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Abstract

In recent years, the Cauchy problem for inhomogenous Helmholtz equa-
tion (CPHE) is often considered as the wave number k is a constant num-
ber. At present, we investigate a three dimensional CPHE with inhomoge-
nous Cauchy conditions given at z = 0 while wave number k is perturbed.
The problem is well-known to be ill-posed in the sense of Hadamard. There-
fore, we regularize the problem by applying the truncation method and
possess error estimate between the exact solution and the regularized so-
lution. A numerical experiment is given for the purpose of illustrating our
method.

2000 Mathematics Subject Classification: 35K05, 35K99, 47J06, 47TH10
Keywords and phrases: Cauchy problem; Helmholtz equation; Ill-posed prob-
lems; Fourier transform; Truncation method; Perturbed wave number.

1 Introduction

In this paper, we consider a three dimensional Cauchy problem for inho-
mogeneous Helmholtz equation (HE) associated with perturbed wave number as
follows

Au(x,y, 2) + Ku(z,y,2) = S(x,y,2),(r,y) € R* 2 € (0;1), (1.1)
ux(2,9,0) = f(z,y),(z,y) €R?,
u(@,y,0) = g(z,9),(v.y) ER*,

* Corresponding author: leminhtriet@tdt.edu.vn (Triet Minh Le)




where A denotes the Laplace operator, and (f, g, k) € L*(R?) x L*(R?) x R*, S
€ L*(R? x (0,1)) are given data.

The Cauchy problem for the Helmholtz equation frequently occurs in many
areas such as acoustics, electromagnetics and elasticity and etc. Therefore, CPHE
plays an important role in many engineering applications and is researched in such
areas of physics by many authors. For example, we can list some studies which
are related to vibration of structure [1], acoustic [2], electromagnetic scattering
[5], wave propagation and scattering [9] and etc. On the other hand, a different
version of Helmholtz equation which is called the modified Helmholtz equation
(MHE) is considered by some authors in [3, 7, 12]. The Cauchy problem for HE
or MHE is ill-posed in the sense that the solution, if it exists, does not depend
continuously on the given data. It means that a small perturbation in given data
may cause large error in the solution of the problem. Hence, a regularization is
necessary to get the stable solution of the CPHE.

In fact, several approximation methods have been proposed to deal with the
CPHE. For instance, L. Marin et al. [9, 10, 11] used the Landweber method with
the boundary element method (BEM) and the conjugate gradient method with
BEM to solve the problem. In [17], R. Shi et al. applied the method in order to cut
off high frequencies and gave logarithmical type of the error estimate between the
exact solution and the regularized solution. By using the fast multiple-accelerated
integral equation method, W. Cheng et al. [3] solved the MHE. Thereout, the
error estimate of logarithmical type was presented by T. H. Nguyen et al. [12]
in which their regularization method was the quasi-reversibility one. Until now,
there are many researchs which concerned with CPHE so that we can not list out
all of papers.

Very recently, in [7], P. T. Hieu et al. investigated the Cauchy problem for
MHE with inhomogeneous Cauchy data given at y = 0,

Uaa (2,Y) + tgy(2,y) = Ku(z,y) = flry)zeRye(0;1),  (14)
uy(z,0) = ¢(x),z €R, (1.5)
u(z,0) = Y(z),r eR, (1.6)

in which ¢(-), 9 (), f(-,-) are given functions which belong to L*(R), L*(R),
L* (R x (0,1)), respectively. By using the Fourier transform and the truncation
method, the authors have regularized the problem (1.4) - (1.6) and obtained
the logarithmical type of the error estimate between the exact solution and the
regularized solution. Morever, under some strong conditions of the exact solution
of the problem (1.4) - (1.6), the Holder type of error estimate was obtained in [7].

