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A unified numerical scheme for the multi-term time

fractional diffusion and diffusion–wave equations with

variable coefficients

Hu Chen∗, Shujuan Lü, Wenping Chen

School of Mathematics and Systems Science, Beihang University, Beijing, 100191, China.

Abstract

We consider the numerical solutions of the multi-term time fractional dif-
fusion and diffusion–wave equations with variable coefficients in a bounded
domain. The time fractional derivatives are described in the Caputo sense. A
unified numerical scheme based on finite difference method in time and Leg-
endre spectral method in space is proposed. Detailed error analysis is given
for the fully discrete scheme. The convergence rate of the proposed scheme
in L2 norm is O(τ 2 + N1−m), where τ , N , and m are the time-step size,
polynomial degree, and regularity in the space variable of the exact solution,
respectively. Numerical examples are presented to illustrate the theoretical
results.

Keywords: Fractional diffusion equation, Fractional diffusion–wave
equation, Spectral method, Stability, Convergence
2010 MSC: Primary 65M12, 65M06, 65M70, 35R11.

1. Introduction

Fractional calculus involves investigating the properties and applications
of the derivatives and integrals with non-integer orders. One can refer to [1]
for an extensive list of recent applications and mathematical developments
of the fractional calculus. Fractional differential equations are the equations
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involving the fractional derivatives of the unknown functions. There are
many kinds of definitions for the fractional derivatives, such as Riemann–
Liouville derivative, Caputo derivative, Grünwald–Letinikov derivative, etc.

The time fractional diffusion and diffusion–wave equations are the usual
diffusion and wave equations with their first-order time derivative and second-
order time derivative replaced by fractional derivatives of order 0 < α < 1,
1 < α < 2, respectively [2]. Both analytical and numerical investigations
of them have been studied by many authors. For the solution theory of
the time fractional diffusion and diffusion–wave equations, one can refer to
[3–7]. For the numerical approximation of the time fractional diffusion and
diffusion–wave equations, see [8–14], etc.

In this paper we consider the following multi-term time fractional diffusion
and diffusion–wave equations with variable coefficients:

C
0D

γ
t u(x, t)+

s∑

i=1

bi
C
0D

γi
t u(x, t) = Lu(x, t)+g(x, t), −1 < x < 1, 0 < t ≤ T,

(1.1)
where

Lu =
∂

∂x

(
p(x)

∂u

∂x

)
− q(x)u,

p ∈ C1[−1, 1], q ∈ C[−1, 1], p(x) > 0, q(x) ≥ 0, x ∈ [−1, 1],

0 < γs < · · · < γ1 < γ < 2, bi ≥ 0, i = 1, . . . , s, s ∈ N0,

and C
0D

γ
t u(x, t) is the Caputo fractional derivative of order γ with respect to

t, its exact definition will be given in next section.
We endow the equations (1.1) with the following boundary conditions:

u(−1, t) = 0, u(1, t) = 0, 0 ≤ t ≤ T, (1.2)

and initial conditions

u(x, 0) = u0(x), x ∈ (−1, 1), (1.3)

ut(x, 0) = ψ(x), x ∈ (−1, 1) for 1 < γ < 2. (1.4)

In this paper, in the case 0 < γs < · · · < γ1 < γ < 1, (1.1) is called the multi-
term time fractional diffusion equation. When 1 < γs < · · · < γ1 < γ < 2,
(1.1) is called the multi-term time fractional diffusion–wave equation. When
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0 < γs < · · · < γi < 1 < γi−1 < · · · < γ1 < γ < 2, (1.1) is called the multi-
term time fractional mixed diffusion and diffusion–wave equation. Luchko
[15] considered the initial-boundary value problems for the generalized multi-
term time-fractional diffusion equation, and showed some existence and u-
niqueness results. Jiang et al. [16] derived the analytical solutions for the
multi-term time-space Caputo–Riesz fractional advection–diffusion equation-
s on a finite domain. Li et al. [17] presented the well-posedness and the
long-time asymptotic behavior of the initial-boundary value problems for
the multi-term time-fractional diffusion equations. Ding and Nieto [18] used
Laplace transform and Fourier transform methods to obtain the analytical
solutions of the multi-term time-space fractional reaction–diffusion equations
on the whole line, and presented the results in a compact and elegant form
in terms of Mittag–Leffler functions.

Liu et al. [19] proposed some computationally effective numerical meth-
ods for simulating the multi-term time fractional wave–diffusion equations.
Jin et al. [20] used a Galerkin finite element method to approximate the
multi-term time fractional diffusion equation on a bounded convex polyhedral
domain, and analysed the stability and error estimate for the semi-discrete
and fully discrete schemes. Ren and Sun [21] presented a compact differ-
ence method for the multi-term time fractional diffusion–wave equation on
one-dimensional and two-dimensional bounded domains.

However, the temporal accuracy of the previous methods is depending on
the order of the fractional derivatives, and is usually less than two. There
are also some papers in which second order discretization was proposed for
the time discretization of the fractional derivative operators, see [22–25]. But
the high order approximations for single fractional operator either cannot be
directly applied to multi-term fractional operators, or the error analysis of
them is hard to analyse. Most importantly, they are not workable for solving
both the time fractional diffusion and diffusion–wave equations. Huang and
Yang [26] proposed a unified difference–spectral method for the single term
time-space fractional diffusion equations, but its extension to the multi-term
cases is not clear. Recently, Tian et al. [27] proposed a class of second order
approximations, called weighted and shifted Grünwald difference (WSGD)
operators, for the Riemann–Liouville fractional derivatives. In this paper,
we propose a unified numerical scheme which has second order accuracy in
time and spectral accuracy in space for the problem (1.1)–(1.4) . The pro-
posed scheme is based on finite difference method in the temporal direction
and Legendre spectral method in the spatial direction. More precisely, for
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the multi-term time fractional diffusion and diffusion–wave equations, we first
transform them into equivalent forms with the Riemman–Liouville fractional
derivative operator and Riemman-Liouville fractional integral operator, re-
spectively. Then we use weighted and shifted Grünwald difference (WSGD)
operators to approximate the fractional operators, and based on a Crank–
Nicolson technique, the convergence rate of the fully discrete scheme in L2

norm is O(τ 2 +N1−m), where τ , N , and m are the time-step size, polynomial
degree, and regularity in the space variable of the exact solution, respective-
ly. The stability and convergence of the fully discrete scheme are rigorously
established.

The rest of the paper is organized as follows. In Section 2, some prelimi-
naries and notations are shown. In Section 3, we construct a unified numerical
scheme for the multi-term time fractional diffusion and diffusion–wave equa-
tions. In Section 4, the stability and convergence of the fully discrete scheme
are analysed. We do some numerical experiments in Section 5. Finally, the
summary and discussion are presented in Section 6.

