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a b s t r a c t

In this paper we propose simple multiscale basis functions with constraint energy
minimization to solve elliptic problems with high contrast medium. Our methodology is
based on the recently developed non-local multicontinuum method (NLMC). The main
ingredient of the method is the construction of suitable local basis functions with the
capability of capturing multiscale features and non-local effects. In our method, each
coarse block is decomposed into various regions according to the contrast ratio, and
we require that the contrast ratio should be relatively small within each region. The
basis functions are constructed by solving a local problem defined on the oversampling
domains and they have mean value one on the chosen region and zero mean otherwise.
Numerical analysis shows that the resulting basis functions can be localizable and have a
decay property. The convergence of the multiscale solution is also proved. Finally, some
numerical experiments are carried out to illustrate the performances of the proposed
method. They show that the proposed method can solve problem with high contrast
medium efficiently. In particular, if the oversampling size is large enough, then we can
achieve the desired error.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider

−∇ · (κ∇u) = f in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R2 is the computational domain and κ is a high contrast with 0 < κmin ≤ κ ≤ κmax and is a multiscale field.
The proposed method can be extended to 3D easily.

If the coefficient κ is rough, then the solution u to (1.1) will also be rough; to be specific, u will not in general be in
H2(Ω) and may not be in H1+ϵ(Ω) for any ϵ > 0. For this kind of low regularity, standard analysis usually fails. Moreover,
the classical polynomial based finite element methods could perform arbitrary badly for such problems, see, e.g., [1]. To
resolve this issue, various numerical methods have been proposed and analyzed, and among all the methods we mention
in particular the special finite element methods [2,3], the upscaled models [4,5] and the multiscale methods [6–17].

The concept of non-local upscaling has been successfully applied to problems in porous media, see, e.g., [18–20].
Motivated by the work given in [21], the nonlocal multicontinua (NLMC) upscaling technique was initially introduced
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for flows in heterogeneous fractured media in [22], and have been successfully applied to different problems under
application [23–26]. The main idea of NLMC upscaling technique is to construct the multiscale basis functions over the
oversampling domain via an energy minimization principle. Note that the constraint should be chosen properly in order to
make the localization possible. One distinctive feature of the method is that it allows a systematic upscaling for processes
in the fractured porous media, and provides an effective coarse scale model whose degrees of freedom have physical
meaning.

Inspired by the work given in [22–24], the goal of this paper is to extend the idea of nonlocal multicontinua to problem
(1.1). For our approach, we start with decomposing the coarse block into different regions and the criterion used for
the decomposition is to have relatively small contrast ratio within each region. Then, we define the constraint energy
minimization problem in the oversampling domain, where the restriction for the basis functions is defined such that
they have mean value one in the chosen region and zero mean otherwise, in addition the basis functions vanish on the
boundary of the oversampling domain. We remark that the vanishing property is important for the localization of the
multiscale basis functions and the localization idea has also been exploited in [27] to solve problems with heterogeneous
and highly varying coefficients. Next, we can solve the local minimization problem by using the equivalent saddle point
formulation to achieve the multiscale basis functions. The resulting multiscale basis functions have decay property, in
addition, it can capture the fine-grid information well provided proper number of oversampling layers are chosen. With
the multiscale basis functions, we can solve the upscaled equation to obtain the upscaled coarse grid solution. It is worth
mentioning that in our method the number of basis function is relatively small and it is equal to the number of scales
over the domain. We also analyze the convergence of the proposed method. For this, we first compare the difference
between the multiscale basis functions and the global basis functions, combining this with the convergence of the global
solution, then we can prove the convergence of the multiscale solution in L2 norm and weighted energy norm. The analysis
indicates that the convergence rate only depends on the local contrast ratio, namely, the contrast ratio within each region.
With proper number of oversampling layers, the first order convergence measured in energy norm can be obtained. Some
numerical experiments are also carried out. The numerical experiments show that with the fixed coarse mesh size, the
oversampling layers should be selected properly to achieve the desired error, in addition, for a fixed oversampling size,
the performance of the scheme will deteriorate as the medium contrast increases.

The rest of the paper is organized as follows. In the next section, we present the construction of the proposed method
for (1.1). The convergence analysis for the multiscale solution is proposed in Section 3. Then, some numerical experiments
are investigated in Section 4 to confirm the theoretical results. Finally, the conclusions are given in Section 5.

2. Preliminaries

2.1. Description of NLMC method

The solution of (1.1) satisfies

a(u, v) = (f , v) ∀v ∈ H1
0 (Ω), (2.1)

where a(u, v) =
∫
Ω
κ∇u · ∇v dx.

