the singular value decomposition (SVD) of Jk, where U, V are two orthogonal
matrixes and Σ = diag(σ1, σ2, ..., σn) with σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0. Then

‖(JT
k Jk + λkI)−1‖ = ‖V (Σ2 + λkI)−1V T ‖ = ‖(Σ2 + λkI)−1‖ = max

i∈{1,2...,n}
(σ2

i + λkI)−1 ≤ λ−1
k . (37)

This inequality together with (14), (15), (25) and (26) implies that

‖d1k‖ = ‖(JT
k Jk + λkI)−1JT

k Fk‖ ≤ ‖(JT
k Jk + λkI)−1‖‖Jk‖‖Fk‖

≤ Lλ−1
k ‖Fk‖ =

L

µ
‖Fk‖1−δk

≤ L

µ
M1, (38)

where M1 = max{1, M}. Now, from (15), (16), (23), (37), and (25), we have

‖d2k‖ = ‖(JT
k Jk + λkI)−1JT

k F (yk)‖

≤ ‖(JT
k Jk + λkI)−1JT

k (F (yk)− Fk)‖+ ‖(JT
k Jk + λkI)−1JT

k Fk‖
≤ L2λ−1

k ‖d1k‖+ ‖d1k‖
7



= (
L2

µ‖Fk‖δk
+ 1)‖d1k‖. (39)

If ‖Fk‖ < 1 then (14) implies δk = 1. This along with (29) and (39) conclude that

‖d2k‖ ≤ (
L3

µτ
+ 1)‖d1k‖, (40)

holds for sufficiently large k.
On the other hand if ‖Fk‖ ≥ 1 then δk = 1

‖Fk‖ , so ‖Fk‖δk > 1 and by (39), we have

‖d2k‖ ≤ (
L2

µ
+ 1)‖d1k‖. (41)

The relations (40) and (41) imply that

‖d2k‖ ≤ (
L2

µ
M2 + 1)‖d1k‖ (42)

holds for sufficiently large k, where M2 = max{1, L
τ }.

In a similar way, from (14), (17), (25), (26) and (29), it is easily seen that

‖d3k‖ ≤ (
L2

µ
M2 + 1)2‖d1k‖ (43)

holds for sufficiently large k.
If lim infk→∞ ‖d1k‖ = 0 , then we have from (15) and (25) that

lim inf
k→∞

‖JT
k Fk‖ = lim inf

k→∞
‖(JT

k Jk + λkI)d1k‖ = 0,

which is a contradiction to (28). Hence there exists a constant β > 0 such that

lim inf
k→∞

‖d1k‖ > β.

Consequently, we can deduce from the above inequality together with (38), (42), (43), (26), (33) and (36),
that {αk} is bounded away from zero. This contradicts (30) and the proof is completed. �

4. Biquadratic convergence.

In this section, we show that the convergence rate of Algorithm 2.1 is biquadratic. First, we prove some
useful lemmas then we show δk = 1 and αk = 1, for sufficiently large k. By these facts we can establish
the biquadratic convergence of Algorithm 2.1 using completely same arguments as [18]. We need some
assumptions.

Definition 4.1. Let N be a subset of Rn such that N ∩X∗ 6= φ, we say that ‖F (x)‖ provides a local error
bound on N for (1), if there exists a positive constant c > 0 such that

‖F (x)‖ ≥ c dist(x, X∗), ∀x ∈ N, (44)

where dist(x, X) = infy∈X‖y − x‖.

In the sequel, we denote x̄k, the vector in X∗ satisfying

‖x̄k − xk‖ = dist(xk, X∗). (45)

8



Assumption 4.1
(a) There exists a solution x∗ ∈ X∗ of (1).
(b) F (x) and J(x) are Lipschitz continuous on N(x∗, b), i.e., there exists a positive constant L > 0

such that

‖F (y)− F (x)‖ ≤ L‖y − x‖, ∀x, y ∈ N(x∗, b), (46)

and
‖J(y)− J(x)‖ ≤ L‖y − x‖, ∀x, y ∈ N(x∗, b), (47)

where 0 < b < 1 and N(x∗, b) = {x ∈ Rn | ‖x− x∗‖ ≤ b}.
(c) ‖F (x)‖ provides a local error bound on N(x∗, b) for (1).

