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a b s t r a c t

In thiswork,we present numerical studies of fixed-stress iterative coupling for solving flow
and geomechanics with propagating fractures in a porous medium. Specifically, fracture
propagations are described by employing a phase-field approach. The extension to fixed-
stress splitting to propagating phase-field fractures and systematic investigation of its
properties are important enhancements to existing studies. Moreover, we provide an
accurate computation of the fracture opening using level-set approaches and a subsequent
finite element interpolation of thewidth. The latter enters as fracture permeability into the
pressure diffractionproblemwhich is crucial for fluid filled fractures. Our developments are
substantiated with several numerical tests that include comparisons of computational cost
for iterative coupling and nonlinear and linear iterations as well as convergence studies in
space and time.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Iterative coupling has received great importance for coupling flow andmechanics in subsurfacemodeling, environmental
and petroleum engineering problems [1–7]. Recently, the extension of iterative coupling to fractured porous media has
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been of interest [8–10]. However, reliable and efficient numerical methods in coupled poromechanics, including fractures,
still pose computational challenges. The applications include multiscale and multiphysics phenomena such as reservoir
deformation, surface subsidence, well stability, sand production, waste deposition, pore collapse, fault activation, hydraulic
fracturing, CO2 sequestration, and hydrocarbon recovery.

On the other hand, quasi-static brittle fracture propagation using variational techniques has attracted attention in
recent years since the pioneering work in [11,12]. The numerical approach [11] is based on Ambrosio–Tortorelli elliptic
functionals [13,14]. Here, discontinuities in the displacement field u across the lower-dimensional crack surface are
approximated by an auxiliary function ϕ. This function can be viewed as an indicator function, which introduces a diffusive
transition zone between the broken and the unbroken material. This zone has a half bandwidth ε, which is a model
regularization parameter. From an application viewpoint, two situations are of interest for given fracture(s): first, observing
the variation of the fracture width (crack opening displacement) and second, change of the fracture length. The latter
situation is by far more complicated. However, both configurations are of importance and variational fracture techniques
can be used for both of them.

Fracture evolutions satisfy a crack irreversibility constraint such that the resulting system can be characterized as
a variational inequality. Our motivation for employing such a variational approach is that fracture nucleation, propa-
gation, kinking, and the crack morphology are automatically included in the model. In addition, explicit remeshing or
reconstruction of the crack path is not necessary. The underlying equations are based on principles arising from contin-
uum mechanics that can be treated with (adaptive) Galerkin finite elements. An important modification of [12] towards a
thermodynamically-consistent phase-field fracture model has been accomplished in [15,16]. These approaches have been
extended to pressurized fractures in [17,18] that include a decoupled approach and a fully-coupled technique accompa-
nied with rigorous analysis. Moreover, a free energy functional was established in [17]. In these last studies, the crack ir-
reversibility constraint has been imposed through penalization. It is well-known that the energy functional of the basic
displacement/phase-field model is non-convex and constitutes a crucial aspect in designing efficient and robust methods.
Most approaches for coupling displacement and phase field are sequential, e.g., [19–22]; however it is well-known that a
monolithic treatment has higher robustness (and potentially better efficiency) than sequential coupling. Indeed it has been
shown in [23,24] that for certain phase-field fracture configurations partitioned coupling is more expensive than a mono-
lithic solution. Consequently in this paper, we adopt a quasi-monolithic approach using an extrapolation in the phase-field
variable [25,26].

Recent advances and numerical studies for treating multiphysics phase-field fracture include the following; thermal
shocks and thermo-elastic–plastic solids [27–29], pressurized fractures [30,18,31–33], fluid-filled (i.e., hydraulic)
fractures [9,34–39], proppant-filled fractures [40], a fractured well-model within a reservoir [41], and crack initiations
with microseismic probability maps [42]. These studies demonstrate that phase-field fracture has great potential to tackle
practical field problems.

Addressing multiphysics problems requires careful design of the solution algorithms. For the displacement/phase-field
subproblem, we employ a quasi-monolithic approach as previously mentioned, but to couple this fractured-mechanics to
flow, we use a splitting approach. The latter is more efficient for solvers and for choosing different time scales for both
mechanics and flow, respectively. In addition, the splitting permits easier extensions to multiphase flow including equation
of state (EOS) compositional flow. A successful splitting approach is fixed-stress iterative coupling, which has been applied
in a series of papers for coupling phase-field fracture/mechanics and flow [9,34,40,42]. However a systematic investigation
of the performance of this scheme is still missing. It is the objective of this paper to illustrate using benchmarks and mesh
refinement studies to establish the robustness and efficiency of the fixed-stress algorithm. These studies are essential for
future extensions including efficient three-dimensional practical field problems.

In addition, we also focus on a more accurate approximation of the fracture width. The authors of [43] recently proposed
a two-stage level-set approach in which first a level-set function is computed with the help of the phase-field function
and in a second step this level-set function is smoothed due to high gradients. However, since we only need the level-set
function to obtain normal vectors on the fracture boundary, we also propose an alternative method which simplifies the
above approach by avoiding the computation of an explicit level-set function but directly using the computed phase-field
function. In addition, we note that these approaches do not derive thewidth formulation inside the fracture, which is crucial
for the fracture permeability computation for fluid filled fracture propagations. Thus, here we propose amethod to compute
the crack width values inside the fracture by employing an interpolation based on the values in the diffusive fracture
zone.

To resulting fluid filled fracture propagation framework consists of five equations (four equations when using phase-
field directly as a level-set value) for five (i.e., four) unknowns: vector-valued displacements u, scalar-valued phase-field
ϕ, pressure p, level-set ϕLS, and a finite element representation of the fracture width w. The first problem (namely the
displacement/phase-field) is nonlinear and subject to an inequality constraint-in-time (the crack irreversibility) whereas
the other three problems are linear.

The outline of this paper is as follows: In Section 2 we recapitulate the flow equations in terms of a pressure diffraction
problem, and the displacement-phase-field system for themechanics part. In Section 3, two equations for computing a level-
set function and the width are formulated. In Section 4 we discuss the discretization of all problems. In the next Section 5
we address discretization and the fixed-stress coupling algorithm. Several numerical examples are presented in Section 6,
which demonstrate the performance of our algorithmic developments.
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Fig. 1. Sketch of a penny shaped fracture region (C) for a three-dimensional setting. The fracture boundary moves in time.

Fig. 2. Sketch of the (a) time dependent domain for a propagating fracture for two different times ta < tb and (b) a fixed fracture with the transition zone
where the width is ε.

2. Mathematical models for flow and mechanics of porous media and fractures

2.1. Preliminaries

Let Λ ∈ Rd, d = 2, 3 be a smooth open and bounded computational domain with Lipschitz boundary ∂Λ and let [0, T ]

be the computational time interval with T > 0. We assume that the crack C is contained inΛ. The prototype configuration
for a horizontal penny shape fracture is given in Fig. 1. Here, we emphasize that the crack is seen as a thin three-dimensional
volume ΩF (t) using ε at time t ∈ [0, T ] (see Fig. 2), where the thickness is much larger than the pore size of the porous
medium. The boundary of the fracture is denoted by ΓF (t) := Ω̄F (t) ∩ Ω̄R(t), whereΩR := Λ \ ΩF represents the porous
media.

