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Abstract

In this paper, a block product (BP) preconditioner is established for saddle point problems. Spectral properties
of the BP preconditioned matrix are investigated. A strategy for practical choice of quasi-optimal parameter is
given. Numerical results on saddle point linear systems arising from Stokes problems and weighted least square
problems show that the proposed BP preconditioner is more economic to implement within Krylov subspace
acceleration than some extensively studied preconditioners.
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1. Introduction

Consider the solution to the following saddle point problems

�
A B T

−B D

��
x
y

�
=

�
f
g

�
orAu =b , (1.1)

where A ∈ Rn×n is symmetric positive definite, B ∈ Rm×n is of full row-rank, D ∈ Rm×m is symmetric positive
semi-definite, x , f ∈Rn , y , g ∈Rm , with n ≥m . The above assumptions guarantee the existence and uniqueness
of the solution of linear system (1.1), also see [14] for detailed discussions. The linear system (1.1) arises in a wide
variety of scientific computing and engineering applications. For example, computational fluid dynamics and
mixed finite element approximation of elliptic PDEs, optimal control, weighted and equality constrained least
squares estimation, structural analysis, electrical networks, inversion of geophysical data, computer graphics and
so forth[1, 7–9, 12, 14, 20].

The accurate and efficient solution of linear system (1.1) has been an active research area in computational
mathematics for many decades. Due to the large and sparse structure of coefficient matrixA , there is a rapidly
growing interest in iterative methods for solving linear system (1.1) in the past few years. So far, a large amount of
work has been devoted to developing efficient iterative methods, including Uzawa-type methods [7, 9, 15, 21, 36],
preconditioned Krylov subspace iteration methods [6, 14, 16, 17, 23], Hermitian and skew-Hermitian splitting
(HSS) method as well as its accelerated variants [2–5, 8, 25], restrictively preconditioned conjugate gradient meth-
ods [10, 11, 35] and so on. In particular, Krylov subspace methods with appropriate preconditioners are consid-
ered to be more efficient in general. An important criterion for an efficient preconditioner is that it can be easily
implemented, which further make the total computational cost to be optimal. In light of the special structure of
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equations (1.1), many efficient and robust preconditioners have been reported [1, 12, 16–18, 26, 28, 29, 31, 32]. For
an overview of numerical methods and useful preconditioners for the saddle point problems, see [14].

It should be mentioned that the HSS method [3] is very useful for solving non-Hermitian positive definite
systems. Benzi and Gloub proposed the following HSS preconditioner [12]

PHSS =
1

2α

�
αI +A 0

0 αI +D

��
αI B T

−B αI

�

for the generalized saddle point problem (1.1), where α > 0 is a given constant, I denotes the identity matrix.
In order to further speed up the convergence rate of the HSS preconditioner, Cao et al. [18] proposed a SHSS
preconditioner, which is described as

PSHSS =
1

α

�
A 0
0 αI

��
αI B T

−B D

�
. (1.2)

The authors proved that the SHSS preconditionerPSHSS is a better approximation to the matrixA , which is easier
to implement than the preconditionerPHSS [18].

In this paper, based on a block-triangular product approximation to the coefficient matrixA in (1.1), we pro-
pose a block product (BP) preconditioner. This preconditioner also results in a BP splitting iteration method.
The convergence properties of the BP splitting iteration are analyzed. A practical selection for the quasi-optimal
parameters is given. Spectral properties of the BP preconditioned matrix and the finite-step termination proper-
ties of the preconditioned Krylov subspace method are described. Several numerical examples are performed to
illustrate the effectiveness of the proposed preconditioners.

The paper is organized as follows. In Section 2, we present the BP preconditioner and its implementation
for solving the generalized saddle point problems (1.1). In Section 3, the convergence analysis is given and the
quasi-optimal parameter is discussed. In Section 4, the spectral properties of the BP preconditioned matrix are
analyzed. In Section 5, numerical experiments are presented to show the effectiveness of the BP preconditioner
and the feasibility of the strategy for parameter selection. Finally, some brief concluding remarks are given in
Section 6.

