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Abstract

In this paper, a block product (BP) preconditioner is established for - .idle puint problems. Spectral properties
of the BP preconditioned matrix are investigated. A strategy for pra tice’ ch. ice of quasi-optimal parameter is
given. Numerical results on saddle point linear systems arising from Swkes 1 .oblems and weighted least square
problems show that the proposed BP preconditioner is more econo. “ic to implement within Krylov subspace
acceleration than some extensively studied preconditioners.
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1. Introduction
Consider the solution to the following saddle p. ‘1t p.c ulems

A BT
—B D

X

y §

:H or./u=b, (L.1)

where A € R"*" is symmetric positive r efinite, » € R™*" is of full row-rank, D € R™*™ is symmetric positive
semi-definite, x, f € R",y, g € R™, wit'. n > m. The above assumptions guarantee the existence and uniqueness
of the solution of linear system (1.1), alsc e [ +] for detailed discussions. The linear system (1.1) arises in a wide
variety of scientific computing anc engineei.ng applications. For example, computational fluid dynamics and
mixed finite element approximat on . ~lliptic PDEs, optimal control, weighted and equality constrained least
squares estimation, structural a= '-sis, electrical networks, inversion of geophysical data, computer graphics and
so forth[1, 7-9, 12, 14, 20].

The accurate and efficient >. " .tion of linear system (1.1) has been an active research area in computational
mathematics for many dec «des Duc to the large and sparse structure of coefficient matrix .¢/, there is a rapidly
growing interest in iterati e m .thor s for solving linear system (1.1) in the past few years. So far, a large amount of
work has been devoted to de. “'or .ng efficient iterative methods, including Uzawa-type methods [7, 9, 15, 21, 36],
preconditioned Kryle subsy ace iteration methods [6, 14, 16, 17, 23], Hermitian and skew-Hermitian splitting
(HSS) method as well 1sits acc :lerated variants [2-5, 8, 25], restrictively preconditioned conjugate gradient meth-
ods [10, 11, 35] and <0 «. ™ particular, Krylov subspace methods with appropriate preconditioners are consid-
ered to be more fficien in general. An important criterion for an efficient preconditioner is that it can be easily
implemented, w. ich furt ier make the total computational cost to be optimal. In light of the special structure of
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equations (1.1), many efficient and robust preconditioners have been reported [1, 12, 16-18 26, 28, 29, 31, 32]. For
an overview of numerical methods and useful preconditioners for the saddle point proble n., <ee[14].

It should be mentioned that the HSS method [3] is very useful for solving non-Hermitian , sitive definite
systems. Benzi and Gloub proposed the following HSS preconditioner [12]

1

Puss = >

al BT
—B al

al+A 0
0 al+ D

for the generalized saddle point problem (1.1), where a > 0 is a given constr .at, T uc. ~tes the identity matrix.
In order to further speed up the convergence rate of the HSS preconditioner, - et al. [18] proposed a SHSS
preconditioner, which is described as

1
Pspss = —
a

al BT
—B D

A 0

0 al . (1.2)

The authors proved that the SHSS preconditioner Zsyss is a better app ~ .mati )n to the matrix .</, which is easier
to implement than the preconditioner Zygs [18].

In this paper, based on a block-triangular product approximation to .. e coefficient matrix ./ in (1.1), we pro-
pose a block product (BP) preconditioner. This preconditioner . '<o res dts in a BP splitting iteration method.
The convergence properties of the BP splitting iteration are ana. 7ed. ~ practical selection for the quasi-optimal
parameters is given. Spectral properties of the BP preconditinned = ‘rix and the finite-step termination proper-
ties of the preconditioned Krylov subspace method are desc..~ed. Several numerical examples are performed to
illustrate the effectiveness of the proposed precondition~+<

The paper is organized as follows. In Section 2, we res .n. che BP preconditioner and its implementation
for solving the generalized saddle point problems (J ). In ‘ection 3, the convergence analysis is given and the
quasi-optimal parameter is discussed. In Section 4, t. = . >ecwral properties of the BP preconditioned matrix are
analyzed. In Section 5, numerical experiments are nrese “ted to show the effectiveness of the BP preconditioner
and the feasibility of the strategy for parameter sc.><tion.. Finally, some brief concluding remarks are given in
Section 6.