Throughout the paper, we will use the standard notation for Sobolev spaces [44] and their norms. For example, let
E ⊆ Λ, then ∥ · ∥1,E and | · |1,E denote the H1(E) norm and semi-norm, respectively. The L2(E) inner product is defined
as (f , g) :=


E fg dx for all v,w ∈ L2(E) with the norm ∥ · ∥E . For simplicity, we eliminate the subscripts on the norms

if E = Λ. For any vector space X, Xd will denote the vector space of size d, whose components belong to X and Xd×d will
denote the d × d matrix whose components belong to X.

2.2. A pressure diffraction flow system

We now formulate the flow problem in terms of a diffraction system [45]. Specifically, the underlying Darcy flow
equations have the same structure in both the porous medium and the fracture. Using varying coefficients and an indicator
variable allows to distinguish between reservoir flow and fracture flow.

To derive the flow pressure equations for each sub-domain, first we consider the two separatemass continuity equations
for the fluid in the reservoir and the fracture, which we can rewrite as

∂t(ρFϕ
⋆
F )+ ∇ · (ρFvF ) = qF − qL in ΩF × (0, T ], (1)

∂t(ρRϕ
⋆
R)+ ∇ · (ρRvR) = qR in ΩR × (0, T ]. (2)

Here ρF , ρR are fluid densities, qL is a leak-off term (which is assumed to be zero in the following), qF and qR are source/sink
terms for fracture and reservoir, respectively.

We assume the fluid in the reservoir (j = R) and the fracture (j = F ) is slightly compressible, thus we define the fluid
density as

ρj := ρ0
j exp(cj(pj − p0j )) ≈ ρ0

j [1 + cj(pj − p0j )], j ∈ {F , R} (3)

where pj : Ωj × [0, T ] → R is the pressure, p0 is the initial pressure at t = 0, ρ0
j is the reference density and cj is the fluid

compressibility. In addition, ϕ⋆R and ϕ⋆F are the reservoir and fracture fluid fraction respectively and we set ϕ⋆F = 1 (since the
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porosity of the fracture is assumed to be one) and

ϕ⋆R := ϕ⋆0 + α∇ · u +
1
M
(pR − p0). (4)

Here u : Ω × [0, T ] → Rd is the solid displacement, α ∈ [0, 1] is the Biot coefficient, M > 0 is a given Biot modulus, and
ϕ⋆0 is the initial value.

Next, we describe the flow given by Darcy’s law for the fracture and for the reservoir, respectively by

vj = −
Kj

ηj
(∇pj − ρjg), j ∈ {F , R} (5)

where ηj is the fluid viscosity, Kj is the permeability, and g is the gravity.
Following the general reservoir approximation with the assumption that cR and cF are small enough, we use ρR = ρ0

R
and ρF = ρ0

F , and assume p0 = 0, to rewrite the Eqs. (1)–(2) by

ρ0
R∂t


1
M

pR + α∇ · u


− ∇ ·
KRρ

0
R

ηR
(∇pR − ρ0

Rg) = qR in ΩR × (0, T ], (6)

ρ0
F cF∂tpF − ∇ ·

KFρ
0
F

ηF
(∇pF − ρ0

F g) = qF in ΩF × (0, T ]. (7)

Inside the fracture flow equation, the fracture permeability is assumed to be isotropic such that

KF =
1
12
w(u)2, (8)

wherew(u) = [u · n] denotes the aperture (width) of the fracture, which means that the jump [·] of normal displacements
has to be computed; corresponding details are provided in Section 3. For further non-isotropic lubrication laws that have
been specifically derived for fluid-filled phase-field fractures, we refer to [9,40].

The system is supplemented with initial and boundary conditions. The initial conditions for the pressure diffraction
equations (6)–(7) are given by:

pF (x, 0) = p0F for all x ∈ ΩF (t = 0),

pR(x, 0) = p0R for all x ∈ ΩR(t = 0),

where p0F and p0R are smooth given pressures. Also we have

ϕ(x, 0) = ϕ0 for all x ∈ Λ(t = 0),

where ϕ0 is a given smooth initial fracture.
We prescribe the boundary and interface conditions for pressure as

KR(∇pR − ρ0
Rg) · n = 0 on ∂Λ× (0, T ], (9)

[p] = 0 on ΓF × (0, T ], (10)

KRρ
0
R

ηR
(∇pR − ρ0

Rg) · n =
KFρ

0
F

ηF
(∇pF − ρ0

F g) · n on ΓF × (0, T ], (11)

where n is the outward pointing unit normal on ΓF or ∂Λ.
In order to finalize our derivation we perform two steps; first, we introduce the coefficients with indicator functions

to combine Eqs. (6) and (7), secondly, we formulate the weak form in terms of a pressure diffraction system. The weak
formulation reads:

Formulation 1. Find p(·, t) ∈ Vp = H1(Λ) for almost all times t ∈ (0, T ] such that,

ρ0(∂tϕ
⋆, v)+ (ρ0Keff(∇p − ρ0g),∇v)− (q, v) = 0, ∀v ∈ Vp (12)

where the coefficient functions are defined as

ρ0 = χΩRρ
0
R + χΩF ρ

0
F , (13)

ϕ⋆ = ϕ⋆(·, t) := χΩR

 1
M

pR + α∇ · u


+ χΩF (cFpF ), (14)

q = q(·, t) := χΩRqR + χΩF qF , (15)

Keff := χΩR

KR

ηR
+ χΩF

KF

ηF
, (16)

where χΩR = 1 and χΩF = 0 inΩR, and χΩR = 0 and χΩF = 1 inΩF .
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2.3. Geomechanics and phase-field fracture equations

The displacement of the solid and diffusive flow in a non-fractured porous medium are modeled in ΩR by the classical
quasi-static elliptic–parabolic Biot system for a porous solid saturated with a slightly compressible viscous fluid. The
constitutive equation for the Cauchy stress tensor is given as

σ por(u, p)− σ0 = σ(u)− α(p − p0)I, (17)

where I is the identity tensor and σ0 is the initial stress value. The effective linear elastic stress tensor is

σ := σ(u) = λ(∇ · u)I + 2Ge(u), (18)

where λ,G > 0 are the Lamé coefficients. The linear elastic strain tensor is given as e(u) :=
1
2 (∇u+∇uT ). Then the balance

of linear momentum in the solid reads

− ∇ · σ por(u, p) = ρsg inΩR × (0, T ], (19)

where ρs is the density of the solid.We prescribe homogeneous Dirichlet boundary conditions on ∂Λ for the displacement u.
In the following, we describe our fracture approach in a porous medium using the previous setup. Modeling fractures

with a phase-field approach in Λ is formulated with the help of an elliptic (Ambrosio–Tortorelli) functional [13,14] and a
variational setting, which has been first proposed for linear elasticity in [12,11].

We now recapitulate the essential elements for a phase-field model for pressurized and fluid filled fractures in porous
media, which has been modeled in [17,18] including rigorous analysis. Two unknown solution variables are sought, namely
vector-valued displacementsu(·, t) and a smoothed scalar-valued indicator phase-field functionϕ(·, t). Hereϕ = 0 denotes
the crack region (ΩF ) and ϕ = 1 characterizes the unbroken material (ΩR). The intermediate values constitute a smooth
transition zone dependent on a regularization parameter ε > 0.

The physics of the underlying problem requires a crack irreversibility condition that is an inequality condition in time:

∂tϕ ≤ 0. (20)

Consequently, modeling of fracture evolution problems leads to a variational inequality system, that is always, due to this
constraint, quasi-stationary or time-dependent.