It is clear that the Lipschitzness of the Jacobian results

‖F (y)− F (x)− J(x)(y − x)‖ ≤ L‖y − x‖2, ∀x, y ∈ N(x∗, b). (48)

Lemma 4.1. Let Assumption 4.1 hold, then we have

µΓ ≤ λk ≤ Lµ‖x̄k − xk‖,

where Γ = min{1, c‖x̄k − xk‖}.

Proof. If ‖Fk‖ < 1 then δk = 1 and λk = µ‖Fk‖, in this case the local error bound condition (44) along
with (46) and F (x̄k) = 0, conclude that

cµ‖x̄k − xk‖ ≤ λk ≤ Lµ‖x̄k − xk‖. (49)

But if ‖Fk‖ ≥ 1 then we have 0 < 1
‖Fk‖ < 1, thus

1 = ‖Fk‖0 ≤ ‖Fk‖
1

‖Fk‖ ≤ ‖Fk‖,

and so
µ ≤ λk ≤ µ‖Fk‖.

Using (46) and F (x̄k) = 0, we get
µ ≤ λk ≤ Lµ‖x̄k − xk‖. (50)

If we set Γ = min{1, c‖x̄k − xk‖} from (49) and (50) we get

µΓ ≤ λk ≤ Lµ‖x̄k − xk‖,

which completes the proof. �

Lemma 4.2. Let Assumption 4.1 hold, then there exists a positive constant c1 > 0 such that the inequality

‖(JT
k Jk + λkI)−1JT

k ‖ ≤ c1 +
L

µΓ
‖x̄k − xk‖

holds for all sufficiently large k, where Γ = min{1, c‖x̄k − xk‖}.

Proof. According to the result given by Behling and Iusem in [2, Theorem 1] and without loss of generality,
we can assume rank(J(x̄)) = r for all x̄ ∈ N(x∗, b)

⋂
X∗. Suppose the SVD of J(x̄) is

J(x̄) = [Ū1, Ū2]
[

Σ̄1 0
0 0

] [
V̄ T

1

V̄ T
2

]
= Ū1Σ̄1V̄

T
1 ,

9



where Ū = [Ū1, Ū2] and V̄ = [V̄1, V̄2] are two orthogonal matrixes and Σ̄1 = diag(σ̄1, σ̄2, ..., σ̄r) with σ̄1 ≥
σ̄2 ≥ ... ≥ σ̄r > 0. Correspondingly, we consider the SVD of J(x) by

J(x) = [U1, U2, U3]




Σ1 0 0
0 Σ2 0
0 0 0







V T
1

V T
2

V T
3


 = U1Σ1V

T
1 + U2Σ2V

T
2 , (51)

where U = [U1, U2, U3] and V = [V1, V2, V3] are two orthogonal matrixes and Σ1 = diag(σ1, σ2, ..., σr)
with σ1 ≥ σ2 ≥ ... ≥ σr > 0, and Σ2 = diag(σr+1, σr+2, ..., σr+q) with σr+1 ≥ σr+2 ≥ ... ≥ σr+q > 0.
In the following, for clearness, we also neglect the subscription k in the decomposition of J(xk) and still
write Jk as same as (51)

Jk = U1Σ1V
T
1 + U2Σ2V

T
2 . (52)

So, we have

‖(JT
k Jk + λkI)−1JT

k ‖ = ‖[V1, V2, V3]




(Σ2
1 + λkI)−1Σ1

(Σ2
2 + λkI)−1Σ2

0







UT
1

UT
2

UT
3


 ‖

≤ ‖




(Σ2
1 + λkI)−1Σ1

(Σ2
2 + λkI)−1Σ2

0


 ‖

≤ ‖Σ−1
1 ‖+ ‖λ−1

k Σ2‖. (53)