2. Block Product preconditioner

In this section, we present a block product (BP) preconditioner for solving the linear system (1.1). According
to (1.2), the SHSS preconditioner can be rewritten as

PSHSS =

�
A 0
−B I

��
I 1

α
B T

0 D + 1
α

B B T

�
=

�
A 1

α
A B T

−B D

�
. (2.1)

As we know that, in many cases, D usually owns some special properties, such as D is a diagonal matrix or D is a
scalar matrix [30–33]. Since the matrix β I +D can still maintain the special structure of D, while D + 1

α
B B T may

destroy its special structure, so that the computation of the solution on the matrix D +β I will be more expensive
than that of D+ 1

α
B B T . With these in mind, we consider using β I +D to replace D+ 1

α
B B T in (2.1), which results

in the following block product (BP) preconditioner

PBP(α, β ) =

�
A 0
−B I

��
I 1

α
B T

0 β I +D

�
=

�
A 1

α
A B T

−B β I +D − 1
α

B B T

�
, (2.2)

where α and β are two positive parameters.
In fact,PBP(α, β ) can result in the following matrix splitting, called the BP splitting,

A =PBP(α, β )−RBP(α, β ) (2.3)

with

RBP(α, β ) :=PBP(α, β )−A =
�

0 1
α

A B T − B T

0 β I − 1
α

B B T

�
.
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Based on the BP splitting (2.3), we can construct the BP splitting iteration method

�
x k+1

y k+1

�
=T (α,β )

�
x k

y k

�
+PBP(α, β )−1

�
f
g

�
, (2.4)

where

T (α,β ) =PBP(α, β )−1RBP(α, β ) =

�
A 1

α
A B T

−B β I +D − 1
α

B B T

�−1�
0 1

α
A B T − B T

0 β I − 1
α

B B T

�
. (2.5)

At each step in the application of the PBP(α, β ) preconditioner with a Krylov subspace method, it needs to
solve a sequence of generalized residual equations PBPz = r , where r = (r T

1 , r T
2 )T ∈ Rm+n is a given residual

vector, z = (z T
1 , z T

2 )T ∈Rm+n represents generalized residual vector, with z 1, r1 ∈Rn and z 2, r2 ∈Rm .
It is easy to verify that

�
A 1

α
A B T

−B β I +D − 1
α

B B T

�
=

�
A 0
0 I

��
I 0
−B I

��
I 0
0 β I +D

��
I 1

α
B T

0 I

�
. (2.6)

Thus, according to (2.6), we can solvePBPz = r for the preconditionerPBP by the following algorithm.

Algorithm 2.1.

(1) solve Au 1 = r1;

(2) compute u 2 := r2+ Bu 1;

(3) solve (β I +D)z 2 = u 2;

(4) compute z 1 := u 1− 1
α

B T z 2;

From Algorithm 2.1, we know that two linear sub-systems with coefficient matrices A and β I +D need to be
solved at each iteration step. As discussed in many papers [2–4, 9, 18, 19, 27], when the matrix sizes are large, the
preconditioned conjugate gradient (PCG) method can be applied to solve the afore-mentioned two linear sub-
systems, as both A and β I +D are symmetric and positive definite.

In analogy with the BP preconditioner, the implementation of the SHSS [18] and HSS [12] preconditioners with
a Krylov subspace method can be described as follows:

Algorithm 2.2. We solvePHSSz = r for the preconditionerPHSS by the following steps:

(1) solve (αI +A)u 1 = r1;

(2) compute (αI +D)u 2 := r2+ Bu 1;

(3) solve ( 1
α

B B T +αI )z 2 = u 2;

(4) compute z 1 := 1
α
(u 1− B T u 2);

Algorithm 2.3. We solvePSHSSz = r for the preconditionerPSHSS by the following steps:

(1) solve Au 1 = r1;

(2) compute u 2 := r2+ Bu 1;

(3) solve ( 1
α

B B T +D)z 2 = u 2;

(4) compute z 1 := u 1− 1
α

B T z 2;
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From the above algorithms, we see that the computational cost of applying the BP preconditioner to accelerate
a Krylov subspace method for the linear system (1.1) are less than the SHSS and HSS preconditioners. Algorithm
2.1 is required to solve two linear subsystems with coefficient matrices A and β I +D, while Algorithm 2.3 need to
solve the linear subsystems with coefficient matrices A and 1

α
B B T +D. In many cases, D has very sparse structure,

such as D = ν I or D is a diagonal matrix [30–32], this means that the matrix β I +D is easier to implement than the
matrix 1

α
B B T +D. Thus, the computational cost of applying the BP preconditioner is cheaper than the computa-

tional cost of the SHSS preconditioner. For the HSS preconditioner, we can find that three sub-linear systems with
coefficient matrices αI +A, αI +D and 1

α
B B T +αI need to be solved at each step. Thus, the BP preconditioner is

much easier to implement than the HSS preconditioner.