The resulting variational formulation is stated in an incremental (i.e., time-discretized) formulation in which the
continuous irreversibility constraint is approximated by

ϕ ≤ ϕold.

Here, ϕold will later denote the previous time step solution and ϕ the current solution. Let the function spaces be given by
V := H1

0 (Λ),W := H1(Λ) and

Win := {w ∈ H1(Λ)|w ≤ ϕold
≤ 1 a.e. onΛ}.

We note that the phase field function is subject to homogeneous Neumann conditions on ∂Λ. The Euler–Lagrange system
for pressurized phase-field fracture reads [18]:

Formulation 2. Let p ∈ H1(Λ) be given. Find {u, ϕ} ∈ V × W such that
(1 − κ)ϕ2

+ κ

σ+(u), e(w)


+ (σ−(u), e(w))− (α − 1)(ϕ2p, divw)+ (ϕ2

∇p,w) = 0 ∀w ∈ V , (21)

and

(1 − κ)(ϕ σ+(u) : e(u), ψ − ϕ)− 2(α − 1)(ϕ p div u, ψ − ϕ)+ 2 (ϕ∇p u, ψ)

+Gc


−

1
ε
(1 − ϕ,ψ − ϕ)+ ε(∇ϕ,∇(ψ − ϕ))


≥ 0 ∀ψ ∈ Win ∩ L∞(Λ). (22)

Here, Gc is the critical energy release rate and κ is a very small positive regularization parameter (κ ≈ 0) for the elastic
energy (in some cases, see for instance [46], κ = 0 evenworks). Physically, κ represents the residual stiffness of thematerial.
Consequently, since

(1 − κ)ϕ2
+ κ


→ κ for ϕ → 0,

the material stiffness decreases while approaching the fracture zone. Regarding the stress tensor split, we follow [47] in
which the stress tensor is additively decomposed into a tensile part σ+(u) and a compressive part σ−(u) by:

σ+(u) :=


2
n
G + λ


tr+(e(u))I + 2G


e(u)−

1
n
tr(e(u))I


, (23)

σ−(u) :=


2
n
G + λ


tr−(e(u))I, (24)
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(a) Phase field ϕ. (b) Level-set ϕLS . (c) Level-set ϕLS .

Fig. 3. For a given fracture in themiddle of domain, (a) the phase field values and in (b)–(c) the level-set valueswith zero level-set (ϕLS = 0) are illustrated.
In (c), a three-dimensional surface plot is shown.

where n is the dimension (2 or 3) and

tr+(e(u)) = max(tr(e(u)), 0), tr−(e(u)) = tr(e(u))− tr+(e(u)). (25)

We emphasize that the energy degradation only acts on the tensile part.

3. The fracture width computation using a level-set approach

A crucial issue in fluid-filled fractures is the fracture width w := w(u) computation since this enters as fracture
permeability values (8) into the pressure diffraction problem. Previously, the fracture width was approximated by given
point values of displacements in [34,40] and amethod for a single fracture constructing an additional displacement fieldwas
studied in [48]. In this section, we introduce a computational method to compute the crack width more robustly, especially
inside the fracture.

The first challenge is to compute the normal vector of the fracture interface. Here the method is inspired by a recent idea
proposed in [43] by introducing an (explicit) level-set function ϕLS for the fracture. However, we also note that employing a
level-set function to compute the normal vectors of iso-surfaces has been used formany different applications (for example,
see [49,50] and references cited therein). The initial step follows a standard procedure in level-set methods. Let ΓF be the
fracture boundary. We now define ΓF as the zero levels-set of a function ϕLS such that

ϕLS > 0, x ∈ ΩR,

ϕLS < 0, x ∈ ΩF ,

ϕLS = 0, x ∈ ΓF ,

where ΓF := {x ∈ Λ | ϕ(x, t) = CLS},ΩR := {x ∈ Λ | ϕ(x, t) > CLS} andΩF := {x ∈ Λ | ϕ(x, t) < CLS}. Here CLS ∈ (0, 1) is
a constant that we have to choose to define the fracture boundary ΓF , since the phase field approach involves the diffusion
zone between ΩR and ΩF with length ε (see Fig. 2). However, since ε is very small and the dependency of the choice of
CLS is minimal (e.g [34]), we set CLS = 0.1 throughout this paper for simplicity. In the following, we propose two different
methods to compute ϕLS, where one (Formulation 3) is a similar technique as shown in [43].

Formulation 3 (Level-Set Values Obtained by Computing an Additional Problem). Find ϕLS such that

−1ϕLS = fLS(·, t) inΛ, (26)
ϕLS = 0 on ΓF , (27)

∂nϕLS = 0 on ∂Λ, (28)

where

fLS(·, t) = χ(·, t)f1 + (1 − χ(·, t))f2

with χ(·, t) = 0 for ϕ(x, t) < CLS and χ(·, t) = 1 otherwise. For simplicity, we set f1 = −10 and f2 = 10.

Fig. 3 illustrates the result for the level-set formulation with a simple fracture in the middle of the domain.
The other alternative approach differs from Formulation 3 is to directly using the phase-field values by shifting them but

without solving an additional problem:
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(a)wD by (29). (b)w by (30). (c) Comparison.

Fig. 4. In (a), we visualize a fracture width evaluation by employing (29) for the phase field fracture and the level-set given in Fig. 3. The fracture width
is computed correctly up to the fracture boundary. However, in the very inner of the fracture ϕ ≃ 0, all values are nearly zero. Then, (b) we compute
the width in each quadrature point and finally solve a width-problem (30) in order to interpolate the fracture-boundary width values inside the fracture.
(c) shows the comparison between (a) and (b) over the middle line y-direction illustrated in the fracture.

Formulation 4 (Level-Set Values Obtained from Phase-Field). As second alternative approach, the level-set values are
immediately obtained from the phase-field by:

ϕLS = ϕ − CLS .

Remark 1 (Regularity Properties of ϕLS). Exemplarily, we refer to [49, section 4.5] for discussions regarding to the regularity
properties of ϕLS and to improve the accuracy for computing the gradients across the ΓF .

Next, with the computed level-set value ϕLS (either obtained from Formulation 3 or 4), we obtain the outward normal
vector for a given level-set fracture boundary by the following procedure:

Formulation 5 (Computing the Width with the Normal Vector on the Fracture Boundary). Under the assumption that u+
· n =

−u−
· n (symmetric displacements at the fracture boundary), we compute the width locally in each quadrature point

wD := 2u · nF = −2u ·
∇ϕLS

∥∇ϕLS∥
on ΓF . (29)

Here we assume that u+
· n = −u−

· n, which has been justified for tensile stresses and homogeneous isotropic media. These
results are compatible for fluid filled fracture as we observe in our computational results, e.g., see Fig. 7, in comparison to just
taking two times the uy displacements.

The second challenge is to compute the width values inside the crack, which is required for the permeability in fluid
filled fracture propagation, see (8). Here we propose a method, Formulation 6, to compute the crack width values inside the
fracture by employing an interpolation based on the values on ΓF .

Formulation 6 (Crack Width Interpolation Inside the Fracture).We solve the following width-problem: Findw ∈ H1 such that

−1w = g inΛ,
w = wD on ΓF , (30)
w = 0 on ∂Λ.