2. Preliminaries and Notations

Let Λ = (−1, 1). Throughout this paper, we use the usual Sobolev spaces
W r,p(Λ) with norm ∥·∥r,p. When p = 2, we denote W r,2(Λ) and its inner
product, semi-norm, and norm by Hr(Λ), (·, ·)r, | · |r, and ∥·∥r, respectively.
In particular, (·, ·) = (·, ·)0, ∥·∥ = ∥·∥0. Furthermore, we denote

H1
0 (Λ) =

{
v ∈ H1(Λ), v(±1) = 0

}
.

Denote L2
w(Λ) as a weighted L2 space with a weight function w(x), and its

inner product and norm are defined as:

(u, v)w =

∫

Λ

uvwdx, ∥v∥w =

(∫

Λ

v2wdx

) 1
2

.

We denote by L∞(0, T ;Hm(Λ)) the space of the measurable functions v :
(0, T ) → Hm(Λ), such that

∥v∥L∞(Hm) = ess sup
0≤t≤T

∥v(t)∥m < +∞,

L2(0, T ;Hm) the space of the measurable functions v : (0, T ) → Hm(Λ), such
that

∥v∥L2(Hm) =

(∫ T

0

∥v∥2
mdt

) 1
2

< +∞.
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For simplicity, we denote ∂k
xv(x) = dk

dxk v(x). Throughout the paper, c denotes
a generic positive constant.

Let N be a positive integer, we denote by PN(Λ) the space of all polyno-
mials of degree less than or equal to N . P0

N := {ϕ ∈ PN(Λ) : ϕ(±1) = 0}.
Next we introduce some projection approximation results.

Let π1,0
N be the H1

0 -orthogonal projection operator from H1
0 (Λ) into P0

N ,
such that for all u ∈ H1

0 (Λ),
(
∂xπ

1,0
N u, ∂xvN

)
= (∂xu, ∂xvN) , ∀vN ∈ P0

N . (2.1)

For the projection operator π1,0
N , one has the following approximation result:

Lemma 2.1 ([28]). For all u ∈ H1
0 (Λ) ∩Hm(Λ), we have

∥u− π1,0
N u∥k ≤ CNk−m∥u∥m, k = 0, 1, m ≥ 1,

where C is a positive constant independent of N .

In this paper, we need a modified projection operator Π1,0
N : H1

0 (Λ) → P0
N ,

defined as following:
(
p(x)∂x(u− Π1,0

N u), ∂xvN

)
+
(
q(x)(u− Π1,0

N u), vN

)
= 0, ∀vN ∈ P0

N . (2.2)

Then one has the following lemma:

Lemma 2.2. For all u ∈ H1
0 (Λ) ∩Hm(Λ), we have

∥∂x(u− Π1,0
N u)∥2

p(x) + ∥u− Π1,0
N u∥2

q(x) ≤ cN2−2m∥u∥2
m, m ≥ 1,

where c is a positive constant independent of N .

Proof. According to the definition of the operator Π1,0
N , we have

∥∂x(u− Π1,0
N u)∥2

p(x) + ∥u− Π1,0
N u∥2

q(x)

=
(
p(x)∂x(u− Π1,0

N u), ∂x(u− Π1,0
N u)

)
+
(
q(x)(u− Π1,0

N u), u− Π1,0
N u
)

=
(
p(x)∂x(u− Π1,0

N u), ∂x(u− π1,0
N u)

)
+
(
q(x)(u− Π1,0

N u), u− π1,0
N u
)

≤∥∂x(u− Π1,0
N u)∥p(x)∥∂x(u− π1,0

N u)∥p(x) + ∥u− Π1,0
N u∥q(x)∥u− π1,0

N u∥q(x)

≤
(
∥∂x(u− Π1,0

N u)∥2
p(x) + ∥u− Π1,0

N u∥2
q(x)

) 1
2
(
∥∂x(u− π1,0

N u)∥2
p(x) + ∥u− π1,0

N u∥2
q(x)

) 1
2 .

Thus we have

∥∂x(u− Π1,0
N u)∥2

p(x) + ∥u− Π1,0
N u∥2

q(x) ≤ ∥∂x(u− π1,0
N u)∥2

p(x) + ∥u− π1,0
N u∥2

q(x).

Then according to the boundedness of p(x), q(x), and Lemma 2.1, the desired
result is obtained.
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The following Poincaré inequality is useful.

Lemma 2.3. For u(x) ∈ C1[−1, 1], with u(−1) = u(1) = 0, we have

∥u∥ ≤ 1√
2
∥∂xu∥.

Proof. The inequality can be obtained by a simple computation.

We first give a discrete Grönwall’s inequality.

Lemma 2.4 ([29]). Let k, B, and aµ, bµ, cµ, γµ, for integers µ ≥ 0, be
nonnegative numbers such that

an + k

n∑

µ=0

bµ ≤ k

n∑

µ=0

γµaµ + k

n∑

µ=0

cµ +B, n ≥ 0.

Suppose that kγµ < 1, for all µ, and set σµ ≡ (1 − kγµ)−1. Then

an + k

n∑

µ=0

bµ ≤ exp

(
k

n∑

µ=0

σµγµ

){
k

n∑

µ=0

cµ +B

}
, n ≥ 0.

Next, we give some definitions from fractional calculus. For simplicity,

denote ∂k
t v(t) = dkv(t)

dtk
. Following [30], for a given function f(t), α > 0,

we denote by 0I
α
t f(t) the left-sided Riemann–Liouville fractional integral of

order α, defined as

0I
α
t f(t) =

1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0. (2.3)

For n− 1 < α < n, we denote by RL
0D

α
t f(t) the left-sided Riemann–Liouville

fractional derivative of order α, defined as RL
0D

α
t f(t) = ∂n

t 0I
n−α
t f(t), that is

RL
0D

α
t f(t) =

1

Γ(n− α)
∂n

t

∫ t

0

(t− s)n−α−1f(s)ds, t > 0. (2.4)

For n − 1 < α < n, we denote by C
0D

α
t f(t) the left-sided Caputo fractional

derivative of order α, defined as C
0D

α
t = 0I

n−α
t ∂n

t f(t), that is

C
0D

α
t f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1∂n
s f(s)ds, t > 0. (2.5)
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Then according to Theorem 3.8 in [31], we have the following formula

0I
α
t

C
0D

α
t f(t) = f(t) −

n−1∑

k=0

f (k)(0)

k!
tk. (2.6)

We recall some useful properties about the fractional derivatives and in-
tegrals. For α > 0, β > 0, we have

0I
α
t 0I

β
t f(t) = 0I

α+β
t f(t) = 0I

β
t 0I

α
t f(t), (2.7)

and

RL
0D

α
t 0I

α
t f(t) = f(t). (2.8)

For 0 < α < 1, 0 < α1, α2 < 1, if f(0) = 0, then we have

C
0D

α
t f(t) = RL

0D
α
t f(t), (2.9)

and

RL
0D

α1
t

RL
0D

α2
t f(t) = RL

0D
α1+α2
t f(t) = RL

0D
α2
t

RL
0D

α1
t f(t). (2.10)

3. Construction of the unified numerical scheme

In the following parts of this paper, we assume u(x, 0) ≡ 0, otherwise, we
consider ũ = u− u0.