3. Convergence analysis of the BP iteration method

We now discuss the convergence properties of the BP iteration method for solving the linear system (1.1) and
then analyze the choice of quasi-optimal parameter.

Let ρ(T (α,β )) denote the spectral radius of the iterative matrix T (α,β ). Then the BP iteration scheme (2.4)
is convergent if and only if ρ(T (α,β )) < 1, see [5, 7, 9]. The following lemma is useful to analyze the spectral
properties of iteration matrix.

Lemma 3.1. Let 0< a <b be two positive scalars. Define the function g (λ,β ) as

g (λ,β ) :=
β −λ
β

with β > 0 and λ> 0.

Then we have

min
β>0

max
a≤λ≤b

|g (λ,β )|= b −a

b +a
, (3.1)

where the equality holds at β = a+b
2

.

Proof. Obviously,

max
a≤λ≤b

g (λ,β ) =
β −a

β
and min

a≤λ≤b
g (λ,β ) =

β −b

β
.

Then we have

max
a≤λ≤b

|g (λ,β )|=max
nβ −a

β
,

b −β
β

o
.

Let

f (β ) := max
a≤λ≤b

|g (λ,β )|. (3.2)

By the Chebyshev approximation theorem, the minimizer β of the function f (β ) is the unique positive root of the
following algebraic equation

β −a

β
=

b −β
β

.

By solving this equation we obtainβ = a+b
2

. Substituting thisβ into the expression of f (β ) in (3.2), we easily obtain
(3.1).

Theorem 3.2. Let A ∈Rn×n be symmetric positive definite, B ∈Rm×n be of full row rank, α,β be positive parameters
and T (α,β ) be defined in (2.5). Then ρ(T (α,β ))< 1 if

β >
η1

2
and α, 0,

where η1 is the maximum eigenvalue of the matrix BA−1 B T .
4



Proof. Denote eD :=β I +D. From (2.6), we get

PBP(α, β )−1 =

�
I − 1

α
B T

0 I

��
I 0
0 β I +D

�−1�
I 0
B I

��
A 0
0 I

�−1

=

�
A−1− 1

α
B T eD−1 BA−1 − 1

α
B T eD−1

eD−1 BA−1 eD−1

�
. (3.3)

From (2.5) and (3.3), we have

T (α,β ) =

�
0 1

α
B T −A−1 B T + 1

α
B T eD−1 BA−1 B T − β

α
B T eD−1

0 eD−1(β I − BA−1 B T )

�
. (3.4)

From (3.4), it is clear that T (α,β ) has n eigenvalues at 0 and m eigenvalues which are the same as those of
eD−1(β I − BA−1 B T ).

Define G := eD−1(β I − BA−1 B T ). Then it is easy to see that

ρ(T (α,β )) =ρ(G ))≤ ‖G ‖2 ≤


 eD−1




2



β I − BA−1 B T




2
. (3.5)

As the matrices D and A are symmetric, D̃−1 and β I − BA−1 B T are symmetric too. Thus

‖ eD−1‖2 = max
1≤i≤m

��λi (D̃−1)
��= max

1≤i≤m

����
1

β +λi (D)

����≤
1

β
. (3.6)

‖β I − BA−1 B T ‖2 = max
1≤i≤m

��λi (β I − BA−1 B T )
��= max

1≤i≤m

��β −λi (BA−1 B T )
��. (3.7)

Based on (3.5), (3.6) and (3.7), we get

ρ(T (α,β ))≤σ(β ) = max
1≤i≤m

����
β −λi (BA−1 B T )

β

����. (3.8)

Applying straightforward derivations, we get β > η1

2
⇒σ(β )< 1, which means

β >
η1

2
⇒ρ(T (α,β ))< 1.