Here g(x) = β∥w∥L∞(Λ), where β ≈ 100, in order to obtain a smooth parabola-type width-profile in the fracture. We note that
β is problem-dependent and heuristically chosen. In the case of multiple fractures, say m fractures, we determine a locally highest
width, where ∥w∥L∞(Λl), l ∈ {1, . . . ,m} is defined on the local region near the fracture such that Λ := Λ1 ∪Λ2 ∪ · · · ∪Λm.

Fig. 4 illustrates the result for Formulations 3–6 with crack width in the fracture. Finally we can approximate accurate
crack width values in the fracture.

Remark 2. Using Formulation 3 for computing the width is accompanied by the cost that we need to solve two additional
problems. However, we emphasize that in our algorithm these two subproblems are scalar-valued, linear, and elliptic and
therefore much cheaper to compute in comparison to the other subproblems. The advantage of this procedure being that
we have an accurate width computation as well as a representation of a global finite element function that can be easily
accessed in the program. In addition, the above computation can be employed for multiple non-planar fractures. To further
reduce the computational cost, the Formulation 3 can be replaced by Formulation 4.
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4. Discretization of all sub-systems

In this section, we first address discretization of the pressure flow system and thenwe consider the displacement-phase-
field system. Finally, we provide the variational formulations of the discrete level-set and width problems. We consider a
mesh family {Th}h>0, which is assumed to be shape regular in the sense of Ciarlet, and we assume that each mesh Th is a
subdivision of Λ̄made of disjoint elements K , i.e., squares when d = 2 or cubes when d = 3. Each subdivision is assumed
to exactly approximate the computational domain, thus Λ̄ = ∪K∈Th K . The diameter of an element K ∈ Th is denoted by h
andwe denote hmin for theminimum. For any integer k ≥ 1 and anyK ∈ Th, we denote byQk(K) the space of scalar-valued
multivariate polynomials over K of partial degree of at most k. The vector-valued counterpart of Qk(K) is denoted Qk(K).
We define a partition of the time interval 0 =: t0 < t1 < · · · < tN := T and denote the time step size by δt := tn − tn−1.

4.1. Decomposing the domainΛ intoΩR andΩF

We define the fracture domainΩF and the reservoir domainΩR by introducing two linear indicator functions χF and χR
for the two different sub-domains; they satisfy

χR(·, ϕ) := χR(x, t, ϕ) = 1 in ΩR(t), and χR(·, ϕ) = 0 in ΩF (t), (31)
χF (·, ϕ) := χF (x, t, ϕ) = 1 in ΩF (t), and χF (·, ϕ) = 0 in ΩR(t). (32)

Thus χF (·, ϕ) is zero in the reservoir domain and χR(·, ϕ) is zero in the fracture domain. In the diffusive zone (see Fig. 5),
the linear functions are defined as

χF (·, ϕ) = −
(ϕ − c2)
(c2 − c1)

and χR(·, ϕ) =
(ϕ − c1)
(c2 − c1)

. (33)

Thus χR(·, ϕ) = 0 and χF (·, ϕ) = 1 if ϕ(x, t) ≤ c1, and χR(·, ϕ) = 1 and χF (·, ϕ) = 0 if ϕ(x, t) ≥ c2, where c1 := 0.5 − cx
and c2 = 0.5 + cx. For simplicity we set cx = 0.1.

4.2. Temporal and spatial discretization of the pressure diffraction equation

The space approximation P of the pressure function p(x, t) is approximated by using continuous piecewise polynomials
given in the finite element space,

W(T ) := {W ∈ C0(Λ̄; R) | W |K ∈ Q1(K), ∀K ∈ T }. (34)

Note that we employ an enriched Galerkin approximation [51] when the pressures are coupled with a transport problem as
shown in [40] to preserve local and global conservation of the flux.

Assuming that the displacement field u and the phase field ϕ are known, the Galerkin approximation of (6)–(7) is
formulated as follows. Given P(x, 0) = P0 where P0 is an approximation of the initial condition p0, find P ∈ C1([0, T ]; W(T ))
such that

χR(·, ϕ)


Λ

ρ0
R∂t


1
M

P + α∇ · u

ω dx +


Λ

KRρ
0
R

ηR
(∇P − ρ0

Rg)∇ω dx =


Λ

qRω dx

, ∀ω ∈ W(T ), (35)

χF (·, ϕ)


Λ

ρ0
F cF∂tPω dx +


Λ

KFρ
0
F

ηF
(∇P − ρ0

F g)∇ω dx =


Λ

(qF − qL)ω dx

, ∀ω ∈ W(T ). (36)

We denote the approximation of P(x, tn), 0 ≤ n ≤ N by Pn, and assume u(tn+1) and ϕ(tn+1) are given values at time
tn+1. Then, the time stepping proceeds as follows: Given Pn, compute Pn+1

∈ W(T ) so that

APR(Pn+1)(ω) := χR(·, ϕ(tn+1))


Λ

ρ0
R

 1
M

Pn+1
− Pn

δt


+ α


∇ · un+1

− ∇ · un

δt


ω dx

+


Λ

KRρ
0
R

ηR
(∇Pn+1

− ρ0
Rg)∇ω dx −


Λ

qRω dx


∀ω ∈ W(T ) (37)

APF (Pn+1)(ω) := χF (·, ϕ(tn+1))


Λ

ρ0
F cF

Pn+1
− Pn

δt


ω dx +


Λ

KFρ
0
F

ηF
(∇Pn+1

− ρ0
F g)∇ω dx

−


Λ

(qF − qL)ω dx

, ∀ω ∈ W(T ). (38)

Formulation 7. Find Pn+1
∈ W(T ) for tn+1, n = 0, 1, 2, . . . such that

AP(Pn+1)(ω) = APR(Pn+1)(ω)+ APF (Pn+1)(ω) = 0 ∀ω ∈ W(T ). (39)
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Fig. 5. (a) The linear indicator functions χF and χR illustrated with adjustable constants c1 and c2 . (b) We consider as the fracture zone if ϕ ≤ c1 and as
the reservoir zone if ϕ ≥ c2 .

Remark 3. To avoid a singular behavior at the fracture tip in modeling, computations and loss of regularity, we determine a
permeability–viscosity ratio Keff by interpolation; a so-called cake region [52] that is determined by the phase-field variable.
Our definition of the cake region is defined in (31)–(33). Specifically, outside the cake region, we use in the reservoir
Keff = KR/ηR and in the fracture Keff = KF/ηF . The resulting interpolated permeability Keff is Lipschitz-continuous in time
and space [9].

4.3. Spatial discretization of the incremental displacement-phase-field system

In this section, we formulate a quasi-monolithic Euler–Lagrange formulation for U and Φ (approximating u and ϕ),
respectively. We consider a time-discretized system in which time enters through the irreversibility condition. The spatial
discretized solution variables are U ∈ C0([0, T ];V0(T )) andΦ ∈ C0([0, T ]; Z(T )), where

V0(T ) := {W ∈ C0(Λ̄; Rd) | W = 0 on ∂Λ,W |K ∈ Q1(K),∀K ∈ T }, (40)

Z(T ) := {Z ∈ C0(Λ̄; R)| Zn+1
≤ Zn

≤ 1, Z |K ∈ Q1(K),∀K ∈ T }. (41)

Moreover, we extrapolateΦ (denoted by E(Φ)) in the first terms (i.e., the displacement equation) in Formulation 8 in order
to avoid an indefinite Hessian matrix:

E(Φ) = Φn−2
+

(t − tn−1
− tn−2)

(t − tn−1)− (t − tn−1 − tn−2)
(Φn−1

− Φn−2).