By the theory of matrix perturbation [15] and the Lipschitzness of Jk, we have

‖diag(Σ1 − Σ̄1, Σ2, 0)‖ ≤ ‖Jk − J̄k‖ ≤ L‖x̄k − xk‖,

which yields
‖Σ1 − Σ̄1‖ ≤ L‖x̄k − xk‖ and ‖Σ2‖ ≤ L‖x̄k − xk‖. (54)

Since {xk} converges to the solution set X∗, we assume that L‖x̄k − xk‖ ≤ σ̄r

2 holds for all sufficiently large
k. Then it follows from (54) that

‖Σ−1
1 ‖ ≤ 1

σ̄r − L‖x̄k − xk‖
≤ 2

σ̄r
, (55)

moreover, for sufficiently large k, we have from (54) and Lemma 4.1 that

‖λ−1
k Σ2‖ =

‖Σ2‖
µ‖Fk‖δk

≤ L

µΓ
‖x̄k − xk‖. (56)

If we set c1 = 2
σ̄r

then from (53), (55) and (56), we get

‖(JT
k Jk+λkI)−1JT

k ‖ ≤ c1+ L
µΓ‖x̄k−xk‖. �

The following lemma describes an important property for the directions d1k, d2k and d3k.

Lemma 4.3. Under the condition of Assumption 4.1, for sufficiently large k, we have

(a) ‖d1k‖ = o(‖x̄k − xk‖),
(b) ‖d2k‖ = o(‖x̄k − xk‖),
(c) ‖d3k‖ = o(‖x̄k − xk‖).

10



Proof. The proof of (a) and (b) is similar to Lemma 3.3 in [19]. Here we proof (c). From (17), (48), (16)
and Lemma 4.2, we have

‖d3k‖ = ‖(JT
k Jk + λkI)−1JT

k F (zk)‖
≤ ‖(JT

k Jk+λkI)−1JT
k (F (zk)−F (yk)−Jkd2k)‖+‖(JT

k Jk+λkI)−1JT
k F (yk)‖+‖(JT

k Jk+λkI)−1JT
k Jkd2k‖

≤ L‖d2k‖2‖(JT
k Jk + λkI)−1JT

k ‖+ 2‖d2k‖

≤ L(c1 +
L

µΓ
‖x̄k − xk‖)‖d2k‖2 + 2‖d2k‖,

by the last inequality and (b), we get

‖d3k‖ = o(‖x̄k − xk‖). (57)

The proof is completed. �

Lemma 4.4. Under the condition of Assumption 4.1, for sufficiently large k, we have

(a) ‖U1U
T
1 F (zk)‖ = o(‖x̄k − xk‖),

(b) ‖U2U
T
2 F (zk)‖ = o(‖x̄k − xk‖),

(c) ‖U3U
T
3 F (zk)‖ = o(‖x̄k − xk‖).

Proof. The proof is similar to Lemma 3.4 in [18]. �

The following result can be found in [6].

Lemma 4.5. Under the condition of Assumption 4.1, for sufficiently large k, we have

(a) ‖U2U
T
2 Fk‖ = o(‖x̄k − xk‖),

(b) ‖Fk + Jkd1k‖ = o(‖x̄k − xk‖),
(c) ‖F (yk)‖ = o(‖x̄k − xk‖),
(d) ‖F (yk) + Jkd2k‖ = o(‖x̄k − xk‖).

Lemma 4.6. Let Assumption 4.1 hold. Then for sufficiently large k, we have

(a) ‖F (zk)‖ = o(‖x̄k − xk‖),
(b) ‖F (zk) + Jkd3k‖ = o(‖x̄k − xk‖).