From the results of Theorem 3.2, we find that σ(β ) is an upper bound of ρ(T (α,β )). Therefore, we can obtain
the following quasi-optimal parameters.

Theorem 3.3. Assume that the conditions of Theorem 3.2 hold. Let η1 and ηm be the maximum and minimum
eigenvalues of the matrix BA−1 B T , respectively, σ(β ) be defined in (3.8). Then the quasi-optimal parameter βqopt,
which minimizes the spectral factorσ(β ) is given by

βqopt = arg min
β
σ(β ) =

η1+ηm

2
.

The corresponding quasi-optimal spectral factor is

σqopt (β ) =
η1−ηm

η1+ηm
.

Proof. From Lemma 3.1, the conclusion is easy to be obtained.

Corollary 3.4. Under the assumptions of Theorem 3.3, if D = 0, then the BP iterative method (2.4) is convergent if
the following inequality is satisfied

β >
η1

2
, ∀α> 0.

5



The optimal parameter βopt, which minimizes the spectral radius of the BP iteration matrix (2.4), is given by

βopt =
η1+ηm

2
.

The corresponding optimal spectral radius is

ρopt(T (α,β )) =
η1−ηm

η1+ηm
.

Proof. As D = 0, then eD =β I , which means G = 1
β
(β I − BA−1 B T ). From (3.4), we know that

ρ(T (α,β )) =ρ(G )) = max
1≤i≤m

|1− 1

β
ηi |=max

nβ −ηm

β
,
η1−β
β

o
.

Thus,

ρ(T (α,β ))< 1⇔
(
β−ηm

β
< 1,

η1−β
β
< 1.

Simplify these inequalities, we obtain

ρ(T (α,β ))< 1⇔β >
η1

2
.

By Lemma 3.1, we can get the results above.

Remark 3.5. From the results of Theorem 3.3, we see that βqopt is related to the eigenvalues of BA−1 B T , it may be
difficult to compute such value. Therefore, in the next, we will use the techniques similar to those in [19, 24, 27] to
discuss a choice strategy of the quasi-optimal parameters α and β .

As the difference between A andPBP(α, β ) is

RBP(α, β ) :=PBP(α, β )−A =
�

0 1
α

A B T − B T

0 β I − 1
α

B B T

�
.

Then we define

αprac = arg min
α
‖αI −A‖2

F , βprac = arg min
β





β I − 1

α
B B T






2

F

. (3.9)

From (3.9), we can get the following practical parameters

αprac =
trace (A)

n
, βprac =

n ·

B T


2

F

m · trace (A)
, (3.10)

which makePBP(α, β ) as close toA as possible.

From (3.10), we can see that the selection of accelerated parameters α and β is very economic, because it
avoids calculating the eigenvalues or singular values of matrix.

It is deserve to mentioning that Cao et al. [18] have given a choice for the parameter α:

α=
‖B B T ‖2

‖D‖2
.

Firstly, it is difficult to compute the value of αwhen the problem size is large. Secondly, when D is a zero matrix, it
will be not feasible. Therefore, by the algebraic estimation technique used in [24], we will find a suitable parameter

α=
trace (A)

n
(3.11)

to approximate α, which is proved to be very efficient in Section 5.
6



4. Spectral properties of the BP preconditioned matrix

It is known that, when a preconditioner is applied to Krylov subspace method, the convergence rate of the
corresponding preconditioned iterative method depends on both the spectrum and eigenvector distributions of
the preconditioned matrix [18, 34]. The following theorem describes the eigenvalue distributions of the precondi-
tioned matrixPBP(α, β )−1A .

Theorem 4.1. Assume that the conditions of Theorem 3.3 hold. Then the preconditioned matrix PBP(α, β )−1A
has an unit eigenvalue of algebraic multiplicity at least n, and its remaining eigenvalues are all real and lie in the
following interval:

h 2ηm

η1+ηm
,

2η1

η1+ηm

i
.

Proof. From (3.4), we have

PBP(α, β )−1A = I −T (α,β )

=

�
I A−1 B T − 1

α
B T eD−1(D + BA−1 B T )

0 eD−1(D + BA−1 B T )

�
.