This heuristic procedure has been shown to be an efficient and robust method as discussed in [25].
In the following, we denote by Un andΦn the approximation of U(tn) andΦ(tn) respectively.

Formulation 8. Let us assume that Pn+1 is a given approximated pressure at the time tn+1. Given the initial conditions U0
:=

U(0) andΦ0
:= Φ(0) we seek {Un+1,Φn+1

} ∈ V0(T )× Z(T ) such that

ADPFF (Un+1,Φn+1)(w, ψ − Φn+1) ≥ 0, ∀{w, ψ} ∈ V0(T )× Z(T ), x (42)

with

ADPFF (Un+1,Φn+1)(w, ψ − Φn+1) (43)

=


Λ

(1 − k)(E(Φn+1)2 + k)σ+(Un+1) : e(w) dx +


Λ

σ−(Un+1) : e(w) dx (44)

−


Λ

(α − 1)E(Φn+1)2Pn+1
∇ · w dx +


Λ

E(Φn+1)2∇Pn+1
· w dx (45)

+ (1 − k)

Λ

Φn+1σ+(Un+1) : e(Un+1) · (ψ − Φn+1) dx (46)

− 2(α − 1)

Λ

Φn+1Pn+1
∇ · Un+1

· (ψ − Φn+1) dx +


Λ

2Φn+1
∇Pn+1

· Un+1
· (ψ − Φn+1) dx (47)

− Gc


Λ

1
ε
(1 − Φn+1) · (ψ − Φn+1) dx + Gc


Λ

ε∇Φn+1
· ∇(ψ − Φn+1) dx. (48)

The solution of this nonlinear variational inequality is briefly explained in Section 5.1 with all details presented in [25].

4.4. Variational formulations of the level-set and the width problems

The spatially discretized solution variables for the level-set and the width are denoted by ΦLS(x, t) and W (x, t),
respectively. Those functions are approximated by using continuous piecewise polynomials given in their respective finite
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element spaces,
VLS(T ) := {Ψ ∈ C0(Λ̄; R) | Ψ = 0 on ΓF ,Ψ |K ∈ Q1(K),∀K ∈ T }

for the level-set and
Vw(T ) := {Ψ ∈ C0(Λ̄; R) | Ψ = 0 on ∂Λ,Ψ |K ∈ Q1(K),∀K ∈ T }

for the width. Assuming that the displacement field Un and the phase field Φn are given at time tn, the Galerkin
approximation of the system in Formulation 3 is formulated as follows:

Formulation 9. FindΦLS ∈ C0([0, T ]; VLS(T )) such that

ALS(ΦLS, ψ) = FLS(ψ) ∀ψ ∈ VLS(T ),

where

ALS(ΦLS, ψ) := (∇ΦLS,∇ψ)+ θ


Γ n
F

ΦLS · ψds,

FLS(ψ) :=

χnf1 + (1 − χn)f2, ψ


,

and θ ≈ 103 is a sufficiently large penalty parameter, which plays a similar role as in discontinuous Galerkin methods
(e.g., [53,54]).

Here Γ n
F := {x ∈ Λ | |Φn(x) − 0.1| ≤ ϵ̃}, with a small positive constant ϵ̃ and we prescribe this surface with the help

of so-called material ids for each cell. These are set to 0 for Φn < CLS and 1 otherwise to identify the interface (Γ n
F ) on the

discrete level. It follows that χn
= 0 for Φn < CLS and χn

= 1 otherwise. The Galerkin approximation of the width system
in Formulation 6 is given by

Formulation 10. Find W ∈ C0([0, T ]; Vw(T )) such that

AW (W , ψ) = FW (ψ) ∀ψ ∈ Vw(T )

where

AW (W , ψ) = (∇W ,∇ψ)+ θ


Γ n
F

Wψ ds,

FW (ψ) = θ


Γ n
F

W n
D · ψ ds.

Here W n
D := −2Un

·
∇Φn

LS
∥∇Φn

LS∥
is the width on the fracture boundary Γ n

F .

5. Solution algorithms for fluid-filled phase-field fractures

In this section, we formulate iterative coupling of the two physical subproblems; namely pressure and displacement/
phase-field. However before each pressure solve we also solve first the level-set problem and the width problem in order to
provide the fracture permeability.

5.1. Solution algorithms and solver details

In Algorithm 1, we outline the entire scheme for all solution variables {Φ l
LS,W

l, P l,Ul,Φ l
} at each fixed-stress iteration

step, where l is the fixed-stress iteration index.

Remark 4. In Algorithm 1, the explicit solution ofΦ l
LS is avoided when working with Formulation 4.

The nonlinear quasi-monolithic displacement/phase-field system presented in Formulation 8 is solved with Newton’s
method and line search algorithms. The constraint minimization problem is treated with a semi-smooth Newton method
(i.e., a primal–dual active set method). Both methods are combined in one single loop leading to a robust and efficient
iteration scheme that is outlined in [25]. Within Newton’s loop we solve the linear equation systems with GMRES solvers
with diagonal block-preconditioning from Trilinos [55]. Algorithm 1 presents the overall fixed-stress phase field approach
for fluid filled fractures in which the geomechanics-phase-field system is coupled to the pressure diffraction problem. We
employ local mesh adaptivity in order to keep the computational cost at a reasonable level. Here, we specifically use a
technique developed in [25]; namely a predictor–corrector scheme that chooses an initial ε > h at the beginning of the
computation. Since this is a model parameter, we do not want to change the model during the computation and keep
therefore ε fixed. However, the crack propagates and in coarse mesh regions ε > h may be violated. Then, we take the
first step as a predictor step, then refine the mesh such that ε > h holds again and finally recompute the solution. In [25]
(twodimensional) and [32,34] (three dimensional) it has been shown that this procedure is efficient and robust. The pressure
diffraction problem is solved with a direct solver for simplicity but could also be treated with an iterative solver. The linear-
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Algorithm 1 Iterative coupling for fluid-filled phase-field fractures including level-set and width computation
At the time tn,
repeat

For l = 0, 1, 2, . . .:
- Solve the (linear) level-set Formulation 9 forΦ l

LS

- Solve the (linear) width Formulation 10 forW l

- Solve the (linear) pressure diffraction Formulation 7 for P l

- Solve the (nonlinear) fully-coupled displacement/phase-field Formulation 8 for (Ul,Φ l)
until the stopping criterion for fixed-stress split is satisfied:

max{∥P l
− P l−1

∥, ∥Ul
− Ul−1

∥, ∥Φ l
− Φ l−1

∥} ≤ TOLFS, TOLFS > 0

Set: (Pn,Un,Φn) := (P l,Ul,Φ l). The other two variablesΦn
LS andW n are obtained fromΦn and Un.

Increment the time n → n + 1.

elliptic level-set and width problems are solved with a parallel CG solver and SSOR preconditioning where the relaxation
parameter is chosen as 1.2.