2. Block Product preconditioner

In this section, we present a block r oduv-<t (b. ) preconditioner for solving the linear system (1.1). According
to (1.2), the SHSS preconditioner can! - re’ /rittr .1 as

A 0

—-B I (2.1)

Psuss =

I ip }_ A LapT
0 D+ Bs  —|-B D

As we know that, in many case , D sually owns some special properties, such as D is a diagonal matrix or D is a
scalar matrix [30-33]. Since tl.. ™' crix B1+ D can still maintain the special structure of D, while D + %BBT may
destroy its special structure so tha. “e computation of the solution on the matrix D+ I will be more expensive
than that of D + éBBT. W ch t} ese in mind, we consider using 1+ D to replace D + éBBT in (2.1), which results
in the following block proaw. (BP preconditioner

I+
Pl p)= [— (1)“ / ﬁ%iTD - —AB ﬁH—iDA—B;BBT ’ @2)
where ¢ and f a' 2 two ¢ ‘sitive parameters.
In fact, Zgp(¢. B) can esult in the following matrix splitting, called the BP splitting,
A =F A= Rel(a, B) 2.3)
with
o, B):= Ponlt, )~/ = [g 5 |




Based on the BP splitting (2.3), we can construct the BP splitting iteration method

k+1 k
|:;k+1:| = g(arﬂ) ;k +%p((l, ﬁ)_l |:£:| ’ (2.4)
where
1 T
7, B) = Puwlat, B Rl ) =| «AB 25)

Mo lapr-. 1
0 ﬁl-%B'fJ

~|-B BI+D-1BBT
a

At each step in the application of the #p(a, ) preconditioner with 2 arylov suuspace method, it needs to
solve a sequence of generalized residual equations #spz = r, where r = (rlT , 1, T e R™*7 is a given residual
vector, z = (le s zzT )T € R™*+" represents generalized residual vector, with z1, € R’ and z,, 1, € R™.

It is easy to verify that

A 1ABT
—B pI+D—1BBT

A 0
0 I

I 0
—-B I

7 LipTl
0 - J (2.6)

[1 0

0 BI+D
Thus, according to (2.6), we can solve Zgpz = r for the preconc *ionc. 72, by the following algorithm.
Algorithm 2.1.

(1) solveAu;=ri;

(2) computeuy:=r,+ Bu,;

(3) solve(BI+ D)zy = uy;

(@) computez:=u,—+B"z,;

From Algorithm 2.1, we know that two linear sub-systems with coefficient matrices A and 81+ D need to be
solved at each iteration step. As discussed i". many apers [2—4, 9, 18, 19, 27], when the matrix sizes are large, the
preconditioned conjugate gradient (PCG) .. ~thod ' an be applied to solve the afore-mentioned two linear sub-
systems, as both A and 1+ D are symm :tric an. ,ositive definite.

In analogy with the BP preconditior er, t' e immnlementation of the SHSS [18] and HSS [12] preconditioners with
a Krylov subspace method can be de~cri. 1as ollows:

Algorithm 2.2. We solve Pyssz = 7 ju. *he preconditioner Pyss by the following steps:
(1) solve (al+A)u,=r;

(2) compute (al+D)uy =1+ 7 13;

3) solve (iBBTﬁ-aI)z? Uy

(4) compute z,:= é(rl “Blu,,

Algorithm 2.3. We sc ve Psys z = r for the preconditioner Psyss by the following steps:
(1) solve Au,= ;;

(2) compute uy. -r,+ " uy;

(3) solve (£ B'~ L) sr= Uy

() compute z:= uy—+BTz,;