For a positive integer M , let tk = kτ , k = 0, 1, . . . ,M , where τ = T/M is
the time-step size. Given a grid function w = {wk|0 ≤ k ≤ M}, we define

wk+ 1
2 =

1

2

(
wk+1 + wk

)
, δtw

k+ 1
2 =

1

τ

(
wk+1 − wk

)
.

First we have the following lemma:

Lemma 3.1. We denote 0I
β
t f(t) as RL

0D
−β
t f(t) for β > 0. Then the equation

(1.1) is equivalent to the following form

∂tu+
s∑

i=1

bi
RL

0D
αi
t u(x, t) = RL

0D
α
t Lu(x, t) + f(x, t), (3.1)

where α = 1 − γ, αi = 1 + γi − γ; f(x, t) = RL
0D

1−γ
t g(x, t) for the case

0 < γs < · · · < γ1 < γ < 1 and f(x, t) = 0I
γ−1
t g(x, t) + ψ +

∑s′

i=1 bi 0I
γ−γi
t ψ

for the case 0 < γs < · · · < γs′+1 ≤ 1 < γs′ < · · · < γ1 < γ < 2.
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Proof. (1) In the case 0 < γs < · · · < γ1 < γ < 1, as u(x, 0) = 0, according
to (2.9), the equation (1.1) is equivalent to

C
0D

γ
t u(x, t) +

s∑

i=1

bi
RL

0D
γi
t u(x, t) = Lu(x, t) + g(x, t). (3.2)

As C
0D

γ
t u(x, t) = 0I

1−γ
t ∂tu(x, t), then according to (2.8) and (2.10), we

transform (3.2) into

∂tu+
s∑

i=1

bi
RL

0D
1+γi−γ
t u(x, t) = RL

0D
1−γ
t Lu(x, t) + f(x, t),

where f(x, t) = RL
0D

1−γ
t g(x, t).

(2) We next consider the case 1 < γs < · · · < γ1 < γ < 2.
Since

C
0D

γ
t u(x, t) = 0I

2−γ
t ∂2

t u(x, t)

= 0I
1−(γ−1)
t ∂t(∂tu(x, t))

= C
0D

γ−1
t ∂tu(x, t),

then according to (2.6), (2.7), and noticing that ut(x, 0) = ψ, we have

0I
γ−1
t

C
0D

γ
t u(x, t) = 0I

γ−1
t

C
0D

γ−1
t ∂tu(x, t) = ∂tu(x, t) − ψ,

and

0I
γ−1
t

C
0D

γi
t u(x, t) = 0I

γ−1
t

C
0D

γi−1
t ∂tu(x, t)

= 0I
γ−γi
t 0I

γi−1
t

C
0D

γi−1
t ∂tu(x, t)

= 0I
γ−γi
t (∂tu(x, t) − ψ)

= C
0D

1+γi−γ
t u(x, t) + 0I

γ−γi
t ψ.

Thus we transform the initial equation (1.1) into its equivalent form

∂tu(x, t) +
s∑

i=1

bi
C
0D

1+γi−γ
t u(x, t) = 0I

γ−1
t Lu+ f(x, t), (3.3)

where f(x, t) = 0I
γ−1
t g(x, t) + ψ +

∑s
i=1 bi 0I

γ−γi
t ψ.
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Noticing that 0 < 1 + γi − γ = 1 − (γ− γi) < 1, and γ− 1 > 0, according
to (2.9), the equation (3.3) is equivalent to

∂tu(x, t) +
s∑

i=1

bi
RL

0D
1+γi−γ
t u(x, t) = RL

0D
1−γ
t Lu+ f(x, t).

(3) Now we turn to the case 0 < γs < · · · < γs′+1 ≤ 1 < γs′ < · · · < γ1 <
γ < 2. At present, we need just tackle the case 0 < γi < 1.

In the case 1 < γ − γi < 2, according to (2.6) and (2.7), we have

0I
γ−1
t

C
0D

γi
t u = 0I

γ−γi−1
t 0I

γi
t

C
0D

γi
t u = 0I

γ−γi−1
t u = RL

0D
1+γi−γ
t u. (3.4)

In the case 0 < γ − γi < 1, according to (2.7) and (2.9), we have

0I
γ−1
t

C
0D

γi
t u = 0I

γ−1
t 0I

1−γi
t ∂tu = 0I

γ−γi
t ∂tu = C

0D
1+γi−γ
t u = RL

0D
1+γi−γ
t u.

(3.5)

In the case γ − γi = 1, 0I
γ−1
t

C
0D

γi
t u = 0I

γi
t

C
0D

γi
t u = u, which can be incorpo-

rated in either the case (3.4) or (3.5).
Therefore, the equation (1.1) is transformed into

∂tu(x, t) +
s∑

i=1

bi
RL

0D
1+γi−γ
t u(x, t) = RL

0D
1−γ
t Lu+ f(x, t),

where f(x, t) = 0I
γ−1
t g(x, t) + ψ +

∑s′

i=1 bi 0I
γ−γi
t ψ.

For the approximation of the Riemann–Liouville fractional derivative
RL

0D
α
t u, as u(x, 0) = 0, one can continuously extend the solution u(x, t) to

be zero for t < 0. Thus we use the weighted and shifted Grünwald difference
(WSGD) operator as in [14], that is, for u(·, t) ∈ L1(R), RL

−∞D
α+2
t u(·, t) and

and its Fourier transform belong to L1(R), we have

RL
0D

α
t u(x, tk+1) = τ−α

k+1∑

j=0

λ
(α)
j u(x, tk+1−j) + O(τ 2), 0 ≤ α ≤ 1, (3.6)

where

λ
(α)
0 =

2 + α

2
g

(α)
0 , λ

(α)
j =

2 + α

2
g

(α)
j − α

2
g

(α)
j−1, j ≥ 1, (3.7)
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and g
(α)
j = (−1)j

(
α
j

)
for j ≥ 0.

For the discretization of integral operator 0I
α
t , we use the weighted and

shifted Grünwald difference operator as in [14], that is, for u(·, t) ∈ L1(R),

−∞I
α
t u(·, t) and (iω)2−αF [f ](ω) belong to L1(R), we have

0I
α
t u(·, tk+1) = τα

k+1∑

j=0

µ
(α)
j u(·, tk+1−j) + O(τ 2), (3.8)

where

µ
(α)
0 =

(
1 − α

2

)
ω

(α)
0 , µ

(α)
j =

(
1 − α

2

)
ω

(α)
j +

α

2
ω

(α)
j−1, j ≥ 1, (3.9)

and ω
(α)
j = (−1)j

(−α
j

)
for j ≥ 0.

Remark 3.1. For more details about the second order weighted and shifted
Grünwald difference (WSGD) operator, one can refer to [27]. And (3.6) is
the case (p, q) = (0,−1) in paper [27].