Proof. According to the definition of zk, (47), Lemma 4.3 and Lemma 4.5 , we have

‖F (zk)‖ = ‖F (yk + d2k)‖

≤ ‖F (yk) + J(yk)d2k‖+ L‖d2k‖2

≤ ‖F (yk) + Jkd2k‖+ ‖J(yk)− Jk‖‖d2k‖+ L‖d2k‖2

≤ ‖F (yk) + Jkd2k‖+ L‖d1k‖‖d2k‖+ L‖d2k‖2

= o(‖x̄k − xk‖).
If we set ϕk(d) = ‖F (zk) + Jkd‖2 + λk‖d‖2, it is obviously from (17) that d3k is the minimizer of ϕk. So we
have

‖F (zk) + Jkd3k‖ ≤
√

ϕk(d3k) ≤
√

ϕk(0) = ‖F (zk)‖ = o(‖x̄k − xk‖), (58)

where the last equality is deduced from part (a). �
11



Lemma 4.7 shows that the unit step is always accepted for sufficiently large k while Lemma 4.8 shows, for
sufficiently large k, δk = 1.

Lemma 4.7. Let Assumption 4.1 hold. Then for sufficiently large k, we have αk = 1.

Proof. From (48), (58), Lemma 4.3 and Lemma 4.5, we have

‖F (xk +d1k +d2k +d3k)‖ ≤ ‖F (xk +d1k +d2k +d3k)−Fk−Jk(d1k +d2k +d3k)‖+‖Fk +Jk(d1k +d2k +d3k)‖

≤ L‖d1k + d2k + d3k‖2 + ‖Fk + Jkd1k‖+ ‖F (yk) + Jkd2k‖+ ‖F (zk) + Jkd3k‖+ ‖F (yk)‖+ ‖F (zk)‖
= o(‖x̄k − xk‖).

Therefore, there exist a positive sequence {rk} convergence to zero such that

‖F (xk + d1k + d2k + d3k)‖ ≤ rk‖x̄k − xk‖ ≤ c−1rk‖Fk‖, (59)

where the last inequality uses the error bound condition.
Since rk → 0 and cρ is positive constant, there exists k0 ∈ N such that

rk < cρ, ∀k ≥ k0. (60)

The relations (59)-(60) imply

‖F (xk + d1k + d2k + d3k)‖ ≤ ρ‖Fk‖, ∀k ≥ k0.

So (18) holds for all sufficiently large k, which means αk = 1 for sufficiently large k and the proof is
completed. �

Lemma 4.8. Let Assumption 4.1 hold and the sequence {xk} is generated by Algorithm 2.1, then the set
D = {k ∈ N : ‖F (xk)‖ ≥ 1} is finite.

Proof. By contradiction, suppose the set D is infinite. This along with lemma 4.7 imply that there exists
k1 ∈ N such that

‖Fk‖ ≥ 1, ∀ k ≥ k1. (61)

By theorem 3.4, the sequence {xk} is converge to x∗. Because F is Lipschitz continuous, by (46), there
exists a constant L so that

‖F (xk)‖ = ‖F (xk)− F (x∗)‖ ≤ L‖xk − x∗‖, (62)

this inequality along with (61) concludes that

‖xk − x∗‖ ≥
1
L

, ∀ k ≥ k1,

which is a contradiction to the fact that xk → x∗. This shows the assumption is incorrect and the proof is
completed. �

The following theorem shows the convergence rate of Algorithm 2.1 is biquadratic.

Theorem 4.9. Under the condition of Assumption 4.1, the convergence rate of Algorithm 2.1 is biquadratic.

Proof. From Lemmas 4.7 and 4.8, we deduce δk = 1 and αk = 1, for sufficiently large k. Thus theorem can
be established using completely same arguments as [18], so we omit the proof here. �
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5. Numerical experiments

In this section, we report some numerical experiments to show that Algorithm 2.1 is an effective algo-
rithm for solving nonlinear equations and in particular, it works quite well on singular test problems. In the
sense we compare Algorithm 2.1 with four well known modified Levenberg-Marquardt algorithms, we use
the following abbreviations for these algorithms while the used value for parameters are also mentioned.

MLMY: Modified Levenberg Marquardt algorithm introduced by Yang [18] while

p0 = 10−4, p1 = 0.25, p2 = 0.75, δ = 1, µ1 = 10−3, m = 10−6.