From the above algorithms, we see that the computational cost of applying the BP preco’ ditioner to accelerate
a Krylov subspace method for the linear system (1.1) are less than the SHSS and HSS prer 0. 'itioners. Algorithm
2.1 is required to solve two linear subsystems with coefficient matrices A and 1+ D, while Algo:. hm 2.3 need to
solve the linear subsystems with coefficient matrices A and éBBT + D. In many cases, "+ ha very sparse structure,
such as D = vI or D is a diagonal matrix [30-32], this means that the matrix 7+ D is . <ie' to implement than the
matrix iBBT + D. Thus, the computational cost of applying the BP preconditione: "~ che.., =r than the computa-
tional cost of the SHSS preconditioner. For the HSS preconditioner, we can find th~t thre. <ub-linear systems with
coefficient matrices al + A, I+ D and éBBT + al need to be solved at each st p. 1~ '~ the BP preconditioner is
much easier to implement than the HSS preconditioner.

3. Convergence analysis of the BP iteration method

We now discuss the convergence properties of the BP iteration met* _d fo. ...ving the linear system (1.1) and
then analyze the choice of quasi-optimal parameter.

Let p(Z (a, B)) denote the spectral radius of the iterative matrix & ., #). " hen the BP iteration scheme (2.4)
is convergent if and only if p(7(a,B)) < 1, see [5, 7, 9]. The follow.. ~ lemnma is useful to analyze the spectral
properties of iteration matrix.

Lemma3.1. Let0< a < b be two positive scalars. Define the fu,. tion 5 .., ) as

—A
gA, B) = ﬂT with >0 and A>0.
Then we have
. b—a
b m s PI= oD
where the equality holds at p = “32.
Proof. Obviously,
B—a . R-b
= — q,, =- —.
2 EAP= g and i e LP)= T
Then we have
B p—a ~—p
max g(2, )] = max/ 5 b
Let
f(B)= max |g(2,B)|. (3.2)

a<A<b

By the Chebyshev approxir atica theurem, the minimizer § of the function f(f) is the unique positive root of the
following algebraic equat. ~n

B—a b—p
B B
By solving this eg' ...on wc ubtain f = “Zﬁ. Substituting this 8 into the expression of f()in (3.2), we easily obtain
3.1). O
Theorem 3.2. Leta _ 7. *" be symmetric positive definite, B€ R™*" be of full row rank, a, B be positive parameters

and 7 (a,B) > ae ... 1in(2.5). Then p(T(a,B)) < 1if
/5>% a1l a+0,

where 1), is the maximum eigenvalue of the matrix BA~' BT.
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Proof. Denote D= B I+ D. From (2.6), we get

—1 —1 ~ ~
I =iBT||1I 0 I 0[|A 0 A1—L1BTp-1gA-1 - 'BTpH-1
71: a = g u . 33
Phe(c, ) [0 I |lo pI+D [B Illo 1 D-1BA - -1 (5:3)
From (2.5) and (3.3), we have
0 1BT—A-1BT4+1BTp-1pA-1BT—LBTpH-1
T(a, )= a - a ) 3.4
(a, B) B-1{g1— pa-1B7) (3.4)

From (3.4), it is clear that 7 (a, ) has n eigenvalues at 0 and m eigenvs u.s whil'i are the same as those of
DY (BI—BA'BT).
Define G := D71(I— BA~!BT). Then it is easy to see that
p(7(a,p)=p(G) < |Gl || D7, [|p1—BA™ BT, (3:5)

As the matrices D and A are symmetric, D! and 31— BA~! BT are sy.. meu.c too. Thus

~ _ 1 1
-1 = : —1 = _— < =
1Dl = max |2,(D7")| = max D)< B 3.6)
|I—BA™'BT||,= max |Ai(BpI1—BA™'B)|= ma- I8 —2;(.A'BT)|. 3.7)
Based on (3.5), (3.6) and (3.7), we get
B—Ai(BA~1BT)|
< = ———
p(7(af)) < o(f)= max B I (3.8)
Applying straightforward derivations, we get 2~ " = g (f8) < 1, which means
!
F>— >p(T(a,p) <1
]

From the results of Theorem 3.2 we fina .".at o(f) is an upper bound of p(Z7(a, #)). Therefore, we can obtain
the following quasi-optimal parar ete.