In 2014, Tuan N. H. et al. [18] studied the problem of determining the electric
field of a 3D Helmholtz equation as follows

Aulé,2) + Kule,d) = —f, €€Q, ze[0,d, (1.7)
ued) = o(6) €€ (18)

Su(6d) = h(e), €9 (19)

u(d) € L2 (R?), (1.10)



where g, h € L? (R?) and Q C R? is a nonempty open set. The authors have aslo
regularized the problem (1.7) - (1.10) by applying the Fourier transform and the
truncated method. In addition, the authors gave the Holder type of the error
estimate which was proposed in [18].

Aside from that, Viet T. Q. et al. [19] researched the following three dimen-
sional Cauchy problem for inhomogeneous Helmholtz-type equations

Au+k*u = f(m,
u, (z,9,0) = g
u(x,y,O) = (,O(I',y), I,y)EQ,
Bu(v,y,2) = 0

in which 8 in (1.14) is the homogeneous Dirichlet boundary condition or the
homogeneous Neumann boundary condition and g, € L?(R?*), Q = (0,a) x
(0,b) , a,b,c > 0. By employing a general filter regularization method, the authors
solved the problem (1.11) - (1.14) and the authors regularized the problem by
the combining quasi-boundary method and the truncated method. Then, the
logarithmic type of the error estimate was given in [19].

In fact, in many practical applications, we cannot get exactly the wavenumber
k because of the heterogeneity of the environment. Therefore, it is natural to con-
sider the case of perturbation of the wavenumber k. Moreover, although there are
many papers related to the modified Helmholtz equations associated with con-
stant wavenumber, but the results for the perturbed wavenumber are still limited.
Because of these above reasons, we consider the problem (1.1) - (1.3), which is the
original case of the Helmholtz equation associated with a perturbed wavenum-
ber k in an infinite rectangular parallelepiped {(z,y,2) |(z,y) € R%,0 < 2 < 1}.
Then, we can obtain the error estimate of Holder type for the case z € [0;1).

The rest of the paper is organized as follows. In Section 2, we give some
basis knowledge which support for the proof of our mains results. Besides that,
the Holder type of the error estimate is also introduced by using the truncated
method. Then, the numerical example is given to test the effectiveness of our
method in Section 3. Finally, we have a conclusion in Section 4.

2 Main results

Definition 2.1 Let f (-,-) € LY(R?) N L*(R?), we have the Fourier transform of
the function f as follows

—~ 1 .
&) = —= [ fla,y) e " @™V dady, €= (&,&,) € R
Vi 27TR[

Next, we get some following lemmas which is useful to prove our main results.
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Lemma 2.1 Fora € (0,1),b>1 and 0 < x < —In—= ,the following inequali-

—b VJa
ties hold

i)0 < (1 — %ebx> cosh zz < 4%5(b,a,z) e,

(SN

inh -
i) 0 < <1 - ge”) R <4 bbé(b,a,z) a”
4 x
bz

where 0 (b,a,2) = (4 —«a) v Vz € [0;1].

’

4
Proof. For 0 < x < —, we have 1 — %x > 0. By applying the following inequality
Q@

U+ v 2
uvg( 5 >,Vu,v20,wehave

o Qo ar 41— 27\2
a 1__)< R
4:”( 1" —( > > ’

4
o

then we obtain
x(l—%m) <at0<z<-—. (2.1)

1 4
For 0 <z < Zlnﬁ and o € (0,1), we get 1 — Ze™ > 0.
sinh zx

Q@
By applying two inequalities cosh zx < e**; < e**, we can get (1 — Ze”“) cosh zx <
inh
(1 - ge”) e*® and <1 — %eb“) SULg* < (1 - %eb‘”> ¥,

4 x
From (2.1), we get

<1 — %ebm) coshzz <

IN

Finally, we have

(1 — %eb””) coshze < 47 6 (b,a,2)a"?,

(1 _ ge’”) sinh zx < 4z;b5(b7a7z) -
4 T

b—=z

where § (b,a,2) = (4 —a) ® ,Vz € [0;1].
The proof of Lemma 2.1 is completed. =

inh
Lemma 2.2 Let b > a >0, ¢, () = coshzx and ¥, () = SR 2

.z €[0;1] .
x
Then, we have the following inequalities

|cosh (z2b) — cosh (za)| < (b— a)cosh(zc),
sinh (2b)  sinh (za) < (b—a) smh(zcg)’
b a C2




in which ¢y, ¢y € [a,b].