(4.1)

Thus, from (4.1), it obtains that the preconditioned matrixPBP(α, β )−1A has eigenvalue 1 with multiplicity at least
n , the remaining eigenvalues are the same as those of eD−1(D+BA−1 B T ). As both D =β I +D and D+BA−1 B T are
symmetric positive definite, we know that all of the eigenvalues of eD−1(D + BA−1 B T ) are real and positive.

Furthermore, we have

sp (PBP(α, β )−1A ) = sp ( eD−1(D + BA−1 B T ))⊆
h

1−ρ (T (α,β )), 1+ρ (T (α,β ))
i

,

where sp(•) denotes the spectrum of a matrix. By the results of Theorem 3.3, we know that

ρ (T (α,β )≤ η1−ηm

η1+ηm
,

this also implies that

sp (PBP(α, β )−1A )⊆
h 2ηm

η1+ηm
,

2η1

η1+ηm

i
.

Thus, we complete the proof.

Then, we discuss the eigenvector distributions and the upper bound of the degree of the minimal polynomial
of the preconditioned matrixPBP(α, β )−1A . As the proofs are similar to those in [18, 19, 27], we omit them here.

Theorem 4.2. LetPBP(α, β ) be defined in (2.2). Then the preconditioned matrixPBP(α, β )−1A has

(1) n linearly independent eigenvectors of the form [u T
l 0T ]T (l = 1, 2, · · · , n ), that correspond to the unite eigenval-

ue, where u l (l = 1, 2, · · · , n ) denote arbitrary linearly independent vectors;

(2) i (1 ≤ i ≤ m ) eigenvectors of the form [(u 1
l )

T (v 1
l )

T ]T , with v 1
l , 0, (A −αI )B T v 1

l = 0, i = dim{null (A −αI )∩
range (B T )}, that correspond to the eigenvalues 1, where u 1

l are arbitrary vectors;

(3) j (1 ≤ j ≤ m ) eigenvectors of the form [(u 2
l )

T (v 2
l )

T ]T with v 2
l , 0, (D + BA−1 B T )v 2

l = λl (β I +D)v 2
l , u 2

l =
1

α(1−λl )
A−1(λl A −αI )B T v 2

l , that correspond to the non-unite eigenvalues λ.

Theorem 4.3. Under the assumptions of Theorem 4.1. If 1≤ k ≤m is the degree of the minimal polynomial of the
matrix G2 := (β I +D)−1(D + BA−1 B T ). Then the degree of the minimal polynomial of the preconditioned matrix
PBP(α, β )−1A is at most k +1.

Remark 4.4. Theorem 4.3 indicates that the dimension of the Krylov subspaceK (P −1
BP A ,b ) is at most k +1, which

also implies that the GMRES method with the BP preconditioner to solve the linear system (1.1) will terminate in at
most k +1 steps [34]. While in [18], Cao et al. proved that the GMRES method with the SHSS preconditioner to solve
the linear system (1.1) will converge to the exact solution of the linear system with the coefficient matrixA with at
most m +1 iterations, this indicates that our results are better than theirs.

7



5. Numerical results

In this section, we will give some numerical experiments to illustrate the effectiveness of the BP preconditioner.
The experiments also aim at identifying the efficiency of the quasi-optimal parameters α and β . All the tests are
performed in MATLAB R2013a with machine precision 10−16 on a personal computer with 3.2 GHz CPU (Intel(R)
Core(TM)2 i5-3470). The initial guess is chosen as u (0) = 0, and terminated once the current iterate solution u (k )

satisfies

ERR=
||b −Au (k )||2

||b ||2 ≤ 10−6

or the number of the prescribed iteration kmax = 500 are exceeded. In the all following tables, “ – ” means that
I T ≥ 500 or the E RR > 10−6. In the following, we show the advantage of the BP preconditioner over some exist-
ing preconditioners from aspects of number of iteration steps (denoted by “IT"), elapsed CPU times in seconds
(denoted by “CPU") .