Theorem 3.3. Assume that the cor. litions of Theorem 3.2 hold. Let 1, and n,, be the maximum and minimum
eigenvalues of the matrix BA~ BT respectively, o(f8) be defined in (3.8). Then the quasi-optimal parameter Bqop,
which minimizes the spectrc ! facie. 7(f3) is given by

. T+,
ﬂqopt: arg mﬂlno'(/j/ P A

The corresponding qu isi-optir al spectral factor is

.o Nm
T qopt (B) = -
fort M+ 1,
Proof. From Lemn.. " 7, the conclusion is easy to be obtained. O

Corollary 3.4. 7J der the assumptions of Theorem 3.3, if D = 0, then the BP iterative method (2.4) is convergent if
the following ine., wality is satisfied

/3>%, Ya>0.



The optimal parameter Bop;, which minimizes the spectral radius of the BP iteration matrix / 2.4), is given by

+

The corresponding optimal spectral radius is

m—"Nm
ol T (a, B))= ————.
Popl T (@, B)) ——

Proof. As D=0, then D= 1, which means G = %(ﬂl— BA-1BT). From (3.4), " ‘e kr ow w.at

p(ma,ﬂ))=p(G))=maxu—%m:max o,

1<i<m
Thus,

B=1m < 1,

p(7(a,B)) < 1@{&
B

Simplify these inequalities, we obtain

pI@p)<1p> 1,

<1

By Lemma 3.1, we can get the results above.
]

Remark 3.5. From the results of Theorem 3.3, we see that |. . is related to the eigenvalues of BA~' BT, it may be
difficult to compute such value. Therefore, in the nexi, w. Wil. use the techniques similar to those in [19, 24, 27] to
discuss a choice strategy of the quasi-optimal parameters ~ and f3.

As the difference between A and Pgp(a, B) is

0 LABT-—BT
= - — a
Zppla, B) = ZPppla, f)— o [0 BI -2b.7"
Then we define
1 2
Uprac = argmin|jal — All%, f prac= argrrgn BI— aBBT (3.9)
a
F
From (3.9), we can get the followin | .. ~ctical parameters
2
T trace (A) 3 n||BT||F (3.10)
prac — 7 ’ prac = m - trace ( A) ’ .

which make Zgp(a, B) as cl .se to .cr . 5 possible.

From (3.10), we can > ~ f.at t'.e selection of accelerated parameters a and f3 is very economic, because it
avoids calculating the ei~=>nva.. -, or singular values of matrix.
It is deserve to me 1tionin, *that Cao et al. [18] have given a choice for the parameter a:
_IIBBT]l
DIl

Firstly, it is diffici 't to cor ipute the value of @ when the problem size is large. Secondly, when D is a zero matrix, it
will be not feasible. 1..crefore, by the algebraic estimation technique used in [24], we will find a suitable parameter

trace (')
a=——-
n

(3.11)

to approximate ¢, which is proved to be very efficient in Section 5.
6



4. Spectral properties of the BP preconditioned matrix

It is known that, when a preconditioner is applied to Krylov subspace method, the conve. ~ence rate of the
corresponding preconditioned iterative method depends on both the spectrum and e’ ,.. vector distributions of
the preconditioned matrix [18, 34]. The following theorem describes the eigenvalue d’ strib .tions of the precondi-
tioned matrix Zgp(a, B)!.of.

Theorem 4.1. Assume that the conditions of Theorem 3.3 hold. Then the precorditio,. ~1 matrix Pgp(at, f)~'.o/
has an unit eigenvalue of algebraic multiplicity at least n, and its remaining eig .nva "~ '~s are all real and lie in the
following interval:
2Nm 2m
[771“‘7]"1’ T71+77m].
Proof. From (3.4), we have

Pepl(a, ﬁ)ilﬂZ I_g(a’ﬁ)

I A'BT—1BTD(D+ BA-'B") (4.1)
0 DY (D+ BA~'BT)