Proof. It is easy to see that ¢, is continuous and derivative on [a,b] . By using
the Lagrange’s theorem, there exists ¢; € [a,b] satisfying

o1(b) = ¢i(a)] = z(b—a)sinh(zcy)
(b — a) sinh(z¢)

<
< (b—a)cosh(ze).

Similarly, we also see that v, is continuous and derivative on [a, b] . By apply-
ing Lagrange’s theorem again, we obtain ¢y € [a,b] such that

) = v(0) = (- o) (2l Ee) )

&)

(2.2)

Morever, let h(x) = €*** —2zx — 1,2 > 0,2 € (0,1].
By simple calculation, we can check that h is an increase function in (0, 00) .
From that, we have

2209 + 1 < 272,

Hence

zco —zc2

— €

zege 72 <
2

So that, we infer that

zcy (cosh (zeg) — sinh (zc2)) < sinh (zc) .

Therefore . - -
2C9 COS (202)2— sinh (zc9) < zsin (202). (2.3)
cs C2
From (2.2) and (2.3), we deduce that
sinh(zc
6(6) — p(a)] < (6 — ) TR, 2.4
The proof of Lemma 2.1 is completed. ]

Lemma 2.3 Let b >a >0, ¢, (z) = coszz and 1, (z) = o zx, z € (0,1], the
x

following inequalities hold

2 (b) — 5 (a)]
|1g (b) — 1y (a)

Proof. It is obvious that ¢, is continuous and derivative on [a, b] . Thus, we have
c3 € |a, b] such that

(b—a)(z+1)b,
(b—a)(z+1)b.

IAINA

|02 (b) = @o(a)] = (b—a)[—zsin (zc5)]
< (b—a)2cs
< (b—a)(z+1)b.



It is similar to the function 1),, then we obtain ¢4 € [a, b] satisfying

zeq cos (zcy) — sin (zey)

|92 (b) = by (a)] = (b—a) p : (2.5)

Cy

For ¢4 > 1, we have

—zcs —¢3

€4

< Feacos (zcy4) — sin (zcy)

< zc3 —2|— c
€4

< (z+1)b.

Thus, we get
zcy cos (zcq) — sin (ze
1008 ( 4)2 CEN (z+ 1)b. (2.6)

Cy

For ¢4 < 1, we obtain
sin (zcq) > 0, cos (zcq) > 0.

Let g(z) = sin (zz) — zzcos (zz), z € [0;1],0 < < 1. It is easy to prove
that ¢ is an increase function in (0,00). So that, we obtain

zeqcos (zey) —sin (zey) | sin(zey) — zeq cos (zey)
5 = = : (2.7)
€y €y
It can be shown that
sin (zcy) — zcq cos (zcy)
o
zeq (1 — cos (zey))
Ly (2
_ z2sin ( 5 )
Cq
< (24 1)b. (2.8)
From (2.5), (2.6), (2.7) and (2.8), we have
(92 (b) = ¥ (a)] < (b—a) (z+1)b. (2.9)

The proof of Lemma 2.3 is completed. ]
Without loss of generality, we can assume that k. > k... For short notation, we

let Ne = \/ |€|2 - k?? Nex = \/ |€|2 - k;gaﬁ 95 = \/ k? - |§|2 and 6633 - \/ kgx - |£|2

By using the Fourier transform, we can clearly find out the form of the solution

6



of (1.1) - (1.3) corresponding t0 (fez, gex, kex) and (fex, Ges, k=), respectively, in
L2(R?) x L*(R?)x RT as follows

A?}De:r Jezx, ke:r) (5 Z>

— |G (€) cosh (2n,,) + f;@%jj%) + 8 n2t <<j7 - Diles)

t| X Xe2\8,,, (0)(§)