If we denote 0I
α
t f(t) by RL

0D
−α
t f(t), and notice that (3.6) and (3.7) with α

replaced by −α are exactly the same as (3.8) and (3.9). Thus we can extend
the (3.6) and (3.7) to cover both the cases −1 ≤ α ≤ 0 and 0 ≤ α ≤ 1.

For convenience, denote uk+1(x) = u(x, tk+1), and

Dα
τ u

k+1 = τ−α

k+1∑

j=0

λ
(α)
j uk+1−j,−1 ≤ α ≤ 1.

Thus RL
0D

α
t u(x, tk+1) = Dα

τ u
k+1 + O(τ 2), by virtue of (3.6).

We discretize the space using Legendre spectral method. Therefore, based
on a Crank–Nicolson technique, the fully discrete scheme for (3.1) is as fol-
lows: find uk+1

N ∈ P0
N , with u0

N = 0, such that

(δtu
k+ 1

2
N , vN) +

1

2

s∑

i=1

bi(Dαi
τ u

k+1
N + Dαi

τ u
k
N , vN)

= −1

2

(
p(Dα

τ ∂xu
k+1
N + Dα

τ ∂xu
k
N), ∂xvN

)

−1

2

(
q(Dα

τ u
k+1
N + Dα

τ u
k
N), vN

)
+ (fk+ 1

2 , vN), ∀vN ∈ P0
N , (3.10)

where k = 0, 1, . . . ,M − 1.
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For {uj
N}k

j=0 given, the well-posedness of the problem (3.10) is guaranteed
by the well-known Lax–Milgram lemma, as we can rewritten (3.10) as

a(uk+1
N , vN) = F (vN), ∀vN ∈ P0

N ,

where

a(uk+1
N , vN) =(uk+1

N , vN) +
1

2

s∑

i=1

biτ
1−αiλ

(αi)
0 (uk+1

N , vN)

+
1

2
τ 1−αλ

(α)
0 (p∂xu

k+1
N , ∂xvN) +

1

2
τ 1−αλ

(α)
0 (quk+1

N , vN)

is a continuous and coercive bilinear form on P0
N × P0

N , F (vN) is a linear
functional independent of uk+1

N .
In the next section, we will give the stability and convergence of the

scheme (3.10).

4. Stability and convergence of the fully discrete scheme

We first need a lemma about the coefficients {λ(α)
j }∞

j=0.

Lemma 4.1 ([14]). Let {λ(α)
j }∞

j=0 be defined as in (3.7), then for any positive

integer k and real vector (v1, v2, . . . , vk) ∈ Rk, it holds that

k−1∑

n=0

(
n∑

j=0

λ
(α)
j vn+1−j

)
vn+1 ≥ 0.

By virtue of this lemma, one immediately get the following lemma:

Lemma 4.2. Let {λ(α)
j }∞

j=0 be defined as in (3.7), r(x) be a nonnegative con-
tinuous function, then for any positive integer k and real-valued continuous
functions v1(x), v2(x), . . . , vk(x), we have

k−1∑
n=0

(
r(x)

n∑
j=0

λ
(α)
j vn+1−j(x), vn+1(x)

)
≥ 0.

Here, one should notice the notation (·, ·) denotes the inner product on Λ.

11



Proof. For each x ∈ Λ, by virtue of Lemma 4.1, we have

r(x)
k−1∑

n=0

(
n∑

j=0

λ
(α)
j vn+1−j(x)

)
vn+1(x) ≥ 0.

Then it follows that

∫

Λ

k−1∑

n=0

r(x)

(
n∑

j=0

λ
(α)
j vn+1−j(x)

)
vn+1(x)dx ≥ 0.

Finally, using the linearity of the definite integral, we get

k−1∑

n=0

∫

Λ

r(x)

(
n∑

j=0

λ
(α)
j vn+1−j(x)

)
vn+1(x)dx ≥ 0.

For the stability of the fully discrete scheme (3.10) we have the following
theorem.

Theorem 4.1. Suppose τ < 1, the fully discrete scheme (3.10) is stable in
the sense that for 1 ≤ n ≤ M , it holds

∥un
N∥2 ≤ exp

(
T

1 − τ

)(
τ

n−1∑

k=0

∥fk+ 1
2 ∥2

)
.

Proof. Taking vN = uk+1
N + uk

N in (3.10) gives

1

τ

(
∥uk+1

N ∥2 − ∥uk
N∥2
)

+
1

2

s∑

i=1

biτ
−αi

(
k∑

j=0

λ
(αi)
j (uk+1−j

N + uk−j
N ), uk+1

N + uk
N

)

= − τ−α

2

(
p(x)

k∑

j=0

λ
(α)
j (∂xu

k+1−j
N + ∂xu

k−j
N ), ∂xu

k+1
N + ∂xu

k
N

)

− τ−α

2

(
q(x)

k∑

j=0

λ
(α)
j (uk+1−j

N + uk−j
N ), uk+1

N + uk
N

)
+ (fk+ 1

2 , uk+1
N + uk

N).

(4.1)

12



Summing up for k in (4.1) from 0 to n− 1, and noticing that

(fk+ 1
2 , uk+1

N + uk
N) ≤ ∥fk+ 1

2 ∥2 +
1

2
∥uk+1

N ∥2 +
1

2
∥uk

N∥2,

we get, by Lemma 4.2, that

∥un
N∥2 ≤ −1

2

s∑

i=1

biτ
1−αi

n−1∑

k=0

(
k∑

j=0

λ
(αi)
j (uk+1−j

N + uk−j
N ), uk+1

N + uk
N

)

− τ 1−α

2

n−1∑

k=0

(
p(x)

k∑

j=0

λ
(α)
j (∂xu

k+1−j
N + ∂xu

k−j
N ), ∂xu

k+1
N + ∂xu

k
N

)

− τ 1−α

2

n−1∑

k=0

(
q(x)

k∑

j=0

λ
(α)
j (uk+1−j

N + uk−j
N ), uk+1

N + uk
N

)

+
τ

2

n−1∑

k=0

∥uk+1
N ∥2 +

τ

2

n−1∑

k=0

∥uk
N∥2 + τ

n−1∑

k=0

∥fk+ 1
2 ∥2

≤ τ
n∑

k=1

∥uk
N∥2 + τ

n−1∑

k=0

∥fk+ 1
2 ∥2.

Then according to the discrete Grönwall’s inequality in Lemma 2.4, we get
that

∥un
N∥2 ≤ exp

(
T

1 − τ

)(
τ

n−1∑

k=0

∥fk+ 1
2 ∥2

)
.