Thus, from (4.1), it obtains that the preconditioned matrix Zgp(~. 5, ' </ ".as eigenvalue 1 with multiplicity at least

n, the remaining eigenvalues are the same as those of D-}(D+ Ba ' BT). Asboth D= 1+ D and D+ BA~!BT are

symmetric positive definite, we know that all of the eigenve” <o ui o -(D+ BA~! BT) are real and positive.
Furthermore, we have

sp (Zap(a, B) L) =sp (DY (D+BA'BN)C|1—, (Z.a,p)), 1+p (Q(a,ﬂ))],

where sp(e) denotes the spectrum of a matrix. By the .- “lts ¢ "Theorem 3.3, we know that
Mm—"m
p (T(a,p)< m,
this also implies that
2Nm 2n-
M+Nm’ 771—+ ! I_
Thus, we complete the proof. O

sp (Zep(a, B) /) C [

Then, we discuss the eigenvector dis.. ~uti ns and the upper bound of the degree of the minimal polynomial
of the preconditioned matrix Zgp(c B)71.¢/. r.s the proofs are similar to those in [18, 19, 27], we omit them here.

Theorem 4.2. Let Pgp(a, ) be defined 1. °.2). Then the preconditioned matrix Pgp(a, f)~'.</ has

(1) n linearly independent eig: avec ors of the form [ ulT 07T (I =1,2,--+, n), that correspond to the unite eigenval-
ue, whereu; (I =1,2,---,. ) enote arbitrary linearly independent vectors;

(2) i (1 <i< m)eigenvec ors fthe form [(u;)" (v))T]T, with v} #0, (A—al)BTv} =0, i = dim{null (A—al)N
range(BT)}, that co, s ond o the eigenvalues 1, where u| are arbitrary vectors;

() j (1 < j < m) eig_nvecters of the form [(u?)" (v2)T]" with v} # 0, (D+ BA7'BT)v? = L,(BI+ D)v?, u? =
AN AA- - al)BT1 %, that correspond to the non-unite eigenvalues A.

a(li)u)
Theorem 4.3. Un~" ~the ....umptions of Theorem 4.1. If 1 < k < m is the degree of the minimal polynomial of the
matrix G, == (B + D)™\ + BA™'BT). Then the degree of the minimal polynomial of the preconditioned matrix
Pep(@, B) L. is. tmost .+ 1.

Remark 4.4. 7 ~~om 4.3 indicates that the dimension of the Krylov subspace ¥ (P4 ./, b) is at most k + 1, which
also implies th. t * 1e GMRES method with the BP preconditioner to solve the linear system (1.1) will terminate in at
most k + 1 steps | 4]. While in [18], Cao et al. proved that the GMRES method with the SHSS preconditioner to solve
the linear system (1.1) will converge to the exact solution of the linear system with the coefficient matrix .</ with at
most m + 1 iterations, this indicates that our results are better than theirs.
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5. Numerical results

In this section, we will give some numerical experiments to illustrate the effectiveness uf the L. nreconditioner.
The experiments also aim at identifying the efficiency of the quasi-optimal parameter « 'nd . All the tests are
performed in MATLAB R2013a with machine precision 107'¢ on a personal compute’ witt 3.2 GHz CPU (Intel(R)
Core(TM)2 i5-3470). The initial guess is chosen as u® = 0, and terminated once the cu.. ~nt iterate solution (%)
satisfies
_ b= u®,

lIbll2

or the number of the prescribed iteration kmnax = 500 are exceeded. In the all fon. "ving tables, “ — ” means that
IT > 500 or the ERR > 1075, In the following, we show the advantage of t . BP [ “econditioner over some exist-
ing preconditioners from aspects of number of iteration steps (denoted b - “IT"), « lapsed CPU times in seconds
(denoted by “CPU") .