MLMZ: Modified Levenberg Marquardt algorithm introduced by Zhou [19] while

σ1 = σ2 = σ3 = 0.005, ρ = 0.8, r = 0.5, δ = 1, µ = 10−4, ǫk =
0.5k

10
.

MLM: Modified Levenberg Marquardt algorithm introduced by Fan [6] while

p0 = 10−4, p1 = 0.25, p2 = 0.75, µ1 = 10−3, m = 10−6, δ = 1.

AMLM: Accelerating Modified Levenberg Marquardt algorithm introduced by Fan [7] while

p0 = 10−4, p1 = 0.25, p2 = 0.75, µ1 = 10−3, m = 10−6, δ = 1, α̃ = 5.

MLMN: Algorithm 2.1 with

σ1 = σ2 = 0.005, ρ = 0.8, r = 0.5, γ = 10−16, µ = 10−4, ǫk =
0.5k

10
.

In the sequel we compare Algorithm 2.1 with MLM, AMLM, MLMY and MLMZ on some singular test
problems which similar to [14], are constructed by modifying the standard test problems given in [13] by
the following form

F̂ (x) = F (x)− J(x∗)A(AT A)−1AT (x− x∗),

where F (x) is a standard test function, A ∈ Rn×k has full column rank with 1 ≤ k ≤ n and x∗ is a solution
of the equation F (x) = 0. Obviously

Ĵ(x∗) = J(x∗)(I −A(AT A)−1AT ),

has rank n− k and F̂ (x∗) = 0. However, F̂ (x) may have roots that are not roots of F (x). We constructed
a set of singular problems while Ĵ(x∗) has rank n− 1, by choosing

A = [1, 1, ..., 1]T ∈ Rn×1,

All codes are written in MATLAB R2009 programming environment on a personal PC with 2.5 GHz, 4
GB RAM, using Windows 7 operation system. The algorithms are terminated when the number of iterations
exceeds 500 or

‖JT
k Fk‖ ≤ 10−5.

Table 1 list the numerical results for five algorithms on the five test problems with different starting
points and different n values. All test problems are run for seven starting points −100x0, −10x0, −x0,
x0, 10x0, 100x0, 1000x0, where x0 is suggested in [13]. In Table 1, ”NF” and ”NJ” represent the numbers
of function evaluations, Jacobian evaluations and ”NS?” returns Y(yes) or N(no) while ”Y” shows the cor-
responding method is converged to x∗ and ”N” shows that it is converged to another solution. Besides, the
sign ”− ” indicates that the number of iterations exceeds 500 or one method failures. Note that, for general
nonlinear equations, the evaluations of the Jacobian are usually n times of the function evaluations. So, we
use the values ”NT = NF +NJ ∗n” for comparisons of the total evaluations. From Table 1, we see that Al-
gorithm MLMN is competitive with the other methods, in the number of failures. Furthermore, the following
observations can be resulted that show the new algorithm is efficient and performs well for singular problems.
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1. The MLMN algorithm is the best algorithm, in terms of the number of total evaluations, among the
considered algorithms for almost 77% of the test problems while MLM, AMLM, MLMY and MLMZ solve
16%, 17%, 53% and 19% of the problems in the least number of total evaluations, respectively.

2. For Helical valley and Extended Helical valley problems, MLMN algorithm could successfully find x∗

in 8 cases of 14 cases, while MLM, AMLM, MLMY and MLMZ could successfully find x∗ in 7, 6, 5 and 7
cases, respectively.