5.1. Stokes problems

Example 1. ([5, 12, 14]) Consider the following two-dimensional Stokes problem:
(
−∆u +∇p = f̃ , u ∈Ω
∇·u = 0, u ∈Ω (5.1)

where the boundary and the normalization conditions u = 0 on ∂ Ω and
∫
Ω

p (x )dx = 0, Ω= [0, 1]× [0, 1], ∂ Ω is the
boundary ofΩ. ∆ is the componentwise Laplacian operator,∇ and∇· denote the gradient and divergence operators,
u and p are two vectors, the velocity of the fluid and the pressure, respectively. By discretizing this problem with
finite differences, we obtain the linear system (1.1), in which

A =

�
I ⊗T +T ⊗ I 0

0 I ⊗T +T ⊗ I

�
∈R2p 2×2p 2

, B T =

�
I ⊗ F
F ⊗ I

�
∈R2p 2×p 2

, D = 0

and T = 1
h2 · tridiag(−1, 2, −1) ∈Rp×p , F = 1

h
· tridiag(−1, 1, 0) ∈Rp×p with ⊗ being the Kronecker product symbol

and h = 1
p+1

the discretization mesh-size. In this example, we let the right-hand side vector b = ( f T , g T )T ∈R(m+n )×1

with f = (1, 1, · · · , 1)T ∈ Rn×1 and g = (1, 1, · · · , 1)T ∈ Rm×1. We note that n = 2p 2 and m = p 2. Hence, the total
number of unknowns is m + n = 3p 2. As D = 0, the SHSS preconditioner is reduced to the RHSS preconditioner
[19]. Therefore, in this example, we compare the RHSS preconditioner with the BP preconditioner to illustrate the
effectiveness of the BP preconditioner. The numerical results for Example 1 are listed in Table 1.

Example 2. ([4, 9, 18]) We still consider the two-dimensional Stokes problem (5.1). But the square domain we used
isΩ= [−1, 1]×[−1, 1] and with the non-zero horizontal velocity on the top part of the domain, namely ∂ u

∂ x
= 1−x 4 on

[−1, 1]×{1}. This test problem is a ’regularized’ two-dimensional lid-driven cavity problem. We discretize the Stokes
equations (5.1) by the Q1 − P0 (the stabilization parameter is 0.25) and Q2 −Q1 finite elements on some uniform
grids, respectively. We use the IFISS software package [22] to generate linear systems for the meshes of size 64× 64,
128×128, 256×256, 512×512. The corresponding numerical results are listed in Tables 2 and 3.

In Examples 1-2, we apply the GMRES iteration method incorporated with the BP preconditioner PBP(α, β ),
the SHSS preconditioner PSHSS [18], the HSS preconditioner PHSS [12] or without preconditioner (denoted as I ),
respectively, to solve the linear system (1.1). The parameters α and β are obtained by the formula (3.10) for the
BP preconditioner. For the SHSS preconditioner, we compute the parameter α by the formula as given in (3.11).
The parameters for the HSS preconditioner are the experimentally computed optimal ones that minimize the total
number of iteration steps of the HSS-GMRES method. In addition, the coefficient matrix A is approximated by the
action of two AMG V-cycles with a 2-2 (presmoothing-postsmoothing) point damped Jacobi smoothing strategy,
and we use PCG method to solve the linear sub-systems with respect to the Hermitian positive definite matrices
β I +D, 1

α
B B T +D, αI +D and 1

α
B B T +αI .

As shown in Tables 1-3, we can see significant improvements for the performance of GMRES with all precon-
ditioners. Meanwhile, we observe that the iteration steps of the HSS preconditioned-GMRES method increase
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rapidly with problem size and the SHSS and BP preconditioners lead to much better results than the HSS precon-
ditioners. It appears to offer advantages in terms of both iteration steps and CPU time. Besides, we also observe
that the parameter choice for the BP preconditioner given in the paper is also very feasible. Moreover, we observe
that the iteration steps of the BP preconditioner almost keep constant, which shows that the BP preconditioned-
GMRES method is mesh-size insensitive convergent.