Next, the notations of the fine grids and coarse grids are introduced. Let TH be a coarse-grid of the domain Ω and Th
be a conforming fine triangulation of Ω . We assume that Th is a refinement of TH , where h and H represent the fine and
coarse mesh sizes, respectively. Let Ki ∈ TH be the ith coarse block and let Ki,m be the corresponding oversampled region
obtained by enlarging the coarse block Ki by m coarse grid layers (See Fig. 1 for an illustration). We let N be the number
of elements in TH . Furthermore, each coarse block Ki, i = 1 · · · ,N is decomposed into different regions K j

i , j = 1, . . . , li
and li is the number of regions within coarse block Ki. In addition, we require that within each region K j

i , κ should satisfy

{κ
i,j
0 ≤ κ ≤ κ

i,j
1 } and the contrast ratio C i,j

ratio =
κ
i,j
1

κ
i,j
0

should be relatively small. In addition, we define Cratio = maxi,j C
i,j
ratio for

any i = 1, . . . ,N, j = 1, . . . , li. We remark that each region K j
i is a continuum. We also note that each K j

i is a connected
Lipschitz domain and the Poincaré constants for K j

i are uniformly bounded. We will use this fact for later analysis.
Consider an oversampling region Ki,m of the coarse block Ki, then the multiscale basis function ψ (j)

i,ms ∈ H1
0 (Ki,m) is

constructed by minimizing a(ψ (j)
i,ms, ψ

(j)
i,ms) subject to the following conditions

1
|K n

l |

∫
Kn
l

ψ
(j)
i,ms = δliδnj ∀K n

l ⊂ Ki,m,

where δli, δnj is the Dirac delta function and |K n
l | denotes the area of K n

l . We can see that ψ (j)
i has mean value 1 on the

jth region within the coarse block Ki and 0 mean in other regions inside the oversampling domain.
We remark that the above minimization problem is implicit, to solve it explicitly, we can write down the following

equivalent variational formulation over each Ki,m:

a(ψ (j)
i,ms, v) +

∑
Kn
l ⊂Ki,m

1
|K n

l |
λnl

∫
Kn
l

v dx = 0 ∀v ∈ H1
0 (Ki,m), (2.2)
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Fig. 1. Schematic of the coarse grid Ki , the oversampling region Ki,1 and the fine grids.

1
|K n

l |

∫
Kn
l

ψ
(j)
i,ms dx = δliδnj ∀K n

l ⊂ Ki,m, (2.3)

where λnl ∈ Qh(Ki,m) and Qh is a piecewise constant function whose restriction to each region K n
l is a constant, and Qh(Ki,m)

denotes Qh restricted to Ki,m. An illustration of the multiscale basis functions can be found in Fig. 2.
Then we obtain our multiscale space

Vms = span{ψ
(j)
i,ms}.

The resulting coarse grid equation can be written as

a(ū, v) = (f , v) ∀v ∈ Vms.

The construction of the local multiscale basis function is motivated by the global basis construction as defined below,
and in the subsequent analysis we will exploit the global basis functions to show the convergence analysis. The global
basis function ψ (j)

i is defined by

ψ
(j)
i = argmin{a(q(j)i , q

(j)
i )|q(j)i ∈ H1

0 (Ω),
1

|K n
l |

∫
Kn
l

q(j)i dx = δliδnj, ∀K n
l ⊂ Ω}. (2.4)

Our multiscale finite element space Vglo is defined by

Vglo = span{ψ
(j)
i |1 ≤ i ≤ N, 1 ≤ j ≤ li}.

For later analysis, we define πij(v) to be the projection which is defined for each region K j
i as

πij(v) =
1

|K j
i |

∫
K j
i

v dx ∀v ∈ L2(Ω)

and

π (v) =

N∑
i=1

li∑
j=1

πij(v).

In addition, we define Ṽ as the null space of the projection π , namely, Ṽ = {v ∈ H1
0 (Ω)|π (v) = 0}. Then for any ψ (j)

i ∈ Vglo,
we have

a(ψ (j)
i , v) = 0 ∀v ∈ Ṽ .

We remark that Ṽ = V⊥

glo and interested readers can refer to [28] for the explanations.
The approximate solution uglo ∈ Vglo obtained in the global multiscale space Vglo is defined by

a(uglo, v) = (f , v) ∀v ∈ Vglo. (2.5)

For later analysis, we define ∥v∥2
a =

∫
Ω
κ|∇u|2 dx. In addition, for a given subdomain Ωi ⊂ Ω , we define the local

a-norm by ∥v∥2
a(Ωi)

=
∫
Ωi
κ|∇v|2 dx. Also, for a region K j

i , we denote ∥v∥2
s(K j

i )
=

1
|K j

i |
∥v∥2

L2(K j
i )
. For D ⊂ R2 and K j

i ⊂ D, we

denote ∥v∥2
s(D) =

∑
K j
i ⊂D ∥v∥2

s(K j
i )
. If D = Ω , the subscript Ω will be dropped unless otherwise mentioned.
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Fig. 2. An illustration of the decay property of the multiscale basis function. Left: a high contrast medium. Right: a multiscale basis function.

2.2. Computational issue

For the convenience of the readers, we write down the implementation of the proposed method as follows.