—~ e I ‘96;1: ra i y ‘96;1:
b 7€) cos (:8.0) + Ty 2 Pee) / S(enTUEZD0) | vy 0(6)

(2.10)

UGt o6 2)

= | Gea(€) cosh (21.) + feu(€)

SR [ ™EZDI 1| i, 0(6)

e

£

[e=]

+ | Gal€) cos (:0) + T T o [5e ™00 w0
0

(2.11)

where [§] = \/€ + &, Br,, (0) = {§ € R?| €] < k., } and By, (0) = {§ € R?|[¢] <k}

Let us remark that the terms cosh (zn,,) and sinh (z7,,) in (2.10) are un-
bounded in R?, i.e., these terms are the unstable causes. To approximate u®*, we
have to replace these terms by some better terms. In particular, the regularized
solutions corresponding to (f., g., k.) and (fez, gew, k=) in L2(R?) x L?(R?)x R
for (2.10) are given by applying the truncation method and replacing cosh (27,,)
and sinh (zn,,) by (1 - %d)m) cosh (z7,,) and (1 - %&%) sinh (z7,,), re-
spectively. From that, we have the regularized solutions as follows

U g (6:7)

sin ((z — t) 6;)
0c

eos (+0.) + (65 20e) | [sen dt| % x5, (0)(€)
0

0c

_a (z—: sinh (27,)

) {gew cosh (n,) + F.(€)

£

N (1 B ?eb%) /§(§,t) sinh ((2 —?) ne)dt X XVkiE(E)(S)’

Te

:| X Xvkia(e) (g)

(2.12)



/\6 b
(fe:c Jezx, ke)(g Z)

z

= @@ o)+ o™ 4 [Sen™EZDE ] o, 00

0

sinh (27,)

n (1 - %) §22(6) cosh (zn.) + Jua ©) X xypeta (€)

£

z

+ (1 — @em) /§(§,t)sjnh((z ) ns)dt X Xype@ (€),

€
0

(2.13)

where a(e), f(e) are two regularized parameters which shall be chosen later and
kaa(s) = {¢ € R?|k. < |£| < 3. (¢)}. For convenience, we denote a(g) by a, S.(¢)
by B, and ||-|| ;2(ge) is the norm in L3(R?).

In this paper, we require some assumptions on the exact data (fez, gex, kex) as
follows

(Hp) : Assume that there exists five positive numbers A, B, C, D, E such that

A<ke <B, sup |ga(©)]<C,  sup  |fulé,&)| <D

Y

|€|e[—B—1;B+1] |€|e[—B—1;B+1]
2 2
sup dt | < FE~-.
|é|e[-B—1;B+1]

(Hy) : Assume that e/¢lg,(€), e'f‘f : ef|/ dt € L*(R?), i.e., there

0
exists a positive number F' > 0 such that

/ 24 | |7 +

R2

Fa@)] +| [ Sen]a | a < 2.
0

In Theorem 2.1, we let (fez, Gews kex), (fe, 9o, k) € L?(R?) x L*(R?) x RT be
the exact data and the measured data, respectively such that

”fs - fe:r||L2(R2) < &, ”gs - gex”L2(R2) < &, ‘ke - kex‘ <e.

Theorem 2.1 Let ¢ € (0,1),a = ¢, B, = /& In’ +k2, b > 1 and

\/_

(fews Gew, kex) satisfy the condition (Hi) and (Hz). Assume thatufy . ., uf}igake)are



defined by (2.10) and (2.12), respectively, then we obtain the following error es-
timate

where z € [0,1) and

= 8V2+ M +2V3F,
V3F+V3C2B+ 1) [F+(1+eP) (C+D+E)Vr

+2(B +1) (I geall ey + | feoll ey + EBr) |

<N, (2.14)