Conclusions
In this paper, we proposed a new three-steps modified Levenberg-Marquardt algorithm for solving systems
of nonlinear equations. This algorithm uses a new nonmonotone line search and an adaptive LM parameter.
Under suitable assumptions, the proposed algorithm is shown to be globally convergent. The biquadratic
convergence of the new algorithm is also obtained under the local error bound condition, which is weaker
than the nonsingularity at the Jacobian. Numerical experiments demonstrated that the developed algorithm
outperforms the other similar algorithms.
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Table 1: Numerical results for singular nonlinear equations with rank (F ′(x∗)) = n− 1
MLMZ MLMY MLM AMLM MLMN

Problem n x0 NF/NJ/NT NS? NF/NJ/NT NS? NF/NJ/NT NS? NF/NJ/NT NS? NF/NJ/NT NS?
Rosenbrock 2 -100 23/12/47 Y 34/12/58 Y 27/14/55 Y 27/14/55 Y 37/13/63 Y

-10 25/13/51 Y 28/10/48 Y 23/12/47 Y 23/12/47 Y 31/11/53 Y
-1 19/10/39 Y 28/10/48 Y 21/11/43 Y 21/11/43 Y 19/7/33 Y
1 21/11/43 Y 25/9/43 Y 21/11/43 Y 21/11/43 Y 25/9/43 Y
10 25/13/51 Y 31/11/53 Y 25/13/51 Y 25/13/51 Y 31/11/53 Y
100 29/15/59 Y 37/13/63 Y 29/15/59 Y 29/15/59 Y 37/13/63 Y
1000 37/19/75 Y 43/15/73 Y 35/18/69 Y 35/18/69 Y 43/15/73 Y

Extended 500 -100 59/22/11059 Y 349/84/42349 Y 313/110/55313 Y 363/114/57363 Y 40/14/7040 Y
Rosenbrock -10 27/14/7027 Y 202/53/26702 Y 25/13/6525 Y 25/13/6525 Y 34/12/6034 Y

-1 25/13/6525 Y 34/12/6034 Y 25/13/6525 Y 25/13/6525 Y 25/9/4525 Y
1 25/13/6525 Y 31/11/5531 Y 25/13/6525 Y 25/13/6525 Y 31/11/5531 Y
10 29/15/7529 Y 37/13/6537 Y 29/15/7529 Y 29/15/7529 Y 34/12/6034 Y
100 35/18/9035 Y 43/15/7543 Y 37/18/9037 Y 37/18/9037 Y 40/14/7040 Y
1000 74/31/15574 Y 76/22/11076 Y 39/20/10039 Y 39/20/10039 Y 46/16/8046 Y

Powell singular 4 -100 23/12/71 Y 28/10/68 Y 23/12/71 Y 23/12/71 Y 28/10/68 Y
-10 19/10/59 Y 22/8/55 Y 19/10/59 Y 19/10/59 Y 22/8/55 Y
-1 13/7/41 Y 16/6/40 Y 13/7/41 Y 13/7/41 Y 16/6/40 Y
1 13/7/41 Y 16/6/40 Y 13/7/41 Y 13/7/41 Y 16/6/40 Y
10 19/10/59 Y 22/8/55 Y 19/10/59 Y 19/10/59 Y 22/8/55 Y
100 23/12/71 Y 28/10/68 Y 23/12/71 Y 23/12/71 Y 28/10/68 Y
1000 27/14/83 Y 34/12/82 Y 27/14/83 Y 27/14/83 Y 34/12/82 Y

Extended 500 -100 25/13/6525 Y 31/11/5531 Y 25/13/6525 Y 25/13/6525 Y 31/11/5531 Y
Powell singular -10 19/10/5019 Y 25/9/4525 Y 19/10/5019 Y 19/10/5019 Y 25/9/4525 Y

-1 15/8/4015 Y 19/7/3519 Y 15/8/4015 Y 15/8/4015 Y 19/7/3519 Y
1 15/8/4015 Y 19/7/3519 Y 15/8/4015 Y 15/8/4015 Y 19/7/3519 Y
10 19/10/5019 Y 25/9/4525 Y 19/10/5019 Y 19/10/5019 Y 25/9/4525 Y
100 25/13/6525 Y 31/11/5531 Y 25/13/6525 Y 25/13/6525 Y 31/11/5531 Y
1000 29/15/7529 Y 37/13/6537 Y 29/15/7529 Y 29/15/7529 Y 37/13/6537 Y