For the convergence of the fully discrete scheme (3.10), we have

Theorem 4.2. Let u be the exact solution of (3.1), {uk
N}M

k=0 be the so-
lution of the problem (3.10). Suppose u,RL

0D
αi
t u ∈ L∞(0, T ;Hm(Λ)), ∂tu ∈

L2(0, T ;Hm(Λ)), m ≥ 1, and u satisfies the conditions above (3.6) and (3.8).
Then we have, for τ < 1/2,

∥u(tk) − uk
N∥2 ≤ exp

(
2T

1 − 2τ

)(
cN2−2m∥∂tu∥2

L2(Hm) + cuτ
4

+ cN2−2m

s∑

i=1

b2i ∥ RL
0D

αi
t u∥2

L∞(Hm)

)
+ cN2−2m∥u∥2

L∞(Hm),

13



where c is a positive constant independent of N , cu is a constant depending
on u.

Proof. Let ej
N = uj −uj

N , ẽj
N = Π1,0

N uj −uj
N , êj

N = uj −Π1,0
N uj, thus we have

ej
N = ẽj

N + êj
N . From the equation (3.1) and the fully discrete scheme (3.10),

we have the following error equation,

(δte
k+ 1

2
N , vN) +

1

2

s∑

i=1

bi
(
Dαi

τ e
k+1
N + Dαi

τ e
k
N , vN

)

= − τ−α

2

(
p(x)

k∑

j=0

λ
(α)
j (∂xe

k+1−j
N + ∂xe

k−j
N ), ∂xvN

)

− τ−α

2

(
q(x)

k∑

j=0

λ
(α)
j (ek+1−j

N + ek−j
N ), vN

)
+ (Rk+1

τ , vN), ∀vN ∈ P0
N ,

where |Rk+1
τ | ≤ cuτ

2.
Then as ej

N = ẽj
N + êj

N , and according to the definition of the projection
operator Π1,0

N , we have

(δtẽ
k+ 1

2
N , vN) +

1

2

s∑

i=1

bi(Dαi
τ ẽ

k+1
N + Dαi

τ ẽ
k
N , vN)

= − τ−α

2

(
p(x)

k∑

j=0

λ
(α)
j (∂xẽ

k+1−j
N + ∂xẽ

k−j
N ), ∂xvN

)
+ (Rk+1

τ , vN)

− τ−α

2

(
q(x)

k∑

j=0

λ
(α)
j (ẽk+1−j

N + ẽk−j
N ), vN

)
− (δtê

k+ 1
2

N , vN)

− 1

2

s∑

i=1

bi(Dαi
τ ê

k+1
N + Dαi

τ ê
k
N , vN), ∀vN ∈ P0

N . (4.2)
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Taking vN = ẽk+1
N + ẽk

N in (4.2), gives

1

τ

(
∥ẽk+1

N ∥2 − ∥ẽk
N∥2
)

+
s∑

i=1

bi
τ−αi

2

(
k∑

j=0

λ
(αi)
j (ẽk+1−j

N + ẽk−j
N ), ẽk+1

N + ẽk
N

)

= − τ−α

2

(
p(x)

k∑

j=0

λ
(α)
j (∂xẽ

k+1−j
N + ∂xẽ

k−j
N ), ∂xẽ

k+1
N + ∂xẽ

k
N

)

− τ−α

2

(
q(x)

k∑

j=0

λ
(α)
j (ẽk+1−j

N + ẽk−j
N ), ẽk+1

N + ẽk
N

)
+ (Rk+1

τ , ẽk+1
N + ẽk

N)

− (δtê
k+ 1

2
N , ẽk+1

N + ẽk
N) − 1

2

s∑

i=1

bi(Dαi
τ ê

k+1
N + Dαi

τ ê
k
N , ẽ

k+1
N + ẽk

N). (4.3)

As Dαi
τ ê

k
N = RL

0D
αi
t ê

k
N +O(τ 2), and according to the Lemmas 2.2 and 2.3,

we have

− 1

2

s∑

i=1

bi(Dαi
τ ê

k+1
N + Dαi

τ ê
k
N , ẽ

k+1
N + ẽk

N)

≤ 1

2

s∑

i=1

sb2i ∥Dαi
τ ê

k+1
N + Dαi

τ ê
k
N∥2 +

1

4
∥ẽk+1

N ∥2 +
1

4
∥ẽk

N∥2

≤ cN2−2m

s∑

i=1

b2i ∥ RL
0D

αi
t u∥2

L∞(Hm) + cuτ
4 +

1

4
∥ẽk+1

N ∥2 +
1

4
∥ẽk

N∥2.

Summing up (4.3) for 0 ≤ k ≤ n− 1, and noticing that

−(δtê
k+ 1

2
N , ẽk

N + ẽk
N) = −

(
1

τ

∫ tk+1

tk

∂têNdt, ẽk+1
N + ẽk

N

)

≤ 1

τ

∫ tk+1

tk

∥∂têN∥2dt+
1

2
∥ẽk+1

N ∥2 +
1

2
∥ẽk

N∥2,

and

(Rk+1
τ , ẽk+1

N + ẽk
N) ≤ 2∥Rk+1

τ ∥2 +
1

4
∥ẽk+1

N ∥2 +
1

4
∥ẽk

N∥2,
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we get, by Lemmas 4.2, 2.2 and 2.3, that

∥ẽn
N∥2 ≤ −

s∑

i=1

bi
τ 1−αi

2

n−1∑

k=0

(
k∑

j=0

λ
(αi)
j (ẽk+1−j

N + ẽk−j
N ), ẽk+1

N + ẽk
N

)

− τ 1−α

2

n−1∑

k=0

(
p(x)

k∑

j=0

λ
(α)
j (∂xẽ

k+1−j
N + ∂xẽ

k−j
N ), ∂xẽ

k+1
N + ∂xẽ

k
N

)

− τ 1−α

2

n−1∑

k=0

(
q(x)

k∑

j=0

λ
(α)
j (ẽk+1−j

N + ẽk−j
N ), ẽk+1

N + ẽk
N

)

+ τ
n−1∑

k=0

∥ẽk+1
N ∥2 + τ

n−1∑

k=0

∥ẽk
N∥2 + 2τ

n−1∑

k=0

∥Rk+1
τ ∥2 +

∫ tn

0

∥∂têN∥2dt

+ τ
n−1∑

k=0

cN2−2m

s∑

i=1

b2i ∥ RL
0D

αi
t u∥2

L∞(Hm) + τ

n−1∑

k=0

cuτ
4

≤2τ
n∑

k=1

∥ẽk
N∥2 + cN2−2m

∫ T

0

∥∂tu∥2
mdt+ cuτ

4

+ cN2−2m

s∑

i=1

b2i ∥ RL
0D

αi
t u∥2

L∞(Hm).

Then according to the discrete Grönwall’s inequality in Lemma 2.4, we
get

∥ẽn
N∥2

≤ exp

(
2T

1 − 2τ

)
(cN2−2m∥∂tu∥2

L2(Hm) + cN2−2m

s∑

i=1

b2i ∥ RL
0D

αi
t u∥2

L∞(Hm) + cuτ
4).