1. Calculate the multiscale basis functions ψ (j)
i,ms by solving (2.2)–(2.3) for each region K j

i , i = 1, . . . ,N, j = 1, . . . , li.
2. Generate the projection matrix

RT
= [ψ

(1)
1,ms · · · , ψ

(l1)
1,ms, . . . , ψ

(1)
N,ms, . . . , ψ

(lN )
N,ms],

where ψ (j)
i,ms is a column vector using its representation in the fine grid.

3. Construct the coarse grid system

RART ū = Rb

and solve the above equation to get ū.

Note that the downscale solution can be defined by ums = RT ū. Our coarse grid solutions have physical meaning, which
is the average value of the solution on each region K j

i .

3. Error analysis

In this section, we will carry out the error analysis for the proposed method. We first show the convergence of the
global basis function defined in (2.4), then we show the decay property of the local multiscale basis function, using which
the convergence of the multiscale solution can be obtained.

3.1. Convergence

This subsection presents the convergence of the approximate solution obtained in (2.1) as stated in the next lemma.

Lemma 3.1. Let u be the solution in (2.1) and uglo be the solution in (2.5), then we have

∥u − uglo∥a ≤ CHC1/2
ratio∥κ

−1/2f ∥L2(Ω).

Proof. By the definitions of u and uglo, we have

a(u, v) = (f , v) ∀v ∈ H1
0 (Ω),

a(uglo, v) = (f , v) ∀v ∈ Vglo.

Combining these two equations, we can get

a(u − uglo, v) = 0 ∀v ∈ Vglo.

So, we have u − uglo ∈ V⊥

glo = Ṽ . It then follows that

a(u − uglo, u − uglo) = a(u, u − uglo) = (f , u − uglo) ≤ ∥κ−1/2f ∥L2(Ω)∥κ
1/2(u − uglo)∥L2(Ω).
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Since π (u − uglo) = 0, the Poincaré inequality yields∫
K j
i

(u − uglo)2 ≤ CH2
∫
K j
i

|∇(u − uglo)|2.

Therefore, the preceding arguments reveal that

∥u − uglo∥
2
a ≤ CHC1/2

ratio∥κ
−1/2f ∥L2(Ω)∥u − uglo∥a,

which gives the desired estimate. □

3.2. Decay property of the multiscale basis functions

This section aims to proving the global basis functions are localizable. To this end, for each coarse block K , we define
B to be a bubble function and B |τ=

ϕ1ϕ2ϕ3
27 ,∀τ ∈ Th(K ), where ϕi is barycentric coordinate and Th(K ) denotes the fine

grids restricted to K , and more information regarding the bubble function B can be found in [29].
The next lemma considers the following minimization problem defined on a coarse block Ki:

v
(j)
i = argmin{a(q(j)i , q

(j)
i )|q(j)i ∈ H1

0 (Ki), πil(q
(j)
i ) = vaux ∀ l = 1, . . . , li} (3.1)

for a given vaux ∈ Qh(Ki).

Lemma 3.2. For all vaux ∈ Qh, there exists a function v ∈ H1
0 (Ω) such that

π (v) = vaux, ∥v∥2
a ≤ D∥κ1/2vaux∥

2
s , supp(v) ⊂ supp(vaux).

Proof. Let vaux ∈ Qh(Ki). The minimization problem is equivalent to the following variational problem: find v(j)i ∈ H1
0 (Ki)

and µ ∈ Qh(Ki) such that

ai(v
(j)
i , w) +

∑
K l
i ⊂Ki

1
|K l

i |
µl

∫
K l
i

w dx = 0 ∀w ∈ H1
0 (Ki), (3.2)

1
|K l

i |

∫
K l
i

v
(j)
i dx =

1
|K l

i |

∫
K l
i

vaux dx ∀ l = 1, . . . , li. (3.3)

Let si(v, vaux) =
∑

K l
i ⊂Ki

1
|K l

i |

∫
K l
i
vvaux dx. Note that, by the mixed finite element theory (cf. [30]), the well-posedness of the

minimization problem is equivalent to the existence of a function v ∈ H1
0 (Ki) such that

si(v, vaux) ≥ C∥vaux∥
2
s(Ki), ∥v∥a(Ki) ≤ C∥κ1/2vaux∥s(Ki).

Note that vaux is supported in Ki. We let v = Bvaux. By the definition of si, we have

si(v, vaux) =

∑
K l
i ⊂Ki

1
|K l

i |

∫
K l
i

Bv2aux ≥ C∥vaux∥
2
s(Ki).

In addition,

∥v∥2
a(Ki) = ∥Bvaux∥2

a(Ki) ≤ C∥v∥a(Ki)∥κ
1/2vaux∥s(Ki).