Powell badly 2 -100 - - - - -
-10 - - - - -
-1 - - - - -
1 - - - - -
10 - - - - -
100 - - - - 1895/138/2169 N
1000 - - - - 3712/269/4252 N

Extended 500 -100 241/99/49741 N - - - -
Powell badly -10 113/34/17113 N - - - -

-1 74/19/9574 N 868/195/98368 N - - 13/5/2513 N
1 16/8/4016 N 523/138/69523 N - - 10/4/2010 N
10 - - - - 20/7/3520 N
100 - - - - 16/6/3016 N

Wood 4 -100 31/16/95 Y 40/14/96 Y 31/16/95 Y 31/16/95 Y 40/14/96 Y
-10 27/14/83 Y 34/12/82 Y 27/14/83 Y 27/14/83 Y 34/12/82 Y
-1 21/11/65 Y 25/9/61 Y 21/11/65 Y 21/11/65 Y 25/9/61 Y
1 23/12/71 Y 28/10/68 Y 23/12/71 Y 23/12/71 Y 28/10/68 Y
10 27/14/83 Y 34/12/82 Y 27/14/83 Y 27/14/83 Y 34/12/82 Y
100 31/16/95 Y 40/14/96 Y 31/16/95 Y 31/16/95 Y 40/14/96 Y
1000 35/18/107 Y 43/15/103 Y 35/18/107 Y 35/18/107 Y 43/15/103 Y

Extended 500 -100 35/18/9035 Y 43/15/7543 Y 33/17/8533 Y 33/17/8533 Y 43/15/7543 Y
Wood -10 29/15/7529 Y 37/13/6537 Y 29/15/7529 Y 29/15/7529 Y 37/13/6537 Y

-1 23/12/6023 Y 28/10/5028 Y 23/12/6023 Y 23/12/6023 Y 28/10/5028 Y
1 25/13/6525 Y 31/11/5531 Y 25/13/6525 Y 25/13/6525 Y 31/11/5531 Y
10 29/15/7529 Y 37/13/6537 Y 29/15/7529 Y 29/15/7529 Y 37/13/6537 Y
100 33/17/8533 Y 40/14/7040 Y 33/17/8533 Y 33/17/8533 Y 43/15/7543 Y
1000 - 46/16/8046 Y 37/19/9537 Y 37/19/9537 Y 46/16/8046 Y

Helical valley 3 -100 11/6/29 N 25/9/52 Y 9/5/24 N 9/5/24 N 16/6/34 Y
-10 17/9/44 Y 28/7/49 N 23/11/56 Y 23/11/56 Y 10/4/22 Y
-1 1/1/4 Y 1/1/4 Y 1/1/4 Y 1/1/4 Y 1/1/4 Y
1 11/6/29 N 10/4/22 N 11/6/29 N 11/6/29 N 13/5/28 N
10 9/5/24 N 28/10/58 Y 11/6/29 N 11/6/29 N 28/10/58 Y
100 21/11/54 Y 25/7/46 N 17/8/41 N 13/7/34 N 16/6/34 N
1000 11/6/29 N 16/6/34 N 29/12/65 Y 27/12/63 Y 16/6/34 N

Extended 501 -100 29/15/7544 Y 19/7/3526 N 25/13/6538 Y 25/13/6538 Y 19/7/3526 Y
Helical valley -10 19/7/3526 N 13/5/2518 N 11/6/3017 N 11/6/3017 N 13/5/2518 Y

-1 1/1/502 Y 1/1/502 Y 1/1/502 Y 1/1/502 Y 1/1/502 Y
1 11/6/3017 N 16/6/3022 N 13/7/3520 N 13/7/3520 N 13/5/2518 N
10 11/6/3017 N 13/5/2518 N 11/6/3017 N 11/6/3017 N 34/12/6046 Y
100 25/13/6538 Y 37/12/6049 Y 25/13/6538 Y 25/13/6538 Y 19/7/3526 N
1000 31/16/4047 Y 34/10/5044 N 27/14/7041 Y 15/8/4023 N 19/7/3526 N
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