We also depicted the eigenvalue distributions of the HSS, RHSS and BP preconditioned matrices and the orig-
inal coefficient matrixA for Example 1, see Fig. 1. In addition, we have plotted the trends of the iteration steps
vs α, see Fig. 2. From Fig. 1, we see that the BP preconditioner is better than others since it has a more compact
spectral distribution, which tends to result in a faster convergence rate. Observed from Fig. 2, we find that the IT
of BP preconditioner changes little and it becomes stable when α> 400, which implies that our preconditioner is
not very sensitive to α, this verifies the validity of our theoretical results.

Table 1: Numerical results of Example 1.

Pre n +m
12288 49152 196608 786432

PHSS α 90 180 335 360
IT 51 67 92 108

CPU 2.5280 10.8504 307.7131 1144.4793
PRHSS α 16900 66564 264196 –

IT 49 70 97 –
CPU 5.3710 30.6082 204.2688 –

PBP(α, β ) α 16900 66564 264196 1052676
β 0.9922 0.9961 0.9980 0.9990
IT 15 17 19 20

CPU 1.8409 4.4576 38.7896 460.2774

Table 2: Numerical results for Example 2 discretized by the Q2−P0 finite elements.

Pre grids(DOF) 64×64(12546) 128×128(49666) 256×256(197634) 512×512 (788482)
I IT – – – –

CPU – – – –
PHSS α 0.02 0.013 0.006 0.001

IT 60 82 109 150
CPU 2.4756 9.6513 74.8147 901.7666

PSHSS α 3.5724 3.6117 3.6316 –
IT 35 50 67 –

CPU 4.1299 24.7710 225.9281 –
PBP(α, β ) α 2.4708 2.5657 2.6154 2.6408

β 0.0030 0.0007 0.0002 0.0001
IT 22 24 26 28

CPU 1.7615 7.9486 59.9862 308.5899

5.2. Weighted least squares problems
Example 3. ([28, 30–33]) We consider an example arising from the weighted least square problem

min
x∈R ||Bx − b̃ ||22 with B =

�
ΞKp
ν I

�
and b̃ =

�
Ξ f
0

�
, (5.2)
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Figure 1: Eigenvalue distributions of the preconditioned matrices for Example 1 (p = 16).
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Figure 2: The iteration steps vs α for Example 1(p = 32).

where Ξ ∈Rm×m (m ≥ n) is a positive diagonal matrix, K ∈Rm×n is a Toeplitz matrix of full column rank, f ∈Rm

is a given vector and ν > 0 is a regularization parameter. This problem is also tested in [30, 31]. Let M = Ξ(−2) and
y =Ξ2( f −K x ), then solving the least squares problem (5.2) is equivalent to solving the saddle point system

�
M K T

−K ν I

��
y
x

�
=

�
f
0

�
≡b. (5.3)
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Table 3: Numerical results for Example 2 discretized by the Q2−Q1 finite elements.

Pre grids(DOF) 64×64(12546) 128×128(49666) 256×256(197634) 512×512 (788482)
I IT – – – –

CPU – – – –
PHSS α 0.12 0.03 – –

IT 145 474 – –
CPU 5.1203 56.6073 – –

PRHSS α 3.6930 3.8421 3.9199 3.9597
IT 28 41 58 73

CPU 0.7970 3.4178 17.8392 210.0296
PBP(α, β ) α 3.6930 3.8421 3.9199 3.9597

β 0.0087 0.0023 0.0006 0.0002
IT 54 60 64 67

CPU 0.7332 2.9872 13.6346 173.3568

As considered in [30, 31], ν is chosen to be ν = 0.001. The Toeplitz matrix K ∈Rn×n a square matrix with its entries

t i j =
1p

|i − j |+1
, (5.4)

or

t i j =
1p

2πσ
e
−|i−j |2

2σ2 (σ= 2). (5.5)

The matrix K defined in (5.4) is well-conditioned, while K defined in (5.5) is highly ill-conditioned. The matrix M
is a positive diagonal random matrix generated by the following MATLAB codes

p = 1;

rand ( ′seed ′, 1)

s = rand (m , 1);

maxs=max(s );

mins=min(s );

a = (cond ∗p −p )/(maxs−mins ∗ cond);

b = a ∗ s +p ;

M = diag (abs (sparse(b ))).

We scale its diagonal entries so that the condition number of M is around 106, i.e., we set cond = 106. The given
vector f is (1, 1, · · · , 1)T .