Finally, using the triangular inequality ∥en
N∥ ≤ ∥ẽn

N∥ + ∥ên
N∥, and Lemmas

2.2 and 2.3, we get the desired result.
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5. Numerical experiment

5.1. Implementation

Let β0 = τ 1−α/2, βi = τ 1−αi/2, we rewrite the equation (3.10) in the form

(uk+1
N , vN) +

s∑

i=1

biβiλ
(αi)
0 (uk+1

N , vN) + β0λ
(α)
0

(
p(uk+1

N )x, (vN)x

)

+ β0λ
(α)
0

(
quk+1

N , vN

)
= F k+1

N (vN), ∀vN ∈ P0
N , (5.1)

where

F k+1
N (vN) =(uk

N , vN) −
s∑

i=1

biβi

(
k∑

j=0

(λ
(αi)
j + λ

(αi)
j+1)u

k−j
N , vN

)

− β0

(
p

k∑

j=0

(λ
(α)
j + λ

(α)
j+1)∂xu

k−j
N , ∂xvN

)

− β0

(
q

k∑

j=0

(λ
(α)
j + λ

(α)
j+1)u

k−j
N , vN

)
+ τ(fk+ 1

2 , vN).

Let Ln(x) denotes Legendre polynomials with degree n. We choose the
basis functions as

ϕj(x) = Lj(x) − Lj+2(x), j ≥ 0.

One can verify that ϕj(±1) = 0. Thus P0
N = span{ϕj : j = 0, 1, . . . , N − 2}.

We express the function uk+1
N in terms of the basis functions {ϕj(x)}N−2

j=0

uk+1
N (x) =

N−2∑

j=0

ũk+1
j ϕj(x),

where {ũk+1
j }N−2

j=0 are the frequency coefficients that we want to solve.
Choosing each test function vN to be ϕl(x), l = 0, 1, . . . , N − 2, we obtain

N−2∑

j=0

(ϕj, ϕl) ũ
k+1
j +

s∑

i=1

biβiλ
(αi)
0

N−1∑

j=1

(ϕj, ϕl) ũ
k+1
j

+β0λ
(α)
0

N−2∑

j=0

(
p∂xϕj, ∂xϕl

)
ũk+1

j + β0λ
(α)
0

N−2∑

j=0

(
qϕj, ϕl

)
ũk+1

j

= F k+1
N (ϕl).
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Let

Uk+1 = [ũk+1
0 , ũk+1

1 , . . . , ũk+1
N−2]

T,

Fk+1 = [F k+1
N (ϕ0), F

k+1
N (ϕ1), . . . , F

k+1
N (ϕN−2)]

T.

We denote the matrices

A =
(
(ϕj, ϕi)

)N−2

i,j=0
, B =

((
p∂xϕj, ∂xϕi

))N−2

i,j=0

,

C =

((
qϕj, ϕi

))N−2

i,j=0

.

Then we arrive at the following matrix statement of the problem (5.1):
(

(1 +
s∑

i=1

biβiλ
(αi)
0 )A + β0λ

(α)
0 B + β0λ

(α)
0 C

)
Uk+1 = Fk+1.

The components of the matrices can be efficiently computed by Legendre-
Gauss quadrature formula [32].

5.2. Numerical results

We carry out some numerical experiments and present some results to
confirm our theoretical statements.

Firstly, we consider the problem (1.1)–(1.4) with exact solutions.

Example 5.1. We consider the problem (1.1)–(1.4) in the case s = 1, b1 = 1,
with an exact analytical solution:

u(x, t) = (t2+γ + t2) sin(πx),

and p(x) = 2 − sin(x), q(x) = 1 − cos(x). The corresponding forcing terms
are

g(x, t) =

(
Γ(3 + γ)t2

2
+

2t2−γ

Γ(3 − γ)
+

Γ(3 + γ)t2+γ−γ1

Γ(3 + γ − γ1)
+

2t2−γ1

Γ(3 − γ1)

)
sin(πx)

+ (t2+γ + t2) sin(πx)(1 − cos(x) + π2(2 − sin(x))) + π cos(x)(t2+γ + t2) cos(πx),

f(x, t) =

(
(2 + γ)t1+γ + 2t+

Γ(3 + γ)t1+2γ−γ1

Γ(2 + 2γ − γ1)
+

2t1+γ−γ1

Γ(2 + γ − γ1)

)
sin(πx)

+ (
Γ(3 + γ)t1+2γ

Γ(2 + 2γ)
+

2t1+γ

Γ(2 + γ)
)[sin(πx)(1 − cos(x) + π2(2 − sin(x))) + π cos(x) cos(πx)].
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Example 5.2. We consider the problem (1.1)–(1.4) in the case s = 1, b1 = 1,
with an exact solution which has limited regularity :

u(x, t) = t3(1 − x2)x
16
3 ,

(one can verify u ∈ H5(Λ), but /∈ H6(Λ)), and p(x) = 2 − sin(x), q(x) =
1 − cos(x). The corresponding forcing terms are

g(x, t) =

(
6t3−γ

Γ(4 − γ)
+

6t3−γ1

Γ(4 − γ1)

)
(1 − x2)x

16
3 + t3(2 − sin(x))(

418

9
x

16
3 − 208

9
x

10
3 )

+ t3 cos(x)(
16

3
x

13
3 − 22

3
x

19
3 ) + t3(1 − cos(x))(1 − x2)x

16
3 ,

f(x, t) =

(
3t2 +

6t2+γ−γ1

Γ(3 + γ − γ1)

)
(1−x2)x

16
3 +

6t2+γ

Γ(3 + γ)
(2−sin(x))(

418

9
x

16
3 −208

9
x

10
3 )

+
6t2+γ

Γ(3 + γ)
cos(x)(

16

3
x

13
3 − 22

3
x

19
3 ) +

6t2+γ

Γ(3 + γ)
(1 − cos(x))(1 − x2)x

16
3 .

Example 5.3. We consider the problem (1.1)–(1.4) in the case s = 4, b1 =
b2 = b3 = b4 = 1, with an exact analytical solution:

u(x, t) = t3 sin(πx),

and p(x) = 2 − sin(x), q(x) = 1 − cos(x). The corresponding forcing terms
are

g(x, t) =

(
6t3−γ

Γ(4 − γ)
+

4∑

i=1

6t3−γi

Γ(4 − γi)

)
sin(πx) + πt3 cos(x) cos(πx)

+ t3 sin(πx)
(
1 − cos(x) + π2(2 − sin(x))

)
,

f(x, t) =

(
3t2 +

4∑

i=1

6t2+γ−γi

Γ(3 + γ − γi)

)
sin(πx) + π

6t2+γ

Γ(3 + γ)
cos(x) cos(πx)

+
6t2+γ

Γ(3 + γ)
sin(πx)

(
1 − cos(x) + π2(2 − sin(x))

)
.