ERR <1078

5.1. Stokes problems
Example 1. (5, 12, 14]) Consider the following two-dimensional Stok. ~ wrov.em:

(5.1)
V-u=0, uef

{—Au+Vp=f, uen
where the boundary and the normalization conditions u =0 o,. 7Q and fQ p(x)dx=0,Q2=[0,1]x[0, 1], dQ is the
boundary of Q. A is the componentwise Laplacian opera! ..~ “nd\ - denote the gradient and divergence operators,
u and p are two vectors, the velocity of the fluid and the , ve sure, respectively. By discretizing this problem with
finite differences, we obtain the linear system (1.1), in _"ich

IeT+T®I 0
0 IeT+To®lI

I®F
Fel

A= eR2P*? LT = eR?P*P' D=0

and T = # - tridiag(—1, 2, —1) e RP*P, F = }l . iag(—1, 1, 0) € RP*P with ® being the Kronecker product symbol
and h = ﬁ the discretization mesh-size. Ir chis exai ple, we let the right-hand side vectorb = (f7, g7)T e Rim+n)x1
with f = (1,1,---,1)T e R™ and g = (1 1,---,"\T - R™*1, We note that n = 2p? and m = p?. Hence, the total
number of unknowns is m + n = 3p2. s I = 0, the SHSS preconditioner is reduced to the RHSS preconditioner
[19]. Therefore, in this example, we co,. ©c e th RHSS preconditioner with the BP preconditioner to illustrate the
effectiveness of the BP preconditione The n.. ~ erical results for Example 1 are listed in Table 1.

Example 2. ([4, 9, 18]) We still coi_sider .= two-dimensional Stokes problem (5.1). But the square domain we used
isQ=[—1,1]x[—1,1] and with ! _. n-zero horizontal velocity on the top part of the domain, namely ‘Z—z =1—x*on
[—1,1] x {1}. This test problem sa’r gularized’ two-dimensional lid-driven cavity problem. We discretize the Stokes
equations (5.1) by the Q1 — By (u. Sstabilization parameter is 0.25) and Q, — Q, finite elements on some uniform
grids, respectively. We use * 1e IT'ISS suftware package [22] to generate linear systems for the meshes of size 64 x 64,

128 x 128, 256 x 256, 512 . ~1°. Ths corresponding numerical results are listed in Tables 2 and 3.

In Examples 1-2, v ¢ applv ti.e GMRES iteration method incorporated with the BP preconditioner Zsp(a, ),
the SHSS preconditic 1er P [18], the HSS preconditioner Pyss [12] or without preconditioner (denoted as I),
respectively, to solve ti.~ line .r system (1.1). The parameters @ and f are obtained by the formula (3.10) for the
BP preconditionr .. For the SHSS preconditioner, we compute the parameter « by the formula as given in (3.11).
The parameters . »r the H. S preconditioner are the experimentally computed optimal ones that minimize the total
number of iteratio. ~ter , of the HSS-GMRES method. In addition, the coefficient matrix A is approximated by the
action of twe «...”” V-cycles with a 2-2 (presmoothing-postsmoothing) point damped Jacobi smoothing strategy,
and we use PC ™ ".aethod to solve the linear sub-systems with respect to the Hermitian positive definite matrices
BI+D, ;BBT+.> al+Dand ;BB +al.

As shown in Tables 1-3, we can see significant improvements for the performance of GMRES with all precon-
ditioners. Meanwhile, we observe that the iteration steps of the HSS preconditioned-GMRES method increase

8



rapidly with problem size and the SHSS and BP preconditioners lead to much better results .han the HSS precon-
ditioners. It appears to offer advantages in terms of both iteration steps and CPU time. F 2s. 'es, we also observe
that the parameter choice for the BP preconditioner given in the paper is also very feasible. More. ser, we observe
that the iteration steps of the BP preconditioner almost keep constant, which shows t'.at 1 e BP preconditioned-
GMRES method is mesh-size insensitive convergent.

We also depicted the eigenvalue distributions of the HSS, RHSS and BP preconc “ionew.. ™Matrices and the orig-
inal coefficient matrix .¢f for Example 1, see Fig. 1. In addition, we have plotted *he trc. 1s of the iteration steps
vs a, see Fig. 2. From Fig. 1, we see that the BP preconditioner is better than o' aers ~'~ce it has a more compact
spectral distribution, which tends to result in a faster convergence rate. Obsei . ~d ".om Fig. 2, we find that the IT
of BP preconditioner changes little and it becomes stable when a > 400, whi~* imp."~s that our preconditioner is
not very sensitive to a, this verifies the validity of our theoretical results.