5.2. A fixed-stress algorithm for fluid-filled phase-field fractures

In this section, we now focus on the specifics of the fixed-stress iteration between flow and geomechanics/fracture. Let
Φ l and W l at time tn+1 be given. For each time tn+1 we iterate for l = 0, 1, 2, 3, . . .:
(i) Fixed-stress: pressure solve. Let Ul andΦ l be given. Find P l+1

∈ W such that

[AP(Pn+1)(ω)]l+1
= [APR(Pn+1)(ω)]l+1

+ [APF (Pn+1)(ω)]l+1
= 0 ∀ω ∈ W(T ),

where

[APR(Pn+1)(ω)]l+1
:= χR(Φ

l)


Λ

ρ0
R

 1
M

+
3α2

3λ+ 2µ

P l+1
− Pn

δt


· ω dx +


Λ

KRρ
0
R

ηR

× (∇P l+1
− ρ0

Rg)∇ω dx +


Λ

α∇ ·

Ul
− Un

δt


· ω dx

−


Λ

 3α2

3λ+ 2µ

P l
− Pn

δt


ω dx −


Λ

qRω dx

, ∀ω ∈ W(T ), (49)

[APF (Pn+1)(ω)]l+1
:= χF (Φ

l)


Λ

ρ0
F cF

P l+1
− Pn

δt


ω dx +


Λ

KFρ
0
F

ηF
(∇P l+1

− ρ0
F g)∇ω dx

−


Λ

qFω dx

, ∀ω ∈ W(T ). (50)

(ii) Fixed-stress: displacement/phase-field solve. Take the just computed P l+1 and solve for the displacements Ul+1
∈ V0(T )

and the phase fieldΦ l+1
∈ Z(T ) such that:

ADPFF (Ul+1,Φ l+1)(w, ψ) ≥ 0 ∀{w, ψ} ∈ V0(T )× Z(T ), (51)

where

ADPFF (Ul+1,Φ l+1)(w, ψ) =


Λ

(1 − k)(E(Φ l+1)2 + k)σ+(Ul+1) : e(w) dx +


Λ

σ−(Ul+1) : e(w) dx

−


Λ

(α − 1)E(Φ l+1)2P l+1
∇ · w dx +


Λ

E(Φ l+1)2∇P l+1
· w dx

+ (1 − k)

Λ

Φ l+1σ+(Ul+1) : e(Ul+1) · ψ dx

− 2(α − 1)

Λ

Φ l+1P l+1
∇ · Ul+1

· ψ dx +


Λ

2Φ l+1
∇P l+1

· Ul+1
· ψ dx

− Gc


Λ

1
ε
(1 − Φ l+1) · ψ dx + Gc


Λ

ε∇Φ l+1
· ∇ψ dx.

(iii) Fixed-stress: stopping criterion. The iteration is completed if

max{∥Ul+1
− Ul

∥L2(Λ), ∥P
l+1

− P l
∥L2(Λ), ∥Φ

l+1
− Φ l

∥L2(Λ)} < TOLFS
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then we set
Pn+1

= P l+1, Φn+1
= Φ l+1, Un+1

= Ul+1.

The specific tolerances TOLFS will be specified in Section 6.

6. Numerical tests

In this final section, we present five different examples with increasing complexity. Our main focus is on fixed-stress
iteration numbers and refinement studies in order to investigate the iterative solution approach. Alongside we discuss
differences between α = 0 and α = 1, negative pressure at fracture tips, the pressure drop for propagating fractures,
and interaction of multiple fractures in heterogeneous media. The examples are computed with the finite element package
deal.II [56,57] and are based on the programming codes developed in [25,32,34] by using an MPI-parallel framework.
Boundary and initial conditions. For all following examples, the initial crack is given with the help of the phase-field function
ϕ. We set at t = 0:

ϕ = 0 inΩF , and ϕ = 1 inΛ \ΩF (52)
for each defined ΩF . As boundary conditions, we set the displacements to zero on ∂Ω and traction-free conditions for the
phase-field variable. The boundary and interface conditions for the pressure, level-set and width computation have been
explained in their respective sections before. In addition, we recall that the diameter of an element K ∈ Th is denoted by h,
and hmin for the minimum diameter, and hmax for the maximum diameter during adaptive mesh refinement.

6.1. Example 1: Extension of Sneddon’s test to a fluid-filled fracture in a porous medium

Sneddon’s test [58,59] is an important example for pressurized fractures in which a given pressure causes the fracture
to open. The pressure is however too low to change the length of the fracture. In this first example, we extend this test to
a fluid-filled setting in which fluid is injected into the middle of the fracture. The flow rate injection qF is chosen as such
that Sneddon’s pressure (for example p ≈ 10−3 as used in [30,31]) is approximately recovered and to study whether the
resulting crack opening displacement is of the same order as in the existing literature. Here we then carry out convergence
studies with respect to the mesh size parameter hwhile keeping the model parameter ε fixed.
Configuration. We deal with the following geometric data:Ω = (0 m, 4 m)2 and a (prescribed) initial crack with half length
l0 = 0.2 m onΩF = (1.8, 2.2)× (2 − hmax, 2 + hmax) ⊂ Ω . The initial mesh is 5 times uniformly refined, and then 3,4 and
5 times locally, sufficiently large around the fracture region. This leads to 3580, 10 312 and 36052 initial mesh cells, with
hmin = 0.022 m, 0.011 m and 0.0055 m, respectively. On the finest mesh we have 73018 degrees of freedom (DoFs) for the
solid, and 36509 DoFs for each the phase-field, the pressure, the level-set and the width, respectively.
Parameters. The critical energy release rate is chosen as Gc = 1 N m−1. The mechanical parameters are Young’s modulus
and Poisson’s ratio E = 1 Pa and νs = 0.2. The relationship to the Lamé coefficients µs and λs is given by:

µs =
E

2(1 + νs)
, λs =

νsEs
(1 + νs)(1 − 2νs)

.

The regularization parameters are chosen as ε = 2hmax = 0.045 and κ = 10−10hmin. We perform computations for Biot’s
coefficient α = 0 and α = 1. Furthermore qF = 5 × 10−2 m3/s for α = 1 and qF = 5 × 10−9 m3/s for α = 0, and
M = 1 × 10612 Pa, cF = 1 × 10−12 Pa−1. The viscosities are chosen as ηR = ηF = 1 × 10−3 N s/m2. The reservoir
permeability is KR = 1 d = 1 × 10−12 m2 and the density is ρ0

F = 1 kg/m3. Furthermore, TOLFS = 10−3. This test case is
computed in a quasi-stationarymanner, which is due to the crack irreversibility constraint. That is, we solve 10 pseudo-time
steps with a time step size k = 1 s.
Quantities of interest. We study the following cases and goal functionals:
• the maximum pressure evolution over time;
• the crack opening displacement (or aperture):

COD(x0) := [u(x0, y) · n] =

 4

0
u(x0, y) · n dy =

 4

0
u(x0, y) · ∇ϕ(x0, y) dy, (53)

where ϕ is our phase-field function and x0 the x-coordinate of the integration line. The analytical solution for the crack
opening displacement is derived by Sneddon and Lowengrub [59];

• the number of fixed-stress iterations;
• the number of Newton solves for the displacement/phase-field system;
• the number of GMRES iterations within the Newton solver.

Discussion of findings. We observe 4 fixed-stress iterations in the very first time step for reaching the tolerance TOLFS = 10−3.
In the subsequent time steps, we immediately satisfy the tolerance in one step since the problem is quasi-stationary and not
much change happens. To solve the nonlinear displacement/phase-field system, 2–4 Newton steps (that then satisfy both
criteria: active set convergence and the nonlinear residual tolerance) are required in average. Inside each Newton step we
need in average 10–40 GMRES iterations. Here we do not observe significant differences between α = 0 and α = 1.
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(a) α = 0. (b) α = 1.