Benzi and Ng [13] have considered the HSS preconditioner and the constraint preconditioner for the saddle
point problem (5.3). Then Pan and Ng [30] have proposed the NHSS preconditioner, which can accelerate the
convergence rate of the HSS preconditioner. Here the HSS preconditioner, the constraint preconditioner and the
NHSS preconditioner are

PNHSS =
1

2
Σ−1(Σ+H )(Σ+S), PC =

�
γI K T

K −ν I

�
,

where

H =

�
M 0
0 ν I

�
S =

�
0 K T

−K 0

�
, Σ=

�
αI 0
0 ν I

�
, γ=

m11+m22+ · · ·+mnn

n
,
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Table 4: Numerical results of iteration methods of Example 3 for the well-conditioned K .

PC PNHSS PBP(α, β ) PSHSS

2n IT CPU IT CPU IT CPU IT CPU
8192 28 1.1875 32 1.2969 14 0.1563 18 0.7344

32768 26 3.4375 33 4.3281 24 0.7969 33 4.4375
131072 25 20.3125 33 28.3594 34 10.9531 52 55.4531
524288 81 381.1719 70 309.7656 28 30.7188 32 118.3125

2097152 55 1046.7813 61 1282.0625 42 239.7500 64 1339.7969

Table 5: Numerical results of iteration methods of Example 3 for the ill-conditioned K .

PC PNHSS PBP(α, β ) PSHSS

2n IT CPU IT CPU IT CPU IT CPU
8192 102 3.6719 20 0.5469 9 0.1250 9 0.2813

32768 103 10.3906 20 1.7344 17 0.4844 17 1.1250
131072 108 102.2500 22 12.4688 27 7.6719 27 12.2344
524288 – – 18 40.1563 10 7.0313 10 13.6719

2097152 – – 20 202.4375 26 120.1094 26 188.5625

m i i , i = 1, 2, ..., n are the main diagonal elements of M .
In this example, we compare the proposed preconditioner PBP(α, β ) with the preconditioners PN HSS , PSHSS

andPC. In the implementation of the preconditioned GMRES, the linear sub-systems with the coefficient matri-
ces ν I+ 1

γ
K K T and ν I+ 1

α
K K T are solved iteratively by the PCG method with the preconditioner ν I+ 1

γ
CC T and the

preconditioner ν I + 1
α

CC T , respectively, where the circulant preconditioner C used here is T. Chans precondition-
er. The inner stop criterion is set to be ‖rk ‖/‖r0‖< 10−5. The parameter values of the BP and SHSS preconditioners
are chosen by the same way as discussed in Section 3. Iteration counts and CPU times for Example 3 are displayed
in Tables 4-5.

From Tables 4-5, we can see that when K is well-conditioned, all of the preconditioners succeed in solving the
problem for all n . For the well-conditioned K , the BP preconditioner is the best one with respect to IT and CPU
in Table 4. For the ill-conditioned K , the BP preconditioner costs the same iteration steps as the SHSS precondi-
tioner, but it costs much less CPU times than the SHSS preconditioner. The reason is that the BP preconditioner
avoids solving the linear sub-systems with respect to the coefficient matrix ν I + 1

α
K K T within Krylov subspace

acceleration, it only involves the calculation of Toeplitz matrix-vector product, which can be obtained by a fast
algorithms. In addition, for the well-conditioned K , the constraint preconditioner PC show better performance
than the NHSS preconditionerPNHSS, however, it is inefficient for the ill-conditioned K . Therefore, our proposed
preconditionerPBP(α, β ) are very efficient for both the well-conditioned K and the ill-conditioned K .

6. Conclusions

In this paper, we have established and analyzed a new BP preconditioner for solving the saddle point prob-
lems. The conditions for guaranteeing the convergence of the BP iterative method are derived, and the spectral
properties of preconditioned matrix are discussed. A feasible strategy to chose the quasi-optimal parameters is
obtained. The implementation of the BP preconditioner is given, revealing that the algorithmic cost of the BP
preconditioner is lower than that of the exist ones when they are applied to accelerate the GMRES method. Nu-
merical experiments show that the GMRES method is greatly accelerated by utilizing the BP preconditioner with
the quasi-optimal parameter.
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