Thus

∥v∥a(Ki) ≤ C∥κ1/2vaux∥s(Ki)

and the minimization problem (3.1) has a unique solution v ∈ H1
0 (Ki). Therefore, v and vaux satisfy (3.2)–(3.3). From (3.3),

we can obtain πil(v) = vaux. The assertion follows. □

The rest of this section attempts to estimating the difference between the global and multiscale basis functions. For this
purpose, we first introduce some notations used for the subsequent analysis. We define the cutoff function with respect
to these oversampling domains. For each Ki, we recall that Ki,m is the oversampling coarse region by enlarging Ki by m
coarse grid layers. For M > m, we define χM,m

i ∈ span{χms
i } such that 0 ≤ χ

M,m
i ≤ 1 and

χ
M,m
i = 1 in Ki,m, (3.4)

χ
M,m
i = 0 in Ω\Ki,M . (3.5)

Note that we have Ki,m ⊂ Ki,M and {χms
i }

N
i=1 are the standard multiscale finite element (MsFEM) basis functions (cf. [7]).

The next lemma shows the difference between the global and multiscale basis functions, which will play an important
role in the proof of the convergence of the multiscale solution.
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Lemma 3.3. We consider the oversampled domain Ki,k with k ≥ 2. That is, Ki,k is an oversampled region by enlarging Ki by
k grid layers. Let δlj be the Dirac delta function. We let ψ (j)

i,ms be the multiscale basis functions obtained in (2.2)–(2.3) and let
ψ

(j)
i be the global multiscale basis functions obtained in (2.4). Then we have

∥ψ
(j)
i − ψ

(j)
i,ms∥

2
a ≤ CE∥κ1/2δlj∥s(Ki) ∀ l, j = 1, . . . , li

and

E = D2(1 + CratioC)(1 +
1

2D1/2CC1/2
ratio

)1−k. (3.6)

Proof. For the given δlj ∈ Qh, by Lemma 3.2, there exists a φ̃(j)
i ∈ H1

0 (Ω) such that

πil(φ̃
(j)
i ) = δlj, ∥φ̃

(j)
i ∥

2
a ≤ D∥κ1/2δlj∥

2
s and supp(φ̃(j)

i ) ⊂ Ki. (3.7)

We let η = ψ
(j)
i − φ̃

(j)
i , then we have π (η) = 0. Therefore, η ∈ Ṽ . We see that ψ (j)

i and ψ (j)
i,ms satisfy

a(ψ (j)
i , v) +

∑
K l
i ⊂Ω

µ
(l)
i

1
|K l

i |

∫
K l
i

v dx = 0 ∀v ∈ H1
0 (Ω) (3.8)

and

a(ψ (j)
i,ms, v) +

∑
K l
i ⊂Ki,k

µ
(l)
i,ms

1
|K l

i |

∫
K l
i

v dx = 0 ∀v ∈ H1
0 (Ki,k) (3.9)

for some µ(l)
i ∈ Qh, µ

(l)
i,ms ∈ Qh(Ki,k). Subtracting the above two equations and restricting v ∈ Ṽ0(Ki,k), we have

a(ψ (j)
i − ψ

(j)
i,ms, v) = 0 ∀v ∈ Ṽ0(Ki,k).

Here, we have Ṽ0(Ki,k) = {v ∈ H1
0 (Ki,k)|π (v) = 0}. Therefore, for v ∈ Ṽ0(Ki,k), we can get

∥ψ
(j)
i − ψ

(j)
i,ms∥

2
a = a(ψ (j)

i − ψ
(j)
i,ms, ψ

(j)
i − ψ

(j)
i,ms)

= a(ψ (j)
i − ψ

(j)
i,ms, ψ

(j)
i − φ̃

(j)
i − ψ

(j)
i,ms + φ̃

(j)
i ) = a(ψ (j)

i − ψ
(j)
i,ms, η − v),

where −ψ
(j)
i,ms + φ̃

(j)
i ∈ Ṽ0(Ki,k). Thus, we obtain

∥ψ
(j)
i − ψ

(j)
i,ms∥a ≤ ∥η − v∥a. (3.10)

Now, we will estimate ∥ψ
(j)
i − ψ

(j)
i,ms∥a. We consider the ith coarse block Ki. For this block, we consider two oversampled

regions Ki,k−1 and Ki,k. Using these two oversampled regions, we define the cutoff function χ k,k−1
i with the properties in

(3.4)–(3.5), where we take m = k − 1 and M = k. For any coarse block Kj ⊂ Ki,k−1 by (3.4), we have χ k,k−1
i ≡ 1 on Kj.

Since η ∈ Ṽ , we have∑
Kn
j ⊂Kj

∫
Kn
j

χ
k,k−1
i η =

∑
Kn
j ⊂Kj

∫
Kn
j

η = 0.

From the above result and the fact that χ k,k−1
i ≡ 0 in Ω\Ki,k, we have

supp(π (χ k,k−1
i η)) ⊂ Ki,k\Ki,k−1.

By Lemma 3.2, for the function π (χ k,k−1
i η), there is µ ∈ H1

0 (Ω) such that supp(µ) ⊂ Ki,k\Ki,k−1 and π (µ−χ
k,k−1
i η) = 0.

Moreover, it also follows from Lemma 3.2, the definition of π and the Cauchy–Schwarz inequality that

∥µ∥a(Ki,k\Ki,k−1) ≤ D1/2
∥κ1/2π (χ k,k−1

i η)∥s(Ki,k\Ki,k−1) ≤ D1/2
∥κ1/2χ

k,k−1
i η∥s(Ki,k\Ki,k−1). (3.11)

Hence, taking v = −µ+ χ
k,k−1
i η in (3.10), we can obtain

∥ψ
(j)
i − ψ

(j)
i,ms∥a ≤ ∥η − v∥a ≤ ∥(1 − χ

k,k−1
i )η∥a + ∥µ∥a(Ki,k\Ki,k−1). (3.12)

Next, we will estimate the two terms on the right hand side of (3.12).
Step 1: We first estimate the first term in (3.12). By a direct computation, we have

∥(1 − χ
k,k−1
i )η∥2

a ≤ 2
(∫

Ω\Ki,k−1

κ(1 − χ
k,k−1
i )2|∇η|2 +

∫
Ω\Ki,k−1

κ|∇χ
k,k−1
i |

2
η2

)
.
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Note that, we have 1 − χ
k,k−1
i ≤ 1. For the second term on the right hand side of the above inequality, we will use the

fact that η ∈ Ṽ and the Poincaré inequality

∥(1 − χ
k,k−1
i )η∥2

a ≤ 2(1 + CCratio)
∫
Ω\Ki,k−1

κ|∇η|2.

We will estimate the right hand side in Step 3.
Step 2: We will estimate the second term on the right hand side of (3.12). By (3.11), the fact that |χ

k,k−1
i | ≤ 1 and the

Poincaré inequality, we have

∥µ∥
2
a(Ki,k\Ki,k−1) ≤ D∥κ1/2χ

k,k−1
i η∥2

s(Ki,k\Ki,k−1) ≤ DCratio

∫
Ki,k\Ki,k−1

κ|∇η|2.

Combining Steps 1 and 2, we obtain

∥ψ
(j)
i − ψ

(j)
i,ms∥

2
a ≤ 2D(1 + CratioC)∥η∥2

a(Ω\Ki,k−1). (3.13)

Step 3: Finally, we will estimate the term ∥η∥a(Ω\Ki,k−1). We will first show that the following recursive inequality holds

∥η∥a(Ω\Ki,k−1) ≤ (1 +
1

2CD1/2C1/2
ratio

)−1
∥η∥2

a(Ω\Ki,k−2), (3.14)

where k − 2 ≥ 0. Using (3.14) in (3.13), we can get

∥ψ
(j)
i − ψ

(j)
i,ms∥

2
a ≤ 2D(1 + CratioC)(1 +

1

2CD1/2C1/2
ratio

)−1
∥η∥2

a(Ω\Ki,k−2). (3.15)

By using (3.14) again in (3.15), we can obtain

∥ψ
(j)
i − ψ

(j)
i,ms∥

2
a ≤ 2D(1 + CratioC)(1 +

1

2CD1/2C1/2
ratio

)1−k
∥η∥2

a(Ω\Ki)

≤ 2D(1 + CratioC)(1 +
1

2CD1/2C1/2
ratio

)1−k
∥η∥2

a.

By employing the definition of η, the energy minimizing property of ψ (j)
i and Lemma 3.2, we have

∥η∥2
a = ∥ψ

(j)
i − φ̃

(j)
i ∥a ≤ 2∥φ̃(j)

i ∥a ≤ 2D1/2
∥κ1/2δlj∥s(Ki) ∀ l, j = 1, . . . , li.

Step 4: We will prove the estimate (3.14). Let ξ = 1 − χ
k−1,k−2
i . Then we see that ξ ≡ 1 in Ω\Ki,k−1 and 0 ≤ ξ ≤ 1

otherwise. Then we have

∥η∥2
a(Ω\Ki,k−1) ≤

∫
Ω

κξ 2|∇η|2 =

∫
Ω

κ∇η · ∇(ξ 2η) − 2
∫
Ω

κξη∇ξ∇η. (3.16)

We estimate the first term in (3.16). For the function π (ξ 2η), using Lemma 3.2, there exists γ ∈ H1
0 (Ω) such that

π (γ ) = π (ξ 2η) and supp(γ ) ⊂ supp(π (ξ 2η)). For any coarse elements Km ⊂ Ω\Ki,k−1, since ξ ≡ 1 on Km, we have
for any φ(n)

m ∈ Qh(Km)

sm(ξ 2η, φ(n)
m ) = 0 ∀n = 1, . . . , lm.

On the other hand, since ξ ≡ 0 in Ki,k−2, we have

sm(ξ 2η, φ(n)
m ) = 0 ∀n = 1, . . . , lm, ∀Km ⊂ Ki,k−2.

From the above two conditions, we see that supp(π (ξ 2η)) ⊂ Ki,k−1\Ki,k−2 and consequently supp(γ ) ⊂ Ki,k−1\Ki,k−2. Note
that, since π (γ ) = π (ξ 2η), we have ξ 2η − γ ∈ Ṽ . We also note that supp(ξ 2η − γ ) ⊂ Ω\Ki,k−2. By (3.7), the functions
φ̃

(j)
i and ξ 2η − γ have disjoint supports, so a(φ̃(j)

i , ξ
2η − γ ) = 0. Then, by the definition of η, we have

a(η, ξ 2η − γ ) = a(ψ (j)
i , ξ

2η − γ ).

By the construction of ψ (j)
i , we have a(ψ (j)

i , ξ
2η − γ ) = 0. Then we can estimate the first term in (3.16) by the

Cauchy–Schwarz inequality and Lemma 3.2∫
Ω

κ∇η · ∇(ξ 2η) =

∫
Ω

κ∇η · ∇γ

≤ D1/2
∥η∥a(Ki,k−1\Ki,k−2)∥κ

1/2π (ξ 2η)∥s(Ki,k−1\Ki,k−2).
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For all coarse elements K ⊂ Ki,k−1\Ki,k−2 and assume that κ ≤ κ1 within K , since π (η) = 0, we have from the Poincaré
inequality that

∥κ1/2π (ξ 2η)∥2
s(K ) ≤ κ1∥ξ

2η∥2
s(K ) ≤ Cratio

∫
K
κ|∇η|2.

Summing the above over all coarse elements K ⊂ Ki,k−1\Ki,k−2, we have

∥κ1/2π (ξ 2η)∥s(Ki,k−1\Ki,k−2) ≤ C1/2
ratio∥η∥a(Ki,k−1\Ki,k−2).

To estimate the second term in (3.16), we have from the Poincaré inequality

2
∫
Ω

κξη∇ξ · ∇η ≤ 2C∥κ1/2η∥s(Ki,k−1\Ki,k−2)∥η∥a(Ki,k−1\Ki,k−2) ≤ 2CC1/2
ratio∥η∥

2
a(Ki,k−1\Ki,k−2).

Hence, the preceding arguments yield the upper bound for (3.16)

∥η∥2
a(Ω\Ki,k−1) ≤ 2CC1/2

ratioD
1/2

∥η∥2
a(Ki,k−1\Ki,k−2).

Thus

∥η∥2
a(Ω\Ki,k−2) = ∥η∥2

a(Ω\Ki,k−1) + ∥η∥2
a(Ki,k−1\Ki,k−2) ≥ (1 +

1

2D1/2CC1/2
ratio

)∥η∥2
a(Ω\Ki,k−1). □

Lemma 3.4. With the same assumptions as in Lemma 3.3, we can obtain

∥

N∑
i=1

(ψ (j)
i − ψ

(j)
i,ms)∥

2
a ≤ C(k + 1)2

N∑
i=1

∥ψ
(j)
i − ψ

(j)
i,ms∥

2
a.

Proof. Let w =
∑N

i=1(ψ
(j)
i −ψ

(j)
i,ms). By the constructions in (2.2)–(2.3), (2.4) and Lemma 3.2, there exists zi ∈ H1

0 (Ω) such
that

π (zi) = π ((1 − χ
k+1,k
i )w), supp(zi) ⊂ Ki,k+1\Ki,k, ∥zi∥a ≤ D∥κ1/2π ((1 − χ

k+1,k
i )w)∥s.

It then follows from (3.8) and (3.9) that

a(ψ (j)
i − ψ

(j)
i,ms, v) +

∑
K l
i ⊂Ki,k

(µ(l)
i − µ

(l)
i,ms)

1
|K l

i |

∫
K l
i

v dx = 0 ∀v ∈ H1
0 (Ki,k). (3.17)

Putting v = (1 − χ
k+1,k
i )w − zi in (3.17), we can obtain

a(ψ (j)
i − ψ

(j)
i,ms, (1 − χ

k+1,k
i )w − zi) = 0.

Thus

∥

N∑
i=1

(ψ (j)
i − ψ

(j)
i,ms)∥

2
a = a(w,w) =

N∑
i=1

a(ψ (j)
i − ψ

(j)
i,ms, w) =

N∑
i=1

a(ψ (j)
i − ψ

(j)
i,ms, χ

k+1,k
i w + zi). (3.18)

For each i = 1, 2, . . . ,N , we have

∥χ
k+1,k
i w∥

2
a ≤ C(∥w∥

2
a(Ki,k+1) + ∥κ1/2w∥

2
s(Ki,k+1)) ≤ (1 + Cratio)∥w∥

2
a(Ki,k+1).

In addition, since πmn(w) = 0 for all K n
m with m ̸= i,∀n = 1, . . . , lm, we can get

∥zi∥2
a ≤ D2

∥κ1/2π ((1 − χ
k+1,k
i )w)∥2

s ≤ D2
∥κ1/2π (χ k+1,k

i w)∥2
s(Ki,k+1) ≤ D2

∥κ1/2w∥
2
s(Ki,k+1)

≤ D2Cratio∥w∥
2
a(Ki,k+1).

which yields the desired estimate by combining with (3.18). □

The convergence of the multiscale solution can be stated in the next theorem.

Theorem 3.1. Let u be the solution of (2.1) and uh be the multiscale solution, then we have

∥u − ums∥a ≤ CHC1/2
ratio∥κ

−1/2f ∥L2(Ω) + C(1 + k)E1/2C1/2
ratio∥κ

1/2uglo∥s. (3.19)

Moreover, if k = O(log(max{κ}
H )), then we have

∥u − ums∥a ≤ CHC1/2
ratio∥κ

−1/2f ∥L2(Ω), (3.20)

∥u − ums∥L2(Ω) ≤ CH2C1/2
ratioκ

−1/2
min ∥κ−1/2f ∥L2(Ω).
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Proof. We write uglo =
∑N

i=1
∑li

j=1 c
(j)
i ψ

(j)
i . Then we define v =

∑N
i=1

∑li
j=1 c

(j)
i ψ

(j)
i,ms. It then follows from the Galerkin

orthogonality that

∥u − ums∥a ≤ ∥u − v∥a ≤ ∥u − uglo∥a + ∥

N∑
i=1

li∑
j=1

c(j)i (ψ (j)
i − ψ

(j)
i,ms)∥a. (3.21)

Lemma 3.4 yields

∥

N∑
i=1

li∑
j=1

c(j)i (ψ (j)
i − ψ

(j)
i,ms)∥

2
a ≤ C(1 + k)2

N∑
i=1

∥

li∑
j=1

c(j)i (ψ (j)
i − ψ

(j)
i,ms)∥

2
a

≤ C(k + 1)2Cratio

N∑
i=1

∥κ1/2
li∑

j=1

c(j)i δij∥
2
s ≤ C(k + 1)2Cratio∥κ

1/2uglo∥
2
s .

The above equation together with Lemma 3.1 and Eq. (3.21) implies

∥u − ums∥a ≤ C
(
HC1/2

ratio∥κ
−1/2f ∥L2(Ω) + (1 + k)E1/2C1/2

ratio∥κ
1/2uglo∥s

)
.

This yields (3.19).
To prove (3.20), we have from the Poincaré inequality

∥κ1/2uglo∥
2
s ≤ κ−1

minκmax max{|K j
i |

−1
}∥uglo∥

2
a, ∀ i = 1, . . . ,N, j = 1, . . . , li.

An application of (2.5) and the Cauchy–Schwarz inequality gives

∥uglo∥
2
a =

∫
Ω

fuglo ≤ C(
N∑
i=1

li∑
j=1

|K j
i |∥κ

−1/2f ∥2
L2(K j

i )
)1/2∥κ1/2uglo∥s.

Therefore

∥κ1/2uglo∥s ≤ max{|K j
i |

−1
}κ−1

minκmax(
N∑
i=1

li∑
j=1

|K j
i |∥κ

−1/2f ∥2
L2(K j

i )
)1/2.

Then proceeding analogously to [28] and employing the fact that Cratio is relatively small, we can conclude that if
k = O(log(max{κ}

H )), then we can obtain (3.20).
Next, we consider the estimate for ∥u − uglo∥L2(Ω). Consider the dual problem

a(z, v) = (u − ums, v) ∀v ∈ H1
0 (Ω).

Then, the Cauchy–Schwarz inequality and (3.20) yield

∥u − ums∥
2
L2(Ω) = a(z, u − ums) = a(z − zms, u − ums) ≤ ∥z − zms∥a∥u − ums∥a

≤ CHC1/2
ratioκ

−1/2
min ∥u − ums∥L2(Ω)∥u − ums∥a.

Thus

∥u − ums∥L2(Ω) ≤ CHC1/2
ratioκ

−1/2
min ∥u − ums∥a. □

4. Numerical experiments

This section presents numerical experiments to verify the capability of the proposed method to the problem with high
contrast medium. To compare the results, we exploit the relative L2 error between coarse cell average of the fine-scale
solution ūf and the upscaled coarse grid solution ū

eL2 = ∥ūf − ū∥L2(Ω), ∥ūf − ū∥L2 =

∑
K

∫
K (ūf − ūK )2 dx∑
K

∫
(ūf )2 dx

, ūK
f =

1
|K |

∫
K
uf dx.

Example 4.1. In this example, we take Ω = (0, 1)2, u = 0 on ∂Ω and we set f = 1. The medium κ is shown in Fig. 3 and
we assume that the fine mesh size h to be

√
2/400, That is, the medium κ has a 400 × 400 × 2 resolution. We consider

the contrast of the medium is 104 where the value of κ is large in the yellow region. For the NLMC method, we consider
two continua.
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Fig. 3. The medium κ for Example 4.1.

Fig. 4. Downscale solution and fine-scale solution for Example 4.1.

Fig. 5. Coarse scale solution and coarse cell average of fine-scale solution for Example 4.1.

The fine scale and upscaled solutions for coarse mesh 20 × 20 with 4 oversampling layers can be found in Figs. 4–5.
In Fig. 4, we display the downscale and fine scale solution and in Fig. 5 we show the upscaled coarse solution and the
average value of the fine scale solution. In addition, the numerical results for 40 × 40 coarse mesh with 5 oversampling
layers are reported in Figs. 6–7. From which we observe very good agreement between the fine-scale solution and the
computed upscaled solution.
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Fig. 6. Downscale solution and fine-scale solution for Example 4.1.

Fig. 7. Coarse scale solution and coarse cell average of fine-scale solution for Example 4.1.

Table 1
Relative L2 error for Example 4.1 with varying coarse grid
size.
H Oversampling coarse layers eL2
1
10 3 0.1678
1
20 4 0.0808
1
40 5 0.0453

Table 2
Relative L2 error with respect to different number of oversampling layers
for Example 4.1.
Layer Coarse mesh 20 × 20 Coarse mesh 40 × 40

1 0.9690 0.9876
3 0.4816 0.9136
4 0.0808 0.4772
5 0.0054 0.0453
6 2.759e−4 0.0012

In Table 1, we present the relative L2 error with varying coarse grid size. With proper choices of oversampling layers,
we can see that the error converges. The relative L2 error for coarse grids 20 × 20 and 40 × 40, and for different number
of oversampling layers are reported in Table 2. From which we can see that for a fixed contrast value, the error decays
as the oversampling size increases. In addition, as the number of coarse grid increases, more oversampling layers are
required in order to achieve the desired error. Furthermore, for a fixed oversampling size, the performance of the scheme
will deteriorate as the medium contrast increases, which can be illustrated by Table 3.
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Table 3
Comparison of various number of oversampling layers and different
contrast values for Example 4.1.
Layer \ Contrast 103 104 105 106

3 0.1575 0.4816 0.6319 0.6526
4 0.0103 0.0808 0.3796 0.6081
5 6.0346e−4 0.0054 0.0496 0.2943

Fig. 8. The medium κ for Example 4.2.

Fig. 9. Downscale solution and fine-scale solution.

Example 4.2. In this example, we again take Ω = (0, 1)2 and the profile of κ is shown in Fig. 8, where κ is taken to
be some random numbers between (1, 10) for the blue region and κ is 103 or 104 in the yellow region. For the NLMC
method, we consider three continua, namely, {1 ≤ κ ≤ 10}, {κ ≈ 103

} and {κ ≈ 104
}. In addition, f is taken to be

f (x, y) =

{
1 ∀ 0 ≤ x ≤ 0.1, 0 ≤ y ≤ 0.1,
0 otherwise

The fine scale and upscaled solutions for coarse mesh 20 × 20 with 4 oversampling layers can be found in Figs. 9–10.
In Fig. 9, we display the downscale and fine scale solution and in Fig. 10 we show the upscaled coarse solution and the
average value of the fine scale solution. The numerical results for 40 × 40 coarse mesh with 5 oversampling layers are
reported in Figs. 11–12. We can observe that the fine-grid solution and the upscaled coarse grid solution match well.

Then in Table 4 we display the relative L2 error with respect to different coarse mesh sizes. With proper number of
oversampling layers, the error converges as reported in Example 4.1. Next, the relative L2 error for coarse grids 20 × 20
and 40 × 40 with respect to different number of oversampling layers are also reported in Table 5, and this example
once again highlights that the error decays as the oversampling layers increase, in addition, more oversampling layers are
needed to obtain the desired error as the coarse mesh size decreases.
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Fig. 10. Coarse scale solution and coarse cell average of fine-scale solution.

Fig. 11. Downscale solution and fine-scale solution.

Fig. 12. Coarse scale solution and coarse cell average of fine-scale solution.

5. Conclusion

In this paper we have developed a simple constraint energy minimization on the oversampling domain to generate
the multiscale basis functions, where the construction of the multiscale basis functions relies on the scale separation. In
addition, our theory illustrates that the number of oversampling layers required for the convergence is related to the local
contrast ratio and the coarse mesh size H . Small contrast ratio in each region guarantees the convergence, thus, one should
define proper regions in the numerical experiments in order to achieve the desired convergence. Two numerical examples
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Table 4
Relative L2 error for Example 4.2 with varying coarse grid
size.
H Oversampling coarse layers eL2
1
10 3 0.0984
1
20 4 0.0382
1
40 5 0.0183

Table 5
Relative L2 error with respect to different number of oversampling layers
for Example 4.2.
Layer Coarse mesh 20 × 20 Coarse mesh 40 × 40

1 0.8246 0.8429
3 0.3070 0.7229
4 0.0382 0.2408
5 0.0025 0.0183
6 1.2742e−4 5.337e−4

are carried out to test the performances of the proposed method. The numerical results indicate that the relative error
decays as the number of oversampling layers increases for a fixed coarse mesh size, furthermore, for a fixed oversampling
size, the performance of the scheme will deteriorate as the medium contrast increases.
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