(c) α = 0. (d) α = 1.
Fig. 6. Example 1: On top: the crack opening displacement for (a) α = 0 and (b) α = 1 at T = 10 s. On the bottom: (c)–(d) the corresponding maximal
pressure evolutions. In the bottom left subfigure at T = 10 s the desired pressure p ≈ 0.001 Pa is reached. This test (α = 0) compares (as expected)
very much to the original Sneddon’s test with a given, fixed pressure. The test with α = 1 differs since now poroelastic effects play a role that were not
accounted for in Sneddon’s original derivation.

In Fig. 6, we observemesh convergence of the crack opening displacement and the corresponding pressure evolutions for
both cases α = 0 and α = 1.We see that using α = 0 the pressure is p ≈ 1×10−3 Pa as used by [30,31] and yields a similar
crack opening displacement. This is a major achievement that the fluid-filled model (namely pressure diffraction coupled to
displacement/phase-field) is able to represent the manufactured solution of the original pressurized test case. Using α = 1
we observe that the pressures are 4 times higher (yielding a slightly higher COD). This is expected since in the α = 1-case
the fracture pressure interacts with the reservoir pressure and fluid is released into the porous medium. In the Figs. 7 and 8
the different solution variables at the end time value T = 10 s are displayed. In fact we nicely identify the interpolatedwidth
w and also the different pressure distributions depending on the different α choices. Moreover, observing the quantitative
values foruy (which corresponds in this symmetric test to the COD) and the subsequent FEwidth value, we identify excellent
agreement.

6.2. Example 2: A fluid-filled fracture with emphasis on the pressure at the fracture tips

In this short section, we only focus on the pressure evolution for a fluid-filled (namely choosing α = 1) configuration.
We highlight negative pressure values at the fracture tips, which are known as a typical phenomena caused by fluid lagging
in the early injection stages and has been observed by others as well, see for example [60,37,61–63].
Configuration. In the domainΩ = (−5m, 5m)2 the initial penny shaped fracture is given in the center (0, 0)with the longer
radius r = 1m onΩF = (4, 6)×(5−hmax, 5+hmax) ⊂ Ω . The physical parameters are chosen as α = 1, E = 1 Pa, ν = 0.2,
Gc = 1.0 N m−1, ηR = ηF = 1 × 10−3 N s/m2, ρ = 1 kg/m3, KR = 1 × 10−16 m2 and qF = 7.5 × 10−2 m3/s. Here the
numerical parameters are given as hmin = 0.028 m, δt = 0.5 s, T = 30 s, and ε = 2hmin.
Discussion of our findings. At the early stage of the fluid injection, Fig. 9 illustrates the pressure values in the fracture. We
notice that our findings show a qualitative similarity with the plots presented in [61,64]. However, due to α = 1, the full
coupling of a fluid-filled fracturewith the surrounding porousmedium, and the use of anotherwellmodel, we cannot expect
a quantitative agreement with [61,64]. However, the important result is that (as predicted in the above mentioned papers)
that we observe negative pressures around the fracture tips. This phenomenamay arise in the case of injections if the speed
at which the crack tip advances is sufficiently high such that the fluid inside the fracture cannot flow fast enough to fill the
created space. In particular, at the beginning of an injection, the fracture is not yet completely filled with fluid and thus at
the tips fluid enters from the porous medium into the fracture causing the predicted negative pressure values.
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(a) Phase-field ϕ. (b) Pressure p.

(c) uy displacement. (d) Interpolated widthw.

Fig. 7. Example 1: Case α = 0: The phase-field ϕ, the pressure p, the uy displacement, and the interpolated widthw are presented.

(a) Phase-field ϕ. (b) Pressure p.

(c) uy displacement. (d) Interpolated widthw.

Fig. 8. Example 1: Case α = 1: The phase-field ϕ, the pressure p, the uy displacement, and the interpolated widthw are presented.

6.3. Example 3: A propagating fluid-filled fracture in a porous medium

In this third example, we consider a single propagating fracture. The main purpose is to study fixed-stress iterations for
this nonstationary case.
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Fig. 9. Example 2. Illustration of the pressure values (a) inside (plotted from the center to the end-tip) and (b) around the fracture. We observe negative
pressures at the fracture tip.

Fig. 10. Example 3: Number of fixed-stress iterations per mesh per time step (at left). At right, the accumulated number of all predictor–corrector mesh
levels per time step is displayed. The time step size in this test case δt = 0.01 s.

Configuration. We deal with the following geometric data:Ω = (0 m, 4 m)2 and a (prescribed) initial crack with half length
l0 = 0.2 m onΩF = (1.8, 2.2)× (2 − hmax, 2 + hmax) ⊂ Ω . The initial mesh is 5 times uniformly refined, and then 2, 3, 4
and 5 times locally using predictor–corrector mesh refinement, sufficiently large around the fracture region. The number of
mesh cells will grow during the computation due to predictor–corrector mesh refinement.

Parameters. The fracture toughness is chosen as Gc = 1 N m−1. The mechanical parameters are Young’s modulus and
Poisson’s ratio E = 1 × 108 Pa and νs = 0.2. The regularization parameters are chosen as ε = 2h and κ = 106 − 10h.
We perform computations for Biot’s coefficient α = 1 only. Furthermore the injection rate is chosen as qF = 2 m3/s; and
M = 1 × 108 Pa, cF = 1 × 10−8 Pa−1. The viscosities are chosen as νR = νF = 1 × 10−3 Ns/m2. The reservoir permeability
is KR = 1 d and the density is ρ0

F = 1 kg/m3. Furthermore, TOLFS = 10−3. The total time is T = 0.6 s. We also perform time
convergence studies and use as time steps δt = 0.01 s, 0.005 s, 0.0025 s, 0.00125 s. Thus, 60, 120, 240 and 480 time steps
are computed, respectively.

Quantities of interest. We study the following cases and goal functionals:

• the number of GMRES iterations within the Newton solver.
• the number of fixed-stress iterations and Newton solves for the displacement/phase-field system (Fig. 10);
• the maximum pressure and the crack length/pattern evolution over time (Fig. 11).

Discussion of findings. The average number of Newton iterations for the displacement/phase-field system is 4–8 iterations
per mesh per time step. The average number of GMRES iterations is 10–50 but can go up in certain steps (just before the
Newton tolerance is satisfied) up to 100–150, which is still acceptable. To study fixed-stress iterations, computations are
performed on different mesh levels in order to see the dependence of the number of mesh cells. Moreover, the presentation
is divided into the number of fixed-stress iterations per mesh per time step and secondly, into the accumulated number
(summing up all predictor–correctormesh refinements) per time step, see Fig. 10. In Fig. 11, we study temporal convergence
of two quantities of interest; namely, the pressure and the fracture length. Here we identify convergence although it is slow.
With regard to the complexity of the overall problem, it is however a major accomplishment to obtain in the first place
temporal convergence. This is an important finding with regard to the computational stability of the proposed framework.
We remark that almost identical computational results were observed by using either Formulation 3 or Formulation 4.
However, Formulation 3 is more expensive since an additional scalar-valued problem has to be solved. Finally, in Fig. 12, the
pressure, the crack length in terms of the phase-field variable, and the locally refined mesh are visualized.
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Fig. 11. Example 3: Maximal pressure evolution and half crack length evolution on the finest mesh level. The time step sizes δt are refined in order to
study convergence in time. The maximal (theoretical) half length would be 2 m (the boundary of the domain), and the fractures stop growing towards
1.9 m. Spatial refinement is not considered since both ε and h are varied via ε = 2h and convergence to common values cannot be expected. In the bottom
row, zoom-ins are provided showing more clearly temporal convergence although it is very slow.

