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a b s t r a c t

Finite differences, finite elements, and their generalizations are widely used for solving
partial differential equations, and their high-order variants have respective advantages
and disadvantages. Traditionally, these methods are treated as different (strong vs.
weak) formulations and are analyzed using different techniques (Fourier analysis or
Green’s functions vs. functional analysis), except for some special cases on regular grids.
Recently, the authors introduced a hybrid method, called Adaptive Extended Stencil FEM
or AES-FEM (Conley et al., 2016), which combines features of generalized finite differences
and Lagrange finite elements to achieve second-order accuracy over unstructured meshes.
However, its analysis was incomplete due to the lack of existing mathematical theory
that unifies the formulations and analysis of these different methods. In this work, we
introduce the framework of generalized weighted residuals to unify the formulation of
finite differences, finite elements, and AES-FEM. In addition, we propose a unified anal-
ysis of the well-posedness, convergence, and mesh-quality dependency of these different
methods. We also report numerical results with AES-FEM to verify our analysis. We show
that AES-FEM improves the accuracy of generalized finite differences while reducing
the mesh-quality dependency and simplifying the implementation of high-order finite
elements.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Finite differences, finite elements, and their generalizations are widely used for solving partial differential equations
(PDEs), or more precisely, for the spatial discretization for their associated boundary value problems (BVPs). The finite
difference methods (FDM) are standard techniques in numerical analysis [1,2] and are widely used for solving hyperbolic
PDEs in computational fluid dynamics. The finite element methods (FEM), on the other hand, are the most successful
method for solving elliptic and parabolic PDEs (e.g., [3,4]). Since many PDEs, such as advection–diffusion–reaction
equations, Navier–Stokes equations, etc., are multiphysics in nature, involving both parabolic (elliptic) and hyperbolic
components, it has been of great interest for applied mathematicians to develop hybrid methods that combine the
advantages of FEM and FDM. The most notable examples are discontinuous Galerkin methods [5,6] and some finite volume
methods [7,8], which use discontinuous test functions analogous to the nonconforming finite elements [9, Section 10.3] and
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use finite-difference style computations of interface fluxes or jump conditions (such as WENO [10,11] and Lax–Friedrichs
limiters [7, p. 199]) along element or cell boundaries.

In [12,13], the authors introduced a new hybrid method, called the adaptive extended stencil finite element method
or AES-FEM. Like Lagrange finite elements, AES-FEM has C0 continuous test functions, so there are no explicit interface
and jump conditions in its variational forms, unlike nonconforming finite elements. However, unlike finite elements,
AES-FEM uses least-squares based trial functions similar to those of generalized finite differences [14]. We refer to these
trial functions as generalized Lagrange polynomial (GLP) basis functions, which are not C0 continuous but have similar
properties to Lagrange interpolation. The GLP basis functions introduce a ‘‘variational crime’’ (cf. Appendix D.3), which
is similar to, but yet different from, that of other nonconforming finite elements. The analysis of GLP-based methods,
including generalized finite difference method (GFDM) and AES-FEM, requires a mathematical analysis that unifies the
classical analysis of finite differences and finite elements. This unification is the primary goal of this work, which will
reveal some insights from a theoretical point of view, and also enable a rigorous generalization of AES-FEM to higher-order
accuracy from a practical point of view.

The main contributions of this work are as follows. First, we unify the formulations of GFDM, FEM, and AES-FEM under
the framework of generalized weighted residuals (GWR), of which the trial functions are either Lagrange or generalized
Lagrange basis functions. Second, we establish the conditions for well-posedness, convergence, and superconvergence of
GFDM and AES-FEM, and compare their mesh-quality requirements against Lagrange finite elements. Third, we prove
and also demonstrate the high-order convergence of AES-FEM. For simplicity, we assume exact geometry for Neumann
boundaries in this paper, and we defer the treatment of Neumann boundary conditions over approximate curved
boundaries to future work.

The remainder of the paper is organized as follows. Section 2 reviews the (G)FDM and FEM for boundary value
problems, as well as their respective classical analyses. Section 3 introduces the concept of generalized Lagrange polynomial
basis functions and the framework of generalized weighted residuals (GWR), which unifies the formulations of GFDM, FEM,
and AES-FEM. Section 4 analyzes the well-posedness of GWR methods. Section 5 addresses the convergence of GFDM
and AES-FEM to confirm our analysis. Section 6 presents some numerical results. Section 7 concludes this paper with a
discussion on future work.

2. Background and preliminaries

In this section, we briefly review finite differences, finite elements, and some of their generalizations for boundary
value problems. We refer readers to [15] for a brief history of these different methods. For completeness, we review
some relevant details about the generalized Lagrange polynomials, AES-FEM, and functional analysis in the appendices.

2.1. Boundary value problems

Let Ω ⊂ Rd be a bounded, piecewise smooth domain with boundary Γ = ΓD ∪ΓN , where d is typically 2 or 3, and ΓD
and ΓN denote the Dirichlet and Neumann boundaries, respectively. Let L be a second-order linear differential operator.
In general, L has the form of

Lu = −∇ · (µ∇u)+ ν · ∇u + ω2u, (2.1)

where ∇ and ∇· denote the gradient and divergence operators, µ(x) : Ω → R+ corresponds to a diffusion coefficient,
ν : Ω → Rd is a velocity field, and ω : Ω → R is a wavenumber or frequency. Typically, ∇ · ν = 0. A second-order partial
differential equation has the form of

Lu = f on Ω, (2.2)

where f : Ω → R is a source term. This general form is known as the advection–diffusion–reaction equations for vector-
valued PDEs. For simplicity, we focus on scalar fields and assume diffusion dominance (i.e., µ(x) ≥ C ∥ν(x)∥ h for some
C ≥ 1, where h denotes some characteristic edge length of the mesh; cf. Appendix D). If ω = 0, then its corresponding
PDE is the advection–diffusion equation. A boundary value problem (BVP) corresponding to the above PDE may have some
Dirichlet boundary conditions

u = uD on ΓD, (2.3)

and potentially some Neumann boundary conditions

µ∂nu = gN on ΓN , (2.4)

where ∂n denotes the normal derivative, i.e., ∂n ≡ n ·∇. The boundary condition is said to be homogeneous if ΓD = Γ and
uD = 0.
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2.2. Finite differences and their generalizations

The finite difference methods (FDM) are arguably the simplest and the best known numerical methods for solving
initial and boundary value problems; see textbooks such as [1,2]. In a nutshell, FDM approximates the partial derivatives
in (2.1) using finite difference operators, which result in a system of algebraic equations Ax = b. The analysis of FDM is
also conceptually simple: If the truncation errors in each algebraic equation are consistent (i.e., O(hk) for some k > 0 as the
edge length h tends to 0) and the absolute condition number of the algebraic system (i.e.,

A−1
) is bounded independently

of h (i.e.,O(1)), then the finite difference method converges in exact arithmetic. This condition is known as the fundamental
theorem of numerical analysis and is simply stated as ‘‘consistency and stability imply convergence’’ [3, p. 124]. The main
argument then involves bounding the absolute condition number, which traditionally is done using Fourier analysis on
regular grids [1, p. 20] or using Green’s functions in 1D [1, p. 22]. The effect of rounding errors is typically omitted in the
analysis of BVPs, but it has been considered by some authors; see e.g. [16–18].

The classical FDM is limited to structured meshes because the finite difference operators are defined based on
1D polynomial interpolations locally at each node in a dimension-by-dimension fashion. The same approach can be
utilized on curvilinear meshes for curved but relatively simple geometries; see e.g. [19]. Some authors have considered
its generalizations to unstructured meshes or point clouds; see e.g. [14,20–22]. Finite difference operators have been
generalized to use least-squares approximations; see e.g. [14,20,21]. In this work, we use generalized finite differences
(GFD) to refer to the least-squares-based finite difference operators and use generalized finite difference methods (GFDM)
to refer to the methods that use these GFD operators to convert (2.2) directly into algebraic equations. To the best of our
knowledge, there was no prior complete convergence analysis of GFDM for BVPs, except for local consistency using Taylor
series and the temporal aspect of stability for time-dependent PDEs [14,23–25].

2.3. Finite elements and weighted residuals

The finite element methods (FEM) are among the most powerful and successful methods for solving BVPs. Mathe-
matically, FEM can be expressed using the framework of weighted residuals [26], also known as variational formulations
[9, p. 2]. Let Ωh denote the approximation of the domain Ω with a mesh. Without loss of generality, let us assume
triangular or tetrahedral meshes, and let n denote the number of nodes in Ωh\ΓD. Let uh denote the approximate solution
of the PDE on Ω . The residual of (2.2) corresponding to uh is Luh − f . Let {ψi | 1 ≤ i ≤ n} denote the set of test (or weight)
functions, which span the test space Ψ . A weighted residual method requires the residual to be orthogonal to Ψ over Ω , or
equivalently,∫

Ω

Luhψi dx =

∫
Ω

fψi dx, for i = 1, . . . , n. (2.5)

In FEM, the test functions ψi are (weakly) differentiable and have local support.
To discretize the problem fully, let {φj | 1 ≤ j ≤ n} denote a set of basis functions, which span the trial space Φ . Let Φ

denote the vector containing φj. We find the approximate solution uh in Φ , i.e.,

u ≈ uh = ΦTuh, (2.6)

where uh is the unknown vector. The basis functions are Lagrange if φj(xi) = δij, the Kronecker delta function; i.e., φj(xi) = 1
if i = j and φj(xi) = 0 if i ̸= j. With Lagrange basis functions, let uI denote the vector composed of u(xj). Then, uI = ΦTuI
is the interpolation of u in Φ . Furthermore, the unknown vector uh in (2.6) is composed of approximations to nodal values
u(xj). The FEM using Lagrange basis functions is called Lagrange FEM [27, p. 36]. In this work, FEM refers to Lagrange FEM,
unless otherwise noted.

For elliptic PDEs, FEM solves (2.5) by performing integration by parts and then substituting the boundary condi-
tions (2.3) and (2.4) into the resulting integral equation. Let ⟨·, ·⟩Ω denote the inner product over Ω ,2 i.e.,

⟨φ,ψ⟩Ω =

∫
Ω

φψ dx, (2.7)

which defines the L2 norm over Ω , i.e., ∥φ∥L2(Ω) =
√

⟨φ, φ⟩Ω . Similarly, let ⟨·, ·⟩Γ denote the inner product over Γ . For
the general linear operator L in (2.1), after integration by parts of the first term, we obtain a variational form for each
test function ψi

a(uh, ψi) = ⟨f , ψi⟩Ω + ⟨µ∂nuh, ψi⟩Γ , (2.8)

where

a(uh, ψi) =

∫
Ω

(
∇ψi · (µ∇uh)+ ν · ∇uhψi + ω2uhψi

)
dx, (2.9)

is the bilinear form.

2 In functional analysis, the inner product is denoted as (·, ·). We use ⟨·, ·⟩Ω for clarity and for distinguishing the inner products on Ω and on
boundary Γ . See Appendix D for a review of some relevant functional analysis concepts.
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2.4. Prior efforts on unified analysis of FDM and FEM

The unification of the accuracy and stability analysis of FDM and FEM has been of great interest to numerical analysts
since the late 1960s [28,3]. In terms of local error analysis, this unification is straightforward by using Taylor series,
except that FDM traditionally relied on 1D Taylor series, whereas FEM requires the higher-dimensional version. In terms
of global error analysis, Fix and Strang explored adapting Fourier analysis from FDM to FEM on structured grids [28].
Another common technique used in analyzing both FDM and FEM is the Green’s functions. It was particularly successful
for proving the convergence of FDM and superconvergence of FEM in ℓ∞ norm in 1D or with tensor-product elements; see,
e.g., [29,30,1]. In this work, we unify the analysis of well-posedness of GFDM, FEM, and AES-FEM by integrating functional
analysis and approximation theory.

3. Generalized weighted residuals

To unify the formulations and analysis of GFDM, FEM, and AES-FEM, we need a mathematical framework that is more
general than weighted residuals. The framework, which we refer to as generalized weighted residuals (GWR), has three
components: a mesh and its associated test functions and geometric realization, a set of (generalized) Lagrange basis
functions, and a (generalized) variational form. We address these three components using GFDM and FEM as examples,
and then introduce AES-FEM under this framework.

3.1. Component 1: Meshes, test functions, and geometry

3.1.1. Meshes
Like in FEM, in GWR the domain Ω is tessellated by a mesh, which is typically simplicial or rectangular. Without loss

of generality, we assume simplicial meshes in this work, which are triangular in 2D or tetrahedral in 3D. The triangles and
tetrahedra are known as the elements, of which the vertices are called the nodes. LetΩh denote the union of the geometric
realizations of the elements, and let ∂Ωh denote its boundary. Let Γh denote an approximation of Γ . We assume Γh is
the same as ∂Ωh. Let Ωh = Ω◦

h ∪Γ ◦

h,N ∪Γh,D, where Ω◦

h denotes the interior of Ωh, Γh,D denotes the approximation to the
Dirichlet boundary, and Γ ◦

h,N = Γh\Γh,D. We refer to the nodes in Ω◦

h , Γ
◦

h,N , and Γh,D as interior, Neumann, and Dirichlet
nodes, respectively. Without loss of generality, we assume the nodes are numbered between 1 and m, where the first n
nodes are those in Ω◦

h ∪ Γ ◦

h,N .
Given a node x, the term stencil refers to the nodes where the generalized Lagrange trial functions associated with x are

non-zero. Note that in GFDM, stencils are referred to as stars [31–33]. See Appendix B for details about stencil selection
for AES-FEM.

3.1.2. Test functions
In GWR, there is a test function ψi associated with each node xi ∈ Ωh, analogous to those in (2.5). Each test

function ψi has local support, denoted by Ωi, which is the closure of the subset of points in Ωh such that ψi(x) ̸= 0,
i.e., Ωi = cl({x | x ∈ Ωh ∧ ψi(x) ̸= 0}). Topologically, the local support is compact, in that it contains only a small constant
number of nodes. In a Lagrange FEM, each test function is a Lagrange basis function, such as a hat (a.k.a. pyramid) function.
Note that the test functions in FEM may be quadratic or higher-degree polynomials, which have mid-edge, mid-face, and
mid-cell nodes, besides the corner nodes. For FEM, the local support Ωi is composed of the union of the elements incident
on xi. For GFDM over an unstructured mesh, within the GWR framework, the test function at xi is the Dirac delta function
at xi, and the local support of a Dirac delta function is xi itself. We will discuss this further in Section 3.3.

Remark 1. In [27], Ciarlet defined a finite element method as a triplet: a mesh, element-based (nearly) polynomial basis,
and node-based basis functions of an H1 space. A GWR is more general in that the test functions may not span an L2 or
H1 space, which is the case in (generalized) finite difference methods.

3.1.3. Geometric realizations
For numerical computations, the local supportΩi must have a geometric realization, which is the union of the geometric

realizations of its elements. For each element τ , its geometric realization is defined through a mapping from a master
element em in the parametric space to the ‘‘physical space’’ Rd. Let ξ denote the natural coordinates in the parametric
space. Let ne denote the number of nodes in em, and let ξK and xK denote the natural coordinates and physical coordinates,
respectively, of the K th node in em, where 1 ≤ K ≤ ne. For example, a linear triangle has nodes ξ1 = [0, 0], ξ2 = [0, 1]
and ξ3 = [1, 0]. The geometric realization of an element τ is defined by a Lagrange interpolation

xτ (ξ) =

Ne∑
K=1

xKϕK (ξ), (3.1)

where K is the local nodal ID in τ for the kth node in Ωh. The functions ϕK are in general polynomials. Using the
interpolation theory [34], given ne nodes and an equal number of monomials in ξ, if the Vandermonde system in the



R. Conley, T.J. Delaney and X. Jiao / Journal of Computational and Applied Mathematics 376 (2020) 112862 5

parametric space is stable, then the basis functions {ϕK } are uniquely determined over em. In FEM, the geometric basis
functions {ϕk} do not need to be the same as the test functions {ψi} (and trial functions {φj}).

Besides the local support, we also define a ‘‘control volume’’ ωi for each node to facilitate the theoretical analysis in
Section 4 by generalizing its traditional definition. Let |ωi| denote the Lebesgue measure (namely, the area or volume) of
ωi. The control volumes of all the nodes partition Ωh, i.e., Ωh = ∪

m
i=1ωi and

⏐⏐ωi ∩ ωj
⏐⏐ = 0 if i ̸= j. For FEM, the control

volume of a node can be defined by the union of its closest points within its incident elements. For GFDM, we define the
control volume similarly or use the Voronoi cells. Note that these control volumes are not used in computations; instead,
we will use them in analyzing well-posedness and convergence. See Fig. B.6 in Appendix B for an example of a control
volume.

3.1.4. Approximation power of Lagrange finite elements
In FEM, the test (and trial) functions are Lagrange functions, which are defined using a mapping from a parametric

space [0, 1]d to the physical space Rd, similar to that of the geometric basis functions. More precisely, let {ψe,J | 1 ≤ J ≤ ne}

denote the Lagrange polynomial basis over the master element, which satisfies the Kronecker delta property ψe,J (ξI ) = δIJ .
Let xτ (ξ) : [0, 1]d ⊇ em → τ ⊂ Rd denote the mapping from the parametric space to the physical space and ξτ (x) : τ → em
denote its inverse mapping. A global test function ψj(x) : Ω → R is then defined as

ψj(x) = ψe,J
(
ξτ (x)

)
if x ∈ τ , (3.2)

where J is the local ID of node xj in τ . By construction, ψj is a Lagrange test function over Ω . A (piecewise) smooth
function u : Ω → R can be interpolated by the basis functions over Ω by

uΨ (x) :=

m∑
j=1

u(xj)ψj (x) =

ne∑
J=1

u(xJ )ψe,J
(
ξτ (x)

)
, if x ∈ τ . (3.3)

If ϕk is piecewise linear, then the Lagrange test functions ψj(x) are polynomials. However, if ϕk is nonlinear, then ψj(x)
are no longer polynomials. Nevertheless,

∇kuΨ − ∇
k
xu


∞
is approximated to O(hp−k+1) within each element if both∇i

ξφe,J (ξ)

L∞(em)

and
hi∇i

xξ

L∞(em) are bounded for i = 1, . . . , p + 1 [35], where ∇

k denotes the kth derivative tensor
and h is an edge length measure.

3.2. Component 2: Generalized Lagrange trial functions

In GWR, for each node (and more generally, at each point) in Ωh, there is a set of generalized Lagrange trial functions,
which may or may not be polynomials, and which may be interpolation (such as in FEM) or least-squares-based (such as
in GFDM).

3.2.1. Generalized Lagrange basis functions

Definition 1. A set of functions
{
φj(x) | 1 ≤ j ≤ m

}
form a set of generalized Lagrange basis functions of degree-p

consistency over local support Ωi with a stencil {xj ∈ Rd
| 1 ≤ j ≤ m} if

m∑
j=1

u(x)∇kφj(x) − ∇
ku(x)


L∞(Ωi)

=
∇p+1u


L∞(Ωi)

O(hp+1−k) (3.4)

for a sufficiently differentiable function u : Ω → R and k = 0, . . . , p, where h is the radius of the stencil. These basis
functions are stable over Ωi if

hk∇kφj(x)

L∞(Ωi)

≤ C ≪ ∞ for k = 1, . . . , p.

In the above, the ‘‘radius’’ is a local length measure of the stencil, and it can be replaced by other characteristic length
measures, such as the maximum distance between the points in the stencil. This definition preserves two fundamental
properties of degree-p Lagrange basis functions: when approximating a function u, the coefficient for each φj is u(xj), and u
is approximated to O(hp+1) consistency. In FEM, consistent Lagrange trial (or test) functions constitute a set of generalized
Lagrange basis functions.

3.2.2. Generalized Lagrange polynomials
In GFDM, the derivatives are approximated using polynomials constructed using least squares approximations. We can

express them in terms of generalized Lagrange polynomial (GLP) basis functions.

Definition 2. Given a stencil {xj ∈ Rd
| 1 ≤ j ≤ m}, degree-p polynomials

{
φj(x) | 1 ≤ j ≤ m

}
form a set of generalized

Lagrange polynomial (GLP) basis functions if every degree-p polynomial P(x) is interpolated exactly by
∑m

j=1 P
(
xj
)
φj(x).
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Fig. 1. Piecewise Lagrange basis functions versus quadratic GLP basis functions. The basis functions in (a) and (b) are associated with the center
node and have the same stencils. The basis functions in (c) form a set of five quadratic basis functions for the center node in 1D.

In practice, the GLP basis functions are computed from the pseudoinverse solution of a Vandermonde system; see
e.g. [12]. For completeness, we describe the procedure in Appendix A. If the Vandermonde matrix is nonsingular, i.e., the
number of points in the stencil is equal to the number of monomials of up to degree p and the stencil is not degenerate,
then a set of GLP basis functions reduces to a set of Lagrange polynomial basis functions, which are commonly used in the
classical finite difference methods. The basis functions are stable if the Vandermonde matrix is well conditioned. More
importantly, they are generalized Lagrange trial functions.

The GLP basis functions are not unique in general in that they depend on how different points are weighted. For the
AES-FEM results in Section 6, we use an inverse-distance-based weighting scheme given in (A.4). This weighting scheme
tends to promote error cancellations on nearly symmetric meshes [36] and in turn improves accuracy [37]. We defer a
detailed analysis to future work.

Lemma 1. Given a set of stable degree-p GLP basis functions
{
φj(x) | 1 ≤ j ≤ m

}
over {xj}, if u is continuously differentiable

up to pth order, then (3.4) holds.

Proof. Consider the d-dimensional Taylor series [38]

u(x0 + h) =

p∑
k=0

1
k!

∇
ku(x0) : hk

+
C
∇p+1u(x0 + ξ)


(p + 1)!

∥h∥
p+1, (3.5)

where hk denotes the kth tensor power of h, ‘‘:’’ denotes the scalar product of kth-order tensors, ∥ξ∥ ≤ ∥h∥, and |C | ≤ 1.
Let up denote the degree-p Taylor polynomial (i.e., the first term in (3.5)). By definition, up =

∑m
j=1 up

(
xj
)
φj(x). Let

δu = up − u.
m∑
j=1

u
(
xj
)
∇

kφj − ∇
ku


∞

≤


m∑
j=1

δu
(
xj
)
∇

kφj


∞

+
∇kδu


∞
, (3.6)

where both terms are bounded by
∇p+1u(x)


∞

O
(
hp−k+1

)
.

We note that there are some differences between the Lagrange basis functions in FEM and the GLP basis functions.
First, the GLP basis functions are least-squares based, so they, in general, do not satisfy the Kronecker delta property,
i.e., φj(xi) ̸= δij. Second, the Lagrange basis functions in FEM are C0 continuous, whereas the GLP basis functions are
quasicontinuous in that they are smooth over the local support, but they do not vanish exactly along the boundary. We
illustrate these differences in Fig. 1, which shows (a) a 2D FEM hat function, (b) a 2D quadratic GLP basis function at a
node over the same stencil, and (c) a set of GLP basis functions at a node in 1D. Third, Lagrange basis functions in FEM are
defined based on a mapping between the reference domain to the physical domain, and hence they depend on element
shapes and are in general not polynomials with nonlinear geometric realizations, whereas the GLP basis functions do not
depend on the element shapes and are true polynomials. Finally, the GLP basis functions are defined locally at a node (or
a center point), and they do not necessarily define a global set of trial functions over Ωh. For these reasons, GWR requires
a more general variational form than that used in FEM.

3.3. Component 3: Generalized variational form

Consider a node xi ∈ Ω◦

h ∪ Γ ◦

h,N , and let ψi denote the test function associated with xi. Let Φ i denote the vector
containing the trial functions {φij} associated with the node xi. LetΦ i,◦ andΦ i,D denote the subvectors ofΦ i corresponding
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to the nodes in Ω◦

h ∪ Γ ◦

h,N and Γh,D, respectively, i.e., Φ i,◦ = Φ i,1:n and Φ i,D = Φ i,n+1:m in MATLAB-style colon-notation.
Let uh and uD be composed of the nodal values associated with Φ i,◦ and Φ i,D, respectively. In GWR, we approximate the
solution of (2.2) locally about xi by

uh,i = ΦT
i

[
uh
uD

]
= ΦT

i,◦uh + ΦT
i,DuD. (3.7)

Let us first consider a BVP with Dirichlet boundary conditions. We define a generalized variational form (GVF) corresponding
to (2.2) for an interior node xi ∈ Ω◦

h as

a◦

(
uh,i, ψi

)
= ⟨f , ψi⟩Ωh , (3.8)

where

a◦

(
uh,i, ψi

)
=
⟨
Luh,i, ψi

⟩
Ωh
, (3.9)

is the generalized bilinear form associated with ψi. Here, the inner product is computed over the local support Ωi of ψi.
These forms are ‘‘generalized’’ in that ψi may be a generalized function (such as a Dirac delta function). Note that if ψi
vanishes along Γ , the bilinear form in (2.9) and the generalized bilinear form (3.9) are mathematically equivalent to each
other due to Green’s identities. Computationally, however, (2.9) requires ψi to be at least C0 and (3.9) requires uh,i to be
at least C1.

3.3.1. Generalized variational form of GFDM
In (G)FDM, since the test functions are Dirac delta functions, which are not C0, we must use (3.9) instead of (2.9)

computationally. Neumann boundary conditions can be incorporated into the generalized variational form; see [1, p. 31]
for derivations of second-order FDM in 1D. Alternatively, one-sided differences can be used to convert (2.4) directly into
an algebraic equation at each Neumann node [1, p. 32].

3.3.2. Variational form of Lagrange FEM
For a Lagrange FEM with strongly imposed Dirichlet boundary conditions, its variational form is also a GVF. Since the

trial functions are C0, we must use the bilinear form (2.9) computationally for xi ∈ Ω◦

h . For a BVP with Neumann boundary
conditions, assuming accurate geometry, one can substitute gN ≈ µ∂nuh into (2.8) for each node xi in Γh,N , which weakly
imposes Neumann boundary conditions (2.4).

3.4. Adaptive Extended Stencil FEM

Adaptive Extended Stencil FEM or AES-FEM, is a GWR method that combines the features of GFDM and FEM. In particular,
AES-FEM uses a piecewise linear FEM mesh, and its associated hat functions as test functions in the interior. Its trial
functions are the GLP trial functions. We say that an AES-FEM is degree-p if its trial functions are degree-p GLP basis
functions at each node (or more generally, at each point). Because of the least-squares nature of GLP basis functions, the
number of nodes in the stencil can be chosen adaptively to ensure the well-conditioning of the Vandermonde matrix.
This is the reason for the name ‘‘adaptive extended stencil’’ in AES-FEM; we describe the selection of the stencils and its
adaptation in Appendix B. Because the test functions are C0 and the trial functions are differentiable to pth order, we can
use either (2.9) or (3.9) computationally, which would give the same results up to machine precision.

In [12], the authors considered quadratic AES-FEM and showed its second-order accuracy with Dirichlet boundary
conditions. The focus of this work is to establish the well-posedness and convergence of higher-degree AES-FEM for
Neumann boundary conditions over polygonal domains. As in FEM, we can substitute gN = µ∂nuh into (2.8) for each
node xi in Γh,N for AES-FEM. For curved domains, Neumann boundary conditions can be imposed using higher-order
boundary representations similar to [39], as described in Section 3.1.4, or using Dirac delta test functions and one-sided
differences as in GFDM. In this work, we assume polygonal domains and impose Neumann boundary conditions weakly
as in FEM. We defer the analysis and comparison of different techniques for imposing Neumann conditions over curved
boundaries to future work.

Remark 2. GFDM requires a cloud of nodes, rather than a mesh with elements, so it is considered a meshless method.
However, to construct the stencils (a.k.a. stars), one needs a data structure, such as a quadtree/octree [40]. Because AES-
FEM involves integration (see Appendix C), we use a mesh and an associated data structure to construct the stencils and
to provide the elements for integration. The use of integration allows AES-FEM to enjoy additional error cancellation and
hence better accuracy than GFDM on nearly symmetric meshes, as demonstrated in Section 6.

4. Well-posedness in ℓp norm

We first establish the well-posedness, and more precisely, algebraic invertibility, of generalized weighted residual
methods for elliptic BVPs. Like that of FEM [41], this invertibility implies the existence and uniqueness of a solution
in exact arithmetic. We focus on AES-FEM while making the analysis general enough for GFDM. In Section 5, we will
establish the convergence of AES-FEM in the presence of rounding errors.



8 R. Conley, T.J. Delaney and X. Jiao / Journal of Computational and Applied Mathematics 376 (2020) 112862

4.1. Algebraic equations of GWR

To analyze a GWR method, we first convert its GVF into a system of linear equations. For generality, we assume
the bilinear form (2.9), with strongly imposed Dirichlet boundary conditions and weakly imposed Neumann boundary
conditions. For GFDM, we assume only Dirichlet boundary conditions, and the GVF is evaluated with (3.9) instead of (2.9).

From (2.9), we obtain an n × n linear system in uh, namely,

Auh = b, (4.1)

where the ith row of A and b are

aT
i = a(ΦT

i,◦, ψi), (4.2)

bi = ⟨f , ψi⟩Ωh − a
(
ΦT

i,DuD, ψi
)
+ ⟨µ∂nuh, ψi⟩Γh,N , (4.3)

respectively. For the Poisson equation, A is the stiffness matrix and b is the load vector in FEM. For generality, we simply
refer to A as the coefficient matrix. Another important matrix is the mass matrix, which is the coefficient matrix of the
constrained projection associated with the GWR,

MuP = bP , (4.4)

where the ith row of M and b are

mT
i = ⟨ΦT

i,◦, ψi⟩Ωh ,

bP,i =
⟨
u − uDΦ

T
i,DuD, ψi

⟩
Ωh
.

For Galerkin FEM, the constrained projection is known as the L2 projection [41, p. 132]. Note that Neumann constraints
are not imposed explicitly in the constrained projection because they are satisfied weakly automatically.

4.2. Algebraic error analysis in ℓp norm

To analyze the solutions of (4.1), we consider the nodal values in ℓp norm. Given a vector v ∈ Rn, its ℓp norm
is ∥v∥p =

p
√∑n

i=1

⏐⏐vpi ⏐⏐, where 1 ≤ p ≤ ∞. Note that this p is independent of, and different from, the degree of
the basis functions. We will primarily use the ℓ2 or ℓ∞ norm (i.e., p = 2 or p = ∞). The ℓp norm of A ∈ Rn×n is
∥A∥p = sup∥v∥p=1 ∥Av∥p.

Let uh ∈ Rn denote the solution vector of a GWR method on a mesh with n nodes. Let uI denote the vector composed
of u(xi). The error vector is

δu = uh − uI . (4.5)

Consider the linear system (4.1). Its residual vector is

r = b − AuI = A(uh − uI ) = Aδu. (4.6)

Suppose A ∈ Rn×n is nonsingular, and assume exact arithmetic. Then,

∥δu∥p ≤
A−1


p ∥r∥p , (4.7)

where
A−1


p is the absolute condition number in p-norm of the linear system (4.1). Note that given A ∈ Rn×n and B ∈ Rn×n,

∥AB∥p ≤ ∥A∥p ∥B∥p.

4.3. Well-posedness of constrained projection in ℓp norm

We first apply backward error analysis to the constrained projection (4.4). It is an important base case for the analysis
of elliptic PDEs. In particular, consider a perturbation δu to u in the right-hand side of (4.4). This leads to a perturbation
δb in bP . From (4.7), the perturbation δu in uP is bounded by

∥δu∥p ≤
M−1


p ∥δb∥p . (4.8)

If δu is C0 continuous, ∥δb∥p = (1 + O(h)) ∥M Jδu(xi)K∥p ≤ O(1) ∥M∥p ∥Jδu(xi)K∥p, so ∥δu∥p = O(1) ∥Jδu(xi)K∥p if
κp(M) = O(1); on the other hand, if κp(M) = O(h−α) for some α > 0, an O(1) continuous perturbation δu in the
right-hand side of (4.4) may lead to an O(h−α) perturbation in δu in ℓp norm. Hence, to be consistent with the classical
Hadamard’s notion of well-posedness of variational methods [41, p. 82], we define a well-posed constrained projection
as follows.
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Definition 3. A constrained projection is well-posed in ℓp norm for 1 ≤ p ≤ ∞ independently of h if it is well-conditioned,
i.e.,

κp(M) = ∥M∥p

M−1

p = O(1). (4.9)

In practice, the well-posedness requires quasiuniform meshes.

Definition 4. A type of GWR meshes is quasiuniform if the ratio of the largest and smallest control volumes of the test
functions is bounded independently of mesh resolution, i.e., supi |ωi| /infi |ωi| = O(1).

For FEM, Definition 4 is satisfied with the classical definition of quasiuniform meshes (e.g., [9,3]), which requires the
ratio between the largest and smallest elements to be bounded. Definition 4 is more general and also applies to GFDM,
of which the control volumes have nonzero measures, but the local support of a Dirac delta function has a zero measure;
see Remark 3. For AES-FEM, we note the following fact.

Theorem 2. Constrained projection by AES-FEM is well-posed in ℓp norm for 1 ≤ p ≤ ∞ on a sufficiently fine quasiuniform
mesh with consistent and stable GLP basis functions and test functions.

This theorem is similar to that of the well-posedness of L2 projections [41, p. 387], but there are two complications.
First, the GLP basis functions are not global basis functions over Ωh, so we cannot use functional analysis directly. Second,
Theorem 2 is not limited to ℓ2 norms, so we cannot use eigenvalue analysis either. To address the first issue, we define
a global basis function by blending the GLP basis functions using {ψi} to obtain a C0 basis function, i.e., Φ̂ =

∑m
i=1 ψiΦ i,

which is composed of

φ̂j =

n∑
i=1

ψiφij. (4.10)

These blended basis functions have the same approximation order as the GLP basis functions [42], and hence⏐⏐⏐v̂TMû
⏐⏐⏐ =

⟨
Φ̂

T
û,Ψ T v̂

⟩ (
1 + O

(
hp+1)) . (4.11)

To overcome the second issue, we make use of Singer’s representation theorem [43]. We omit the detailed proof, which
is similar to that of Theorem 3 below.

4.4. Well-posedness for elliptic BVPs

Consider a perturbation δf to f in the right-hand side of (4.4). This leads to a perturbation δb in bP , where n−
1
p ∥δb∥p ≤

∥M∥p ∥δf ∥∞. From (4.7), the perturbation δu in uh is bounded by

∥δu∥p ≤
A−1


p ∥δb∥p . (4.12)

Hence, n−
1
p ∥δu∥p = O(1) ∥δf ∥∞ if

A−1

p ∥M∥p = O(1). On the other hand, if

A−1

p ∥M∥p = O(h−α) for some α > 0,

an O(1) C0 continuous perturbation δf in the right-hand side of (4.4) may lead to an O(h−α) perturbation in δu in uh.
Hence, we define well-posedness as follows.

Definition 5. Given an elliptic BVP, let A and M denote the coefficient and mass matrices defined in (4.1) and (4.4),
respectively. A GWR method is well-posed in ℓp norm for 1 ≤ p ≤ ∞ independently of h ifA−1M


p ≤

A−1

p ∥M∥p = O(1). (4.13)

For AES-FEM, we note the following theorem.

Theorem 3. Given an elliptic BVP, AES-FEM is well-posed in ℓp norm for 1 ≤ p ≤ ∞ on a sufficiently fine quasiuniform mesh
with consistent and stable GLP basis functions and test functions.

Similar to Theorem 2, the proof requires an adaptation by using Φ̂ to construct a C0 approximation in order to apply
Singer’s representation theorem. Similar to the Lax–Milgram lemma, the proof also involves an assumption of invertibility
of the PDE in infinite dimensions, and a boundedness assumption due to Friedrichs’ inequality [9, p. 104], which is more
general than the Poincaré inequality [41, p. 489]. For completeness, we give the proof as follows.

Proof. Let û = arg inf∥u∥p=1 ∥Au∥p and û = Φ̂
T
û. Let p′ denote Hölder’s conjugate of p, i.e., 1/p + 1/p′

= 1, and let
v̂ = arg sup∥v∥

Lp′
=1 a

(
û, v

)
Ω
. Since û is C0 continuous, due to Singer’s representation theorem, there exists a solution v̂

such that a
(
û,Ψ T v̂

)
= a

(
û, v̂

)
. If the PDE is invertible in infinite dimensions,

∃C, inf
∥v∥Lp(Ω)=1

sup
∥v∥

Lp′ (Ω)
=1

a(u, v) ≥ C > 0. (4.14)
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Due to Friedrichs’ inequality,
ûLp Ψ T v̂


Lp′ ≤ Θ(1)a

(
û, v̂

)
and

Ψ T v̂

Lp′ = Θ(1). Furthermore,

A−1
−1
p =

supv̸=0
⏐⏐vTAû

⏐⏐ /∥v∥p′ , Hence,v̂p′

A−1
−1
p ≥

⏐⏐⏐v̂TAû
⏐⏐⏐ = a

(
û, v̂

)
(1 + O(h)) ≥ (C + O(h))

ûLp . (4.15)

On a quasiuniform mesh,

ûLp =

(
m∑
i=1

∫
ωi

⏐⏐û⏐⏐p dx

)1/p

= Θ(1) (max |ωi|)
1/p . (4.16)

Since
v̂Lp′ = 1,

v̂p′ =

(
m∑
i=1

⏐⏐v̂i⏐⏐p′

)1/p′

≤

(∑m
i=1

⏐⏐⏐v̂p′

i |ωi|

⏐⏐⏐)1/p′

(min |ωi|)
1/p′

=

Ψ T v̂

Lp′ + O(h)

(min |ωi|)
1/p′

. (4.17)

Since ∥M∥p = max |ωi|Θ(1) = min |ωi|Θ(1),v̂p′ /
ûLp ≤ Θ(1) (min |ωi|)

−1/p−1/p′

= Θ(1) ∥M∥
−1
p , (4.18)

and A−1M

p ≤ ∥M∥p

A−1

p =

∥M∥p

v̂p′⏐⏐ûAv̂
⏐⏐ ≤

∥M∥p

v̂p′

(C + O(h))
ûLp = O(1). (4.19)

Let δuh−I = uh − uI , where uh is composed of nodal solutions of AES-FEM and uI is composed of the interpolated nodal
values. It is easy to see that the above proof also applies to FEM, simply by replacing Φ̂ with the Lagrange basis functions
Φ in the proof. Hence, Theorems 2 and 3 both apply to FEM.

Remark 3. We can generalize Theorems 2 and 3 to GFDM as follows. Let M̂ = WM and Â = WA, where W is
a diagonal matrix with wi = |ωi|. Let Ψ̂ denote the vector of hat functions over the mesh. Then, it is easy to show
that

⏐⏐⏐v̂T M̂û
⏐⏐⏐ =

⟨
Φ̂

T
û, Ψ̂

T
v̂
⟩
(1 + O (h)) and

⏐⏐⏐v̂T Âû
⏐⏐⏐ = a

(
Φ̂

T
û, Ψ̂

T
v̂
)
(1 + O (h)). By replacing A with Â, the proof for

Theorem 3 applies to GFDM with Dirichlet boundary conditions; similarly for Theorem 2.

Note that ∥A∥p = ∥M∥pO(h−2) on a quasiuniform mesh with stable GLP basis functions. Hence a corollary of Theorem 3
is that

κp(A) = ∥A∥p

A−1

p ≤ ∥M∥p

A−1

p O(h−2) = O(h−2) (4.20)

on a quasiuniform mesh. Similarly, κp(M−1A) = O(h−2). This condition number estimation is well known in ℓ2 norm for
FDM and FEM (see e.g. [41,1]).

4.5. Mesh dependency for well-posedness

From the preceding analysis, it is clear that all the GWR methods have some level of dependency on meshes. In
particular, all the methods require the quasiuniformity of control volumes of the nodes. For FEM and AES-FEM, this is
equivalent to the quasiuniformity of the local support of the test functions. For GFDM, although the computation does
not depend on a mesh, the quasiuniformity imposes restrictions on the distributions of the nodes.

Besides quasiuniformity, FEM requires well-shaped elements, because the Lagrange trial and test functions are based
on the transformation from the parametric space to the physical space. For linear elements over polytopal domains, the
well-shapedness requires the angles within the elements to be bounded away from π and 0 [44,45], which is needed
for the stability of interpolations and derivative approximations. If some elements contain angles that are too small, the
stiffness matrix in FEM may become ill-conditioned [46]. For high-order elements, the nodes must be well-positioned
within the master elements so that the Lagrange basis functions are stable. In contrast, the well-posedness of GFDM does
not depend on element shapes, but the stability of the GLP basis functions does depend on the selection of the stencils.
Similarly, AES-FEM also depends on the stencils for the stability of its trial functions. However, the stencils in GFDM and
AES-FEM can be adapted more easily due to their least squares nature. If the generalized bilinear form (3.9) is used, then
AES-FEM also depends on the stability of the Lagrange test functions in the parametric space, but it does not require
well-shaped elements in the physical space. If the bilinear form (2.9) is used over linear elements, then (2.9) is equal to
(3.9) to machine precision, and hence there is no dependency on element shape either. In addition, high-order AES-FEM
requires only first-order meshes for its implementation at least in the interior of the domain, so its implementation is
simpler than that of high-order finite elements, which requires high-order meshes.
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For geometries with curved boundaries, Lagrange FEM typically uses isoparametric elements, for which the
well-posedness depends on the Ciarlet–Raviart condition [35]. Assuming stable Lagrange basis functions, the Ciarlet–
Raviart condition requires the kth derivatives for the mapping from the physical space to the parametric space to be
bounded for k = 2, . . . , p + 1, i.e., hk

∇k
xξ


∞
≤ C ≪ ∞ for ξ in the master element. Mathematically, this condition is

needed due to the high-order chain rule, also known as the Faà di Bruno’s formula [47],

∂kdφ (ξ(x0)) =

m1+2m2+···+kmk=k∑
mi≥0

k!
m!

∇
|m|

ξ φ(ξ) :

k∏
i=1

(
∂ idξ(x0)

i!

)mi

, (4.21)

where m = [m1, . . . ,mk], m! =
∏k

i=1 mi!, |m| =
∑k

i=1 mi, ∇
|m|

ξ denotes the derivative tensor of order |m|, and ‘‘:’’ denotes
the scalar product of kth-order tensors. For AES-FEM, if (3.9) is used with a higher-order boundary representation, then
the Ciarlet–Raviart condition is also required when computing ∇ψi. However, the generalized bilinear form (3.9) uses
only ψi(ξ) over the master element, so the Ciarlet–Raviart condition is no longer required. In this case, however, AES-FEM
requires imposing Neumann boundary conditions similar to the techniques in GFDM instead of FEM. The well-posedness
and consistency of such a hybrid treatment over curved boundaries require a more general analysis, and we defer it to
future work.

5. Convergence in ℓp norm

In this section, we analyze the convergence of GWR methods in ℓp norm. Given a vector of nodal errors δu, the
convergence rate in ℓp norm is kth order if ∥δu∥p =

p
√
nO(hk), where h is some edge length measure of a quasiuniform

mesh.

5.1. Convergence of GWR methods for constrained projection

Let δuP−I = uP − uI , where uP and uI are the projected and interpolated nodal values. We then obtain the following
result regarding the convergence of the constrained projection.

Theorem 4 (Convergence of Constrained Projection). Under the same assumptions as in Theorem 2, if u is continuously
differentiable to pth order within each element, the solution of the constrained projection with a well-posed degree-p GWR
method converges at O(hp+1) or better in ℓ∞ norm, i.e., ∥δuP−I∥∞ ≤ O(hp+1).

Proof. Let r =
⟨
u − uI ,Ψ ◦;N

⟩
Ω
. Due to the consistency of GLP basis functions, ∥r∥∞ ≤ ∥M∥∞ O(hp+1), so

∥δuP−I∥∞ ≤
M−1


∞

∥r∥∞ ≤
M−1


∞

∥M∥∞ O(hp+1) = O(hp+1). (5.1)

The theorem also applies to other ℓp norms. In Theorem 4, we use ‘‘≤’’ sign to emphasize that the bound may not be tight
due to possible superconvergence. Note that Theorem 4 applies to FEM, GFDM, and AES-FEM. For all of these methods, if
p is even, the leading error term in the residual r is odd order, which may cancel out in the integration. In turn, it may
lead to superconvergence. The superconvergence of FEM for the L2 projection was considered in [48].

5.2. Convergence of GWR methods for elliptic BVPs

Let uh denote the nodal solutions of (4.1) corresponding to the nodes in Ω◦

h ∪ Γ ◦

h,N . Let δuh−I = uh − uI . We first give
a loose error bound using an argument similar to that of Theorem 4. We state the bound in ℓ∞ norm, but the result also
holds in any ℓp norm for 1 ≤ p ≤ ∞.

Lemma 5. Under the same assumptions as in Theorem 3, assuming exact arithmetic, the solution with a well-posed degree-p
GWR method for an elliptic BVP converges at O(hp−1) or better in ℓ∞ norm, i.e., ∥δuh−I∥∞ ≤ O(hp−1).

Proof. Let r = a(u−uI ,Ψ ◦,N ). Using the same argument as for Lemma 1, it is easy to show that
LΦT

i δuh−I


∞
= O(hp−1)

for xi ∈ Ωh. Hence, ∥r∥∞ ≤ ∥M∥∞ O(hp−1), and

∥δuh−I∥∞ ≤
A−1


∞

∥r∥∞ ≤
A−1


∞

∥M∥∞ O(hp−1) = O(hp−1). (5.2)

Remark 4. Lemma 5 assumes exact arithmetic. This is important because in the presence of approximation or rounding
errors, the solutions may not converge due to ill-conditioning; see e.g. [1, p. 45] for finite differences and [41, p. 222] for
finite elements.
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For FEM, Lemma 5 underestimates the convergence rate by two orders, compared to the well-known O(hp+1) error
bounds in L2 norm due to the Aubin–Nitsche duality argument; see e.g. [3]. The derivation of error bounds for FEM in ℓp
norm is beyond the scope of this work. For GFDM and AES-FEM, however, the Aubin–Nitsche duality argument does not
apply, due to the non-conformity. For odd-degree-p GFDM and AES-