To confirm the temporal accuracy, we choose N big enough to eliminate
the error caused by spacial discretization. For Examples 5.1 and 5.3 we take
N = 15, while for Example 5.2 we take N = 100.
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Tables 1–7 show the errors ∥u(T ) − uM
N ∥ (T = 1) and the corresponding

temporal convergence rates. From which, we can see the temporal accura-
cy is second-order, which is consistent with our theoretical analysis. The
convergence rate is given by the formula: Rate= log τ1

τ2

e1

e2
(ei is the error

corresponding to τi). All the calculations are performed in MATLAB.

Table 1: L2 errors and convergence rates in the case 0 < γ1 < γ < 1 for Example 5.1.

τ
γ = 0.1, γ1 = 0.01 γ = 0.5, γ1 = 0.4 γ = 0.9, γ1 = 0.75
Error Rate Error Rate Error Rate

1/10 1.0392e-02 1.9810 7.7551e-03 1.9849 2.5941e-03 1.9854
1/20 2.6324e-03 1.9840 1.9592e-03 1.9900 6.5510e-04 1.9924
1/40 6.6545e-04 1.9842 4.9321e-04 1.9942 1.6465e-04 1.9960
1/80 1.6819e-04 1.9855 1.2380e-04 1.9966 4.1274e-05 1.9979
1/160 4.2470e-05 1.9872 3.1023e-05 1.9979 1.0334e-05 1.9988
1/320 1.0712e-05 * 7.7673e-06 * 2.5855e-06 *

Table 2: L2 errors and convergence rates in the case 1 < γ1 < γ < 2 for Example 5.1.

τ
γ = 1.1, γ1 = 1.01 γ = 1.5, γ1 = 1.25 γ = 1.9, γ1 = 1.65
Error Rate Error Rate Error Rate

1/10 6.0235e-04 1.9880 4.8377e-03 1.9788 5.5096e-03 1.9853
1/20 1.5184e-04 1.9931 1.2273e-03 1.9890 1.3915e-03 1.9935
1/40 3.8144e-05 1.9961 3.0918e-04 1.9942 3.4944e-04 1.9960
1/80 9.5620e-06 1.9977 7.7605e-05 1.9969 8.7604e-05 1.9969
1/160 2.3943e-06 1.9986 1.9442e-05 1.9983 2.1948e-05 1.9975
1/320 5.9915e-07 * 4.8662e-06 * 5.4964e-06 *

Table 3: L2 errors and convergence rates in the case 0 < γ1 < 1 < γ < 2 for Example 5.1.

τ
γ = 1.1, γ1 = 0.35 γ = 1.5, γ1 = 0.5 γ = 1.9, γ1 = 0.75
Error Rate Error Rate Error Rate

1/10 9.4197e-04 1.9695 6.2393e-03 1.9765 8.8740e-03 1.9900
1/20 2.4053e-04 1.9849 1.5854e-03 1.9886 2.2340e-03 1.9957
1/40 6.0765e-05 1.9925 3.9949e-04 1.9944 5.6016e-04 1.9980
1/80 1.5271e-05 1.9962 1.0026e-04 1.9972 1.4023e-04 1.9991
1/160 3.8276e-06 1.9981 2.5113e-05 1.9986 3.5080e-05 1.9995
1/320 9.5815e-07 * 6.2843e-06 * 8.7727e-06 *
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Table 4: L2 errors and convergence rates in the case 0 < γ1 < γ < 1 for Example 5.2.

τ
γ = 0.1, γ1 = 0.01 γ = 0.5, γ1 = 0.4 γ = 0.9, γ1 = 0.75
Error Rate Error Rate Error Rate

1/10 1.2608e-03 1.9461 6.2878e-04 1.9569 1.7042e-04 1.9731
1/20 3.2721e-04 1.9738 1.6197e-04 1.9791 4.3405e-05 1.9880
1/40 8.3301e-05 1.9873 4.1083e-05 1.9901 1.0942e-05 1.9973
1/80 2.1009e-05 1.9946 1.0341e-05 1.9970 2.7405e-06 2.0114
1/160 5.2719e-06 2.0008 2.5907e-06 2.0056 6.7975e-07 2.0547
1/320 1.3172e-06 * 6.4516e-07 * 1.6361e-07 *

Table 5: L2 errors and convergence rates in the case 1 < γ1 < γ < 2 for Example 5.2.

τ
γ = 1.1, γ1 = 1.01 γ = 1.5, γ1 = 1.25 γ = 1.9, γ1 = 1.65
Error Rate Error Rate Error Rate

1/10 1.1482e-04 1.9862 3.0294e-04 1.9844 4.2068e-04 1.9946
1/20 2.8981e-05 1.9948 7.6559e-05 1.9920 1.0557e-04 1.9983
1/40 7.2717e-06 2.0033 1.9246e-05 1.9966 2.6423e-05 1.9998
1/80 1.8138e-06 2.0252 4.8228e-06 2.0006 6.6066e-06 2.0015
1/160 4.4559e-07 2.1094 1.2052e-06 2.0090 1.6500e-06 2.0066
1/320 1.0326e-07 * 2.9944e-07 * 4.1059e-07 *

Table 6: L2 errors and convergence rates in the case 0 < γ1 < 1 < γ < 2 for Example 5.2.

τ
γ = 1.1, γ1 = 0.35 γ = 1.5, γ1 = 0.5 γ = 1.9, γ1 = 0.75
Error Rate Error Rate Error Rate

1/10 7.5546e-05 1.9743 3.1467e-04 1.9831 3.8329e-04 2.0136
1/20 1.9226e-05 1.9878 7.9598e-05 1.9917 9.4924e-05 2.0049
1/40 4.8471e-06 1.9980 2.0015e-05 1.9958 2.3651e-05 2.0012
1/80 1.2134e-06 2.0141 5.0181e-06 1.9977 5.9079e-06 2.0004
1/160 3.0040e-07 2.0467 1.2565e-06 1.9974 1.4766e-06 2.0009
1/320 7.2710e-08 * 3.1469e-07 * 3.6892e-07 *
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Table 7: L2 errors, convergence rates, and CPU time for Example 5.3.

γ, γ1, γ2, γ3, γ4 τ Error Rate CPU(s)
γ = 0.9 1/10 3.5222e-003 1.9737 0.0460
γ1 = 0.8 1/20 8.9675e-004 1.9873 0.0830
γ2 = 0.7 1/40 2.2617e-004 1.9937 0.2058
γ3 = 0.5 1/80 5.6789e-005 1.9969 0.5133
γ4 = 0.3 1/160 1.4228e-005 1.9984 1.4476

1/320 3.5608e-006 * 5.0817

γ = 1.9 1/10 1.6412e-003 1.9209 0.0393
γ1 = 1.7 1/20 4.3342e-004 1.9647 0.0703
γ2 = 1.5 1/40 1.1104e-004 1.9836 0.1670
γ3 = 1.3 1/80 2.8076e-005 1.9921 0.4676
γ4 = 1.1 1/160 7.0573e-006 1.9962 1.5730

1/320 1.7690e-006 * 4.3373

γ = 1.6 1/10 2.8967e-003 1.9705 0.0445
γ1 = 1.3 1/20 7.3912e-004 1.9865 0.0786
γ2 = 0.9 1/40 1.8652e-004 1.9934 0.1405
γ3 = 0.6 1/80 4.6843e-005 1.9968 0.3027
γ4 = 0.3 1/160 1.1737e-005 1.9984 1.3381

1/320 2.9376e-006 * 5.6394

Next we check the spatial accuracy with respect to the polynomial degree
N . By fixing the time step small enough to avoid the contamination of the
temporal error. We choose τ = 0.001. We take the cases γ = 1.5, γ1 = 1.25;
γ = 0.5, γ1 = 0.4; γ = 1.5, γ1 = 0.5 to illustrate.