L2(R2)

b
{(5f€ e ka)( Z) - u?}ve:c,ge;c,ke;p)(" z)‘

Proof. By applying the triangle inequality, we have

u® b u®
U sgek) (9 2) = Ul g ) O 2)‘ @)
Ae b N
- (fa ge, k‘a)( Z> (fe:r Jex, ke:r)( z)‘ L2(R2)
e b e b ~¢,b T
S (fa ge, ka)( Z) (fe:r Gex, ke)( Z)‘ L2(R2) + ) (fe:r Jex, ke)( Z) /\?ffiz yJex, kE)( Z)) LQ(RQ)
+ HAe.?e:r geﬁyke)(" Z) A?.?e:r Jex, keac HLQ RQ) : (215)
Firstly, from (2.12) and (2.13), we get
2
~¢,b e b
‘ (fa 2Jes ke)( Z) (feac Jex, k'E)( Z) L2(R2)
. _ sinh (zn,) /~ —~ 2
= 7¢) eosh (20) (6:(6) = 3 () + == () = al) ) || e
VBE ©
. n sin (260.) [/~ —~ 2
+ [ @) — () cos (0.) + T (F() — &) | de.
By (0)
By applying Lemma 2.1, we have
~¢&,b ( ) /\eb ( ) 2
u(faﬂsv’“s) 2 (fEI Gex, kE) z LQ(RQ)
z=b _ 0z ~ o~ -~ - 2
< eFR0a20% [ (5@ - 201+ [fe - Tae)|] d
vye
R - ~ _ 2
+ [ 18-+ |Eo - Fa©)]

By (0)

z=b _9z
S2@“5%ﬂ@a%+QQ@—%EWWWﬂ—Mﬁmﬁ

z=b z=b
= 20%(b,0,2)a”% (427 + 0% (4= )T ) (U9 = Geolfaue) + 1 = Feollaes))

9



Hence, we get

2

~¢&.,b Aab
‘ (fegeke)( 2) — (fezgez’fs)( z)‘ﬂ(u@)

< 45%(0,0, 2007 (lge — geallZaguey + 1 — flBagus)-
Then, we obtain

< 8V2a Te. (2.16)
L2(R2)

b b
‘ /\Efi 98 ke)( Z) /\{(sfez gez ks)( Z)‘

From (2.11), (2.13), we deduce that

2

b X
‘ A?fez Jex, ka)( Z) /\ffel' Jex ks)(.7 z)

L2(R?)
— o 2
a _ sinh (21, = sinh ((z — ) n.
= [ 5o | g comn an) + TREL T )+ [T E= g ] g
vy : 0
. 2
_ sinh (21,) —~ = sinh ((z —t) 7,
+ / geac(g) cosh (2775) + —()fex(f) + /5(57 t) << n ) )dt dé
R?\B;, (0) ) 0 )
From 8, =/ L In? j— + k2, we get some inequalities as follows
P — k2 > I == V¢ > 8 (2.17)
TR ol < '
5 1
= — k2 < -1 vV0€| < 2.18
= VIEP = k2 < 5= el <. (215)
From (Hs), (2.17), (2.18) and by using some basic inequalities cosh zz < e**
sinh 2o < e, ogph o < 2ela—b)z 51.nh ax < 2@ 97 where z > 0, b > a > 0,
cosh bz sinh bz

O<z<1 we get

b e
‘ /\?fez Jex, k'e)( Z) (feac sdex, k/'e)( 2))
2

o]+ [ [sten]ar| ac

042 1,4 —~
T Il G
Be

IA

16
Vi

+ / 4e2=1)n. 2[¢] |9ea(E)] +
R2\Bg_(O)

3aF? 4 12267V 75 g2
3aF? + 120172/ F2,

Fa©)]+ [ [Ste.nar| as

IA A

10



This implies that

,b T
HAe fex,gex ka)(.’ Z) B a?fervgezvkE)(.’ Z)

<V3BaF +2v3Va""F (2.19)

L2(R2)

From (2.10) and (2.11), we estimate

H (fex:gex ke) a?j’c;rgxke;r) ’Z)Hiﬂ([[@) :]1 (Z)+I2 (z)+]3 (2)7
in which
Lz = / G(6) (01 (1) — 01 (102)) + Ton(€) (b (1) — 1 (100)

R2\ By (0)

j €. (sinh((;s— Hn.) _ smh«j7 - ) nex>) »

I(z) = /

2

dg,

7o (€) (92, (82) — 01 () + Fea(€) (005 (B) — ¥y ()

2

~ sin((z —t)0.) sinh((z —1t)n,,)
*0/5(“)( o )dt “
L) = [ ]550(0160 — 0 0u) + Fal®) (5, (6 — 6, 00r)
By (0)
—i—/S(f,t) (sin((zeE— 1)) sm((ze;t)g )) at| de.
. . o sinh zx
By using (Hj), the inequalities cosh zz < e**, < e* and

T
(a+b+c)* <3(a® +b* + ¢*) where x > 0, 0 < z < 1 and Lemma 2.1, we obtain
ki, ko, ks € [kez, ke] such that

__ sinh (z €)? — k%)
h() < (- 70 h( Vi =52) + |7ate 2
Rz\Bk |§| - k%

Jisen ( J7R) |

0 €I” —

11



2

[ /(Set | de

IN

-k [ Igmo)+
R2\By, (0)

3e(ke + key) F?

3¢(2B +1)F?, (2.20)

in which
1 2

Jeeligmor + |faof + | [[3e.o] | | de <

R2 0

For |£| € (Kes, k-) and z € (0,1], we get

cos (26.) — cosh (zn,,)
1+ cosh (21,,) ,

—1 —cosh (zn,,) <
<

then, we infer that |cos (26.) — cosh (zn,,)| < 1+ cosh (zn,,) .
This implies that

|cos (20.) — cosh (zn,,)| < 1+ e*V Pk < 1 4 e2VRERE (2.21)

On the other hand, we have

) sinh (z7,,) < sin (260.)  sinh (2n,,)
nex - 05 nea:
= sinh (z7,,)
o 7761'
< 14 sinh (znex)'
nel‘

Hence, we obtain

sin (26.)  sinh (2n,,)

0. Nex

<14 e VIR <1 4 erVRERL (2.22)

Alternatively, we have

sin ((z = ¢)f-)  sinh ((z = ) n,)

S Z_t_’_e(zft)neac S 1+eznex S 1+€Z kg*kgz.
95 77@33

(2.23)

12



From (2.21), (2.22), (2.23) and the condition (H;), we get

Py 2
Be) < 3| (e eVEEY | [imeraes [ (7o)
kaeaz ka:z
2
/ / (sm (z =10 sinh((z—t)nex)) at| de
0. Nea
ka;EI 0
2

< 3<1+6W,,€gm> (k2 — k)7 ( C2+ D>+ E?)
< 3(1+ePN*(C?+ D*+ E?)<(2B + ). (2.24)

By using Lemma 2.3, we obtain

Jeo

L) < 3 [<z 22K R (I|g/e}||iz(Rz)

o

Bie, (O

< 3 [<z ; 1)2 (K2~ 12) i (||§e}||iz(w

o [ ([les

Bl (O

L2(R2)>

/ (sm z—t)0. ) sin ((z — t)&x)) gt
5 663}

0

L2(R2)>

. 2

sin((z —t)0:) sin((z —t)0c,) dt) de

<VEZ=K2 (z—t+ 1) k. < k22— k2, (2 + 1) k..

L2 R?))

2

dg

Jeo

2

0 Oca

Alternatively, we estimate

sin ((z —1)0:)  sin ((z2 — ¢)0es)
05 eex

Hence, we obtain

fex

L) < 3 [<z PR R R (||@|122(R2

b 0 ( — K2) 2B [, 0)(60dE

R2 4

—~ 2
< 12+ ) (5 + UF (13 e + | 2] o, + B2
—~ 2
< 12628 + 1) (B + 1 (155 e + [T 0+ E2°7)-
(2.25)

13



From (2.20), (2.24) and (2.25), we deduce that

| Ae.?ez Jex, ke ) af]:gez,gez,kez) (.’ Z) HiQ(RQ)

< 32B+1)F2+3(1+eP) (C?+ D+ E?) (2B + )7

2
fex + E2B27r) )
L

2 — 12
+12:(2B +1) (B + 1) (||96$||L2(R2) + ’ 2®2)

Thus, we infer

HA?JCEez Jeax, ks ) u(fez Jex, kez HL2(R2)
< V3e(2B+1)[F+ (1+P) ( C+D+E)yr

2B+ 1) (H@HLQ(RQ) |7l + EBw)] 2

f€$ 9
L2(R

From (2.16), (2.19) and (2.26), we have

|

< 8V2a te+V3aF + 2\/3\/5(1_Z)/b
+v3e@2B+1)[F+ (14" (C+D+E)/r.

128+ 1) (17 + |72 g, + £57) |

b
?f&g&ka)(" K Z) - ufj;eac?geacvkem)(.’ K Z)‘

L2(R2)

Choosing a =€,z € (0,1), we get
< 82" T 1 EM /2 P9 BF < N,

L2(R2)

b
ug 7g€»k€)(" Z) - U?Jagexvgexykem) (" Z)‘

where

M = V3F+\302B+1)[F+ 1+ (C+D+E)Vr
+2(B+1) (ngxHLg(Rg) + ’ Jex L) +EB7T>:| :

N = 8V/2+ M +2V3F.

The proof of Lemma 2.1 is completed. =

Remark 1 From the proof of Theorem 2.1, we prove that for z € [0;1) , the regu-

larized solution uE"Z’gakE) converges to wiy o when ¢ tends to zero. However,

it 1s difficult to derive its approximation at z = 1. So that, we need an adjustment

in condition (Hs) in order to get the stable estimate at z = 1. In particular, we
1

requir@ 6(1—"_7)‘5"@, 6(14‘7)‘5‘?;, 6(1"'7)5/ ‘S\(g,t)‘ dt c LQ(R2)’ 7.e

/ 2+ |§e\x(§)|+

R?\Bg, (0)

1
Fa(©)]+ [ [Bte.n)|de| de < w2
0
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where 7y is chosen such that 0 < v < min {2b — 2;b} .
Under these above assumptions, we have the following estimate at z = 1

2

~¢&,b N
‘ (fergerka)( 1> (fe”ge”kg)( 1)‘L2(R2)

1 2

< sakts [ a0 g+ T+ ]S n] | a
R2\Bj, (0) g

< 3K*? (4oﬂ/b—|—a).

Chosing a = €, we get

( u
8V2e5T 4+ \EM' + 2V3K
N,\/E’Y/b

7b exr
?fﬁvgﬁvka)(" 1) - u(fem,ge;c,k‘egc)('7 1)‘

L2(R2)

IA A

where

N' = 8V2+ M +2V3K,
M = VBK+\32B+1)[K+ 1+ (C+D+E)Vr

2B +1) <||gex||L2(R2) | e * EBW)] |

3 Numerical experiment

In this section, we deal with the following Cauchy problem of the inhomoge-
neous Helmholtz equation.

Au(z,y, 2) + u(x, S(x,y, 2), (r,y) € R z € (0;1], (3.1)
= fea:(l' y) ( )ER27

z)
0)

U( Y,0) = geol(,y), (z,y) € R,
(R?

x (0,1)) are given by fe,(2,y) = geu(2,y) =
e~ 1(?*+°) and S(z,y, ) — yemi(=HY , then we have

fal®) = 2 (&) = — 2¢~(1+88) — 9elél”, (3.4)

§(£,z) — 2z (€848) — 9,0l ,
where €] = €2+ €2, ¢ € R? and ke, = 1,2 € (0,1].
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On the other words, we consider the measured data (f., g, k.) satisfying

e -rand(-)

fs(x;y) = ( \/%
e -rand(-)

o) = (S 1) gt
ke = key + € - rand(-), (3.5a)

+ 1) Jea(,Y),

where ¢ € [0;1], the term rand(-) is the random noise which is uniformly deter-
mined on [—1,1].
From (3.4) and (3.5a), we get
If: = feJ»’||L2(R2) = |lg- — gew||L2(R2)

L2(R2)

S

s d(-))2
= / / (5 : I‘{:TD ()) 6—2(§%+§§)d€1d€2 <e,

|—co—00

’ks - kez’ S €.

Morever, from (3.4), we have the following exact solution of problem (3.1)-
(3.3)

a?]age:c Jew keax) (57 Z)
z

sinh (27,,) /t. sinh ((z — ) n,,)
+

= 2¢leF cosh (21,,) +
T]el‘ 77633

dt] x XR2\By,, (0) (€)
0

) in(200)  [t.sin((z—t)7.,
206 | cos (:0.) + Slnéz ) _1_/ sin ((; )n )dt X XBy.. (0) €).
0 ex

Leta=¢,b=2and 3, = \/ 2—12 In? <%) + k2, we get the following regularized

solution

~&,b
u(fa.‘]a,’%) (57 Z)

_ gple? <1 _ %Zna> <5L\/;<) 4 1) (cosh (21.) + M) XX, (€)

+2¢7 1 <1 - Ze%) /t'smh (2= 1)) 50 X, (&)

Me Vie

0

2e ¢ (—5 ' j%i(') + 1) (COS (26:) + Sinéjge)) + /t'sm«z; D02) gy | X5,.(0)(&):
0
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where V> = {¢ € R?|k. < [¢] < 8.}, Bi.(0) = {¢ € R?|[¢] < k.} and By, (0) =

{£ e R?[[¢] < kea} -
Let € be ¢, = 10~

1,62 = 10"

2 _
,€3 =

1073,e4 = 10~

solutions is given through the following table

4. respectively and z €
{0;0.5;1}. The error estimates between the exact solution and the regularized

[ 06 = e )]
z =101 o = 1072 3=1073 4= 107%
0 |5.1025 x 107! | 6.3125 x 1072 | 6.3567 x 1073 | 5.3154 x 1073
0.5 | 6.4789 x 107! | 7.2456 x 1072 | 8.1253 x 1073 | 6.3458 x 1073
1 |8.2459 x 1071 | 5.1344 x 107! | 9.6926 x 1072 | 8.3158 x 103

Table 1: The error between the exact solution and the regularized solution.

By applying FFT technique, we reconstruct discrete points of the exact solu-

tion u( Fo Gen o) and the regularized solutions ui}ig&kg), 1 =1,2,4, corresponding

to z = 0.5 then plot the graphs of these solutions in Figure 1 - Figure 2.

The exact soktion The requiarized sokton eps = 0.1)

!

4‘5‘.’.‘

"ol'ff' 'N'I’l\ i

d’o’w ‘n\‘}\‘\‘\\‘ ;

mo.h‘\t\\m\\\\

s t“‘\\\\
‘\‘\“\\\

T
i i i

€1,b

Figure 1: The exact solution u(y ) and the regularized solution Uy o ko

fex Gex kex
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The reqularized solution (eps="e-002) The reqularized solution (eps=1e-004)

ey
W
i

0y
e

i
it
St

i

=
==

==

=

5

==

g

€2,b

Figure 2: The regularized solutions Ut oo k)

4 Conclusion

In this article, we propose a regularization method based on the cut-off
method for solving a three dimensional Cauchy problem for inhomogeneous Helmholtz
equation with inhomogenous Cauchy conditions given at z = 0, associated with
perturbed wave number £ in an infinite rectangular parallelepiped. As a result,
the Holder type of the error estimate between the exact solution and its regu-
larized solution is also obtained. Eventually, the numerical experiment is carried
out to illustrate the efficiency of our method. In the future, we will consider the
problem (1.1) - (1.3) with the global and local Lipschitz source S.
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