Fig. 12. Example 3: Pressure evolution including negative pressure at the fracture tips (top), crack propagation (middle), and adaptive mesh evolution
(bottom) at T = 0.01, 0.1, 0.4, 0.6 s.
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Fig. 13. Example 4: Heterogeneous solid. Display of µ. These data are synthetic using a random distribution. In particular, the heterogeneities are chosen
as such that ε can resolve them, i.e., l > ε = 2h, where l is the length-scale of the material inhomogeneity (at right).

Fig. 14. Example 4: The number of fixed-stress iterations per time step. The time step size in this test case δt = 0.01 s.

6.4. Example 4: Fracture networks in homogeneous and heterogeneous porous media

In this example, we study the fixed-stress algorithm for multiple fractures in homogeneous and heterogeneous porous
media. In total, we have three test cases: homogeneous, a heterogeneous example in which the Lamé parameters are varied,
and a third example in which additionally the reservoir permeability is non-homogeneous.
Configuration. We deal with the following geometric data:Ω = (0 m, 10 m)2 and three initial cracks.
Parameters. The fracture toughness is chosen as Gc = 1 N m−1. The mechanical parameters are Young’s modulus and
Poisson’s ratio E = 108 Pa and νs = 0.2 for the homogeneous case. In the heterogeneous setting, we have 107 Pa ≤

E ≤ 108 Pa. These heterogeneities are chosen as such that the length-scale parameter ε can resolve them; see Fig. 13.
The regularization parameters are chosen as ε = 2h and κ = 10−10h. Biot’s coefficient isα = 1. Furthermore qF = 5m3/s

and M = 1 × 108 Pa, cF = 1 × 10−8 Pa. The viscosities are chosen as νR = νF = 1 × 10−3 Ns/m2. The reservoir
permeability is KR = 1 d in the homogeneous case and varies 0.1 d ≤ KR ≤ 1 d in the heterogeneous setting. and the
density is ρ0

F = 1 kg/m3. The time step size is δt = 1 × 10−2 s and the final time is not specified and rather taken when
all fractures joined. This event takes place between 0.25 s ≤ T ≤ 0.3 s. Furthermore, TOLFS = 10−4 (for the pressure and
the displacements), whereas the phase-field tolerance is chosen as TOLFS = 10−2. In fact the convergence of the phase-field
variable is much harder for multiple fractures and heterogeneous media than in the previous examples.
Quantities of interest. In this example, we observe the crack pattern, the pressure distribution, and fixed-stress iterations.
Discussion of findings. In Fig. 14, the number of fixed-stress iterations per time step is shown. The evolution of the pressure
and the fracture patterns at different times are displayed in Figs. 15–17. The average number of non-linear iterations of
the semi-smooth Newton solver for the three test cases are 8–10, with in average 10–20 linear GMRES iterations. Here, we
do not observe a significant difference between homogeneous and heterogeneous media. Furthermore, we observe again
the same crack pattern for both level-set formulations, but using Formulation 4 the final shape is reached earlier. Due to
the complexity of this test (multiple fractures and heterogeneous materials) further future investigations are definitely
necessary.
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Fig. 15. Example 4: Homogeneous test case. Display of pressure (top) and fracture pattern at T = 0, 0.1, 0.2, 0.25 s.
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Fig. 16. Example 4: Heterogeneous test case with varying Lamé parameters and homogeneous reservoir permeability. Display of pressure (top) and
fracture pattern at T = 0, 0.1, 0.2, 0.3 s.

6.5. Example 5: Propagating penny-shaped fracture in 3D

In this final example, we consider a penny shaped fracture in a three dimensional domainΩ = (0, 4m)3. The horizontal
initial penny shape crack is centered at (2 m, 2 m, 2 m) on y = 2 m-plane and we refine around the crack; see Fig. 18(a) for
the setup. Initial and boundary conditions are same as previous examples and here the physical parameters are given. The
fracture toughness is chosen as Gc = 1Nm−1, Young’smodulus and Poisson’s ratio as E = 108 Pa and νs = 0.2, respectively.
The regularization parameters are chosen as ε = 2hmin and κ = 10−10h. The Biot coefficient and Biot’s modulus are set to
α = 1 and M = 108 Pa, respectively. Furthermore we assume a slightly incompressible fluid with cF = 1 × 108 Pa and the
viscosities are chosen as ηR = ηF = 1 × 10−3 Ns/m2 with the injection rate qF = 2 m3/s. The reservoir permeability is
KR = 1 d and the density is ρ0

F = 1 kg/m3. Furthermore, hmin = 0.05 m, δt = 1 × 10−2 s, and TOLFS = 10−3.
Fig. 18(b)–(d) illustrate the propagating fracture for each time. The crack opening displacement and the fixed stress

iteration numbers over the time for propagating fracture are shown in Fig. 19. We note that the almost identical
computational resultswere observed by employing either Formulation 3 or Formulation 4 to compute the level-set as shown
in previous example. However, Formulation 4 is computationally more efficient especially in three dimensional cases.
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Fig. 17. Example 4: Fully heterogeneous test case. Display of pressure (top) and fracture pattern at T = 0, 0.1, 0.2, 0.3 s.

(a) Setup. (b) n = 30. (c) n = 50. (d) n = 100.

Fig. 18. Example 6.5: (a) The initial penny shape crack is centered at (5 m, 5 m, 5 m) on y = 5 m-plane with the mesh refinement. (b)–(d) illustrate the
propagating fracture for each time step.

(a) Fixed stress iteration number. (b) Crack opening displacement ∥w∥L∞(Λ) .

Fig. 19. (a) Fixed stress iteration numbers over time with a three dimensional MPI computation is shown. (b) Crack width opening over the time for the
propagating fracture.

7. Conclusions

In this paper, we presented fixed-stress splitting for fractured porous media using a phase-field technique. Several
examples were consulted in order to show the performance of the algorithmic techniques. Despite the complexity of the
entire problem, we could observe spatial and temporal convergence of selected quantities of interest. This is a major step
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towards the computational stability and reliability of our proposed method. Moreover, we could observe typical properties
of fluid-filled fractures, namely a negative pressure at the fracture tips, which are not present when Biot’s coefficient is zero.
Moreover, we investigated the solver iteration numbers for the linear iterative GMRES solver, the nonlinear Newton solver
of the displacement/phase-field system, and the fixed stress iterations between flow and mechanics. For our settings, we
obtained efficient iteration numbers as shown in our numerical examples. However, in Example 4, heterogeneousmaterials,
we observed that the convergence is dominated by the phase-field variable whereas the pressure and the displacements
converge well. We finally mention that the level-set width computation shows a novel way to obtain accurate width values
inside the fracture region. This holds in particular true for homogeneous test cases (Examples 1–3 and Example 5). For
heterogeneous tests andmultiple fractures (Example 4),we also obtained good results but it is still an open questionwhether
the methodology works for arbitrary heterogeneous materials which goes beyond the current paper and is left for future
research.
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