Table 1: Numerical results of Examp! 1.

Pre n—m
12288 49152 127808 786432
Prss a 90 180 335 360
IT 51 67 ar 108
CPU 25280 10.8504 207.7131  1144.4793
Priiss a 16900 66 264196 -
IT 49 70 97 -
CPU  5.3710 ....l7  204.2688 -
Zp(a, B) a 16900 6L 4 264196 1052676
B 0.9922 0,991 0.9980 0.9990
IT 15 17 19 20
CPU 1.8 - 1 '576 38.7896 460.2774

Table 2: Numerical resu.. ‘or Exan ple 2 discretized by the Q2 — P, finite elements.

Pre grids(DOF) 64 AQ_4'1WJ) 128 x 128(49666) 256 x 256(197634) 512 x 512 (788482)
I IT TN - - -
CPU - - - -
Prss a 0.c2 0.013 0.006 0.001
IT 60 82 109 150
CPU 2.4756 9.6513 74.8147 901.7666
Psuss a 3.5724 3.6117 3.6316 -
I" 35 50 67 -
CPu 4.1299 24.7710 225.9281 -
Pep(a, B) u 2.4708 2.5657 2.6154 2.6408
Jé} 0.0030 0.0007 0.0002 0.0001
T 22 24 26 28
CpPU 1.7615 7.9486 59.9862 308.5899
5.2. Weighte.. lea ¢ syuares problems
Example 3. ((2¢ 30-33]) We consider an example arising from the weighted least square problem
r){lei]lIsHBx—Z?H; with B:(jg]) and z,:(ﬂof), (5.2)
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Figure 1: Eigenvalue distrib’ .ions o1 . e preconditioned matrices for Example 1 (p = 16).

- steps vs o for v=1(32x 32 grid) " BP steps vs a for v=1(32x32 grid) o RHSSD steps vs a for »=1(32x32 grid)
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Figure 2: The iteration steps vs a for Example 1(p = 32).

where= € R™*™M m > . is a positive diagonal matrix, K € R™*" is a Toeplitz matrix of full column rank, f € R™
is a given vector . nd v> is a regularization parameter. This problem is also tested in [30, 31]. Let M = 22 and
y =E2(f— Kx), the,. ving the least squares problem (5.2) is equivalent to solving the saddle point system

M AT\(y A _
| — -
—K v, x o] =P (5.3)
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Table 3: Numerical results for Example 2 discretized by the Q> — Q; finite elements.

Pre grids(DOF) 64 x 64(12546) 128 x 128(49666) 256 x 256(1 476> 1) 512 x 512 (788482)
I IT - - Xy -
CPU - - ' -
Prss a 0.12 0.03 - -
IT 145 474 - -
CPU 5.1203 56.6073 4 -
Pruss a 3.6930 3.8421 3.9.79 3.9597
IT 28 41 8 73
CPU 0.7970 3.4178 17 5392 210.0296
Pap(a, B) a 3.6930 3.8421 5.9199 3.9597
i 0.0087 0.0023 0.0006 0.0002
IT 54 60 64 67
CPU 0.7332 2.9872 13.6346 173.3568

As considered in [30, 31], v is chosen to be v = 0.001. The Toenlitz ma. <K e R"™" q square matrix with its entries

1
tij N rEEES (5.4)
or
tij= L %t (o=2). (5.5)
varno

The matrix K defined in (5.4) is well-conditioned, whu.. X defined in (5.5) is highly ill-conditioned. The matrix M
is a positive diagonal random matrix generated by the following MATLAB codes

p=1

rand (’seed’, 1)

s=rand(m,1);

maxs= max(s);

mins= min(s);

a = (condx* p — p)/(maxs— minsx co..d);

b=axs+p;

M = diag(abs (sparselh))).
We scale its diagonal entr es sr tha* the condition number of M is around 108, i.e., we set cond = 10%. The given
vector f is(1,1,---, 1)T.