Figs. 1–3 present the L2 errors with respect to N in semi-log scale for
Example 5.1. From which, we can see the errors decay exponentially, that is
the so-called spectral accuracy.

Figs. 4–6 show the the L2 errors with respect to N in log-log scale for
Example 5.2. Since its solution belongs to H5(Λ), but /∈ H6(Λ), we can see
the convergence rates are between N−4 and N−5, which conforms with our
theoretical analysis.
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Fig. 1: γ = 1.5, γ1 = 1.25 for Example 5.1
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Fig. 2: γ = 0.5, γ1 = 0.4 for Example 5.1
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Fig. 3: γ = 1.5, γ1 = 0.5 for Example 5.1
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Fig. 4: γ = 1.5, γ1 = 1.25 for Example 5.2
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Fig. 5: γ = 0.5, γ1 = 0.4 for Example 5.2
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Fig. 6: γ = 1.5, γ1 = 0.5 for Example 5.2

Next, we consider the problem (1.1)–(1.4) with general problem data.
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Example 5.4. We consider the problem (1.1)–(1.4) in the case s = 1, b1 = 1,
with u0 = 0, ψ = cos(x), the forcing term g(x, t) = t2 sin(πx), and coefficients
p(x) = 2 − sin(x), q(x) = 1 − cos(x). The corresponding forcing term in
equation (3.1) is

f(x, t) =





2t1+γ

Γ(2+γ)
sin(πx), if 0 < γ1 < γ < 1,

2t1+γ

Γ(2+γ)
sin(πx) + cos(x), if 0 < γ1 < 1 < γ < 2,

2t1+γ

Γ(2+γ)
sin(πx) + cos(x) + tγ−γ1

Γ(1+γ−γ1)
cos(x), if 1 < γ1 < γ < 2.

As the exact solution u is unknown, we use the reference solution U which
is computed on a much finer mesh in stead of u. We choose τ = 0.001 and
N = 15 to compute the reference solution. Tables 8–10 show the errors
∥U − uM

N ∥ (T = 1) and the corresponding temporal convergence rates.
In both 0 < γ1 < γ < 1 and 0 < γ1 < 1 < γ < 2 cases, we can see

the temporal accuracy is second-order, which is consistent with our analysis.
However, in the case 1 < γ1 < γ < 2, the temporal accuracy is less than
second-order (but greater than one), probably depends on the order of the
fractional derivatives. It is the consequence of the forcing term f(x, t) with a
term tγ−γ1

Γ(1+γ−γ1)
cos(x), so the exact solution is not regular enough to guarantee

the accuracy of our scheme.

Table 8: L2 errors and convergence rates in the case 0 < γ1 < γ < 1 for Example 5.4.

τ
γ = 0.1, γ1 = 0.01 γ = 0.5, γ1 = 0.4 γ = 0.9, γ1 = 0.75
Error Rate Error Rate Error Rate

1/10 2.3406e-04 1.9857 1.4556e-04 1.9925 4.0535e-05 2.0135
1/20 5.9096e-05 1.9869 3.6580e-05 1.9933 1.0039e-05 2.0079
1/40 1.4909e-05 1.9908 9.1875e-06 2.0011 2.4961e-06 2.0099
1/80 3.7511e-06 2.0129 2.2952e-06 2.0241 6.1977e-07 2.0296
1/160 9.2945e-07 2.1053 5.6427e-07 2.1158 1.5180e-07 2.1191
1/320 2.1601e-07 * 1.3019e-07 * 3.4942e-08 *
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Table 9: L2 errors and convergence rates in the case 1 < γ1 < γ < 2 for Example 5.4.

τ
γ = 1.1, γ1 = 1.01 γ = 1.5, γ1 = 1.25 γ = 1.9, γ1 = 1.65
Error Rate Error Rate Error Rate

1/10 7.1981e-04 0.9362 1.9723e-03 1.2382 4.3859e-03 1.4711
1/20 3.7618e-04 0.9694 8.3607e-04 1.3151 1.5820e-03 1.4858
1/40 1.9213e-04 1.0595 3.3601e-04 1.3346 5.6487e-04 1.4255
1/80 9.2183e-05 1.1616 1.3323e-04 1.3752 2.1029e-04 1.4009
1/160 4.1207e-05 1.3482 5.1359e-05 1.5149 7.9633e-05 1.5172
1/320 1.6185e-05 * 1.7972e-05 * 2.7821e-05 *

Table 10: L2 errors and convergence rates in the case 0 < γ1 < 1 < γ < 2 for Example
5.4.

τ
γ = 1.1, γ1 = 0.35 γ = 1.5, γ1 = 0.5 γ = 1.9, γ1 = 0.75
Error Rate Error Rate Error Rate

1/10 1.9741e-04 2.1507 1.3835e-03 2.0369 6.2398e-03 1.7311
1/20 4.4458e-05 2.1804 3.3716e-04 2.0141 1.8796e-03 1.8693
1/40 9.8082e-06 2.0397 8.3471e-05 2.0118 5.1446e-04 1.9209
1/80 2.3854e-06 2.0285 2.0697e-05 2.0303 1.3586e-04 2.0207
1/160 5.8468e-07 2.1187 5.0669e-06 2.1194 3.3482e-05 2.1182
1/320 1.3463e-07 * 1.1661e-06 * 7.7118e-06 *

6. Summary and discussion

We have presented and analysed a unified numerical scheme for the multi-
term time fractional diffusion and diffusion–wave equations with variable
coefficients in a bounded domain. The scheme employs the Legendre spectral
method in space and the weighted and shifted Grünwald difference operators
for the discretization of the time fractional operators. The stability and
convergence of the fully discrete scheme have been rigorously established.
We have carried out some numerical experiments to confirm the theoretical
results.

In our assumptions, u0(x) ≡ 0, if u0 ̸= 0, we consider ũ = u − u0.
Since C

0D
γ
t u0(x) ≡ 0, after transformation, the new forcing term g̃(x, t) =

g(x, t)+Lu0, with the other terms unchanged in the new equation. It should
be pointed out that in our analysis we assume the solution u satisfies some
good regularity, for the solutions which do not satisfy our assumption, it
needs further investigation about the convergence of our method.
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