Benzi and Ng [13’ nave c nsidered the HSS preconditioner and the constraint preconditioner for the saddle
point problem (5.3). "hen Pe 1 and Ng [30] have proposed the NHSS preconditioner, which can accelerate the
convergence rate ~“+he ..”_ preconditioner. Here the HSS preconditioner, the constraint preconditioner and the
NHSS precondit’ »ner ar.

1, _[rI KT
s T — % =+ H)J(Z+S), Wc—(K _”),

where

H:(M 0) S:(o KT), Z:(al 0 YZM11+m22+"‘+mnn

0 I’ n ’



Table 4: Numerical results of iteration methods of Example 3 for the well-conditioned
P Pnuss Ze(a, B) Pone s
2n IT CPU IT CPU IT CPU IT |
8192 28 1.1875 32 1.2969 14 0.1563 18 4731
32768 26  3.4375 33  4.3281 24 0.7969 33 4.775
131072 25 20.3125 33 28.3594 34 10.9531 52 =453,
524288 81 381.1719 70 309.7656 28 30.7188 . 118.5.25
2097152 55 1046.7813 61 1282.0625 42 239.7500 64 .35.7969

Table 5: Numerical results of iteration methods of Example 3 for t .e ill-con. "tioned K.

P Pniss Pge(a, . Psuss
2n IT CPU IT CPU IT cT7) a1 CPU
8192 102 3.6719 20 0.5469 9 (.12F, 9 0.2813
32768 103 10.3906 20 1.7344 17  0.x044 17 1.1250
131072 108 102.2500 22 12.4688 27 . %71y 27 12.2344
524288 - - 18 40.1563 0 7.03 3 10 13.6719

2097152 - - 20 202.4375 26 70.7J94 26 188.5625

m;;, i =1,2,...,n are the main diagonal elements of M.

In this example, we compare the proposed precond**i~ner &,(a, ) with the preconditioners Pyyss, Psuss
and Z:. In the implementation of the preconditioned Gh RE’,, tne linear sub-systems with the coefficient matri-
ces v+ 71, KKT and vI+ é K KT are solved iteratively br *he PU 7 method with the preconditioner v+ 71, CCT and the

preconditioner vI+ éC CT, respectively, where the circi ‘a1 ~reconditioner C used here is T. Chans precondition-
er. The inner stop criterion is set to be ||r¢||/||oll < ~272 Ti.» parameter values of the BP and SHSS preconditioners
are chosen by the same way as discussed in Section 5. ™eration counts and CPU times for Example 3 are displayed
in Tables 4-5.

From Tables 4-5, we can see that when K .s we.' -conditioned, all of the preconditioners succeed in solving the
problem for all n. For the well-conditione K, the | P preconditioner is the best one with respect to IT and CPU
in Table 4. For the ill-conditioned K, the BP p.. ~o" ditioner costs the same iteration steps as the SHSS precondi-
tioner, but it costs much less CPU time , the ( the SHSS preconditioner. The reason is that the BP preconditioner
avoids solving the linear sub-systems . **} resr ect to the coefficient matrix vI + éK KT within Krylov subspace
acceleration, it only involves the ce culatio.. .f Toeplitz matrix-vector product, which can be obtained by a fast
algorithms. In addition, for the w .1I-. ~nditioned K, the constraint preconditioner £ show better performance
than the NHSS preconditioner % g5, how cver, it is inefficient for the ill-conditioned K. Therefore, our proposed
preconditioner Zgp(a, ) are v cy e icient for both the well-conditioned K and the ill-conditioned K.

6. Conclusions

In this paper, we have . abli 1ed and analyzed a new BP preconditioner for solving the saddle point prob-
lems. The conditions “ur guaran.eeing the convergence of the BP iterative method are derived, and the spectral
properties of precond itioned natrix are discussed. A feasible strategy to chose the quasi-optimal parameters is
obtained. The implen. ntafi .n of the BP preconditioner is given, revealing that the algorithmic cost of the BP
preconditioner is .ower *han that of the exist ones when they are applied to accelerate the GMRES method. Nu-
merical experim nts sho' r that the GMRES method is greatly accelerated by utilizing the BP preconditioner with
the quasi-optimal , ~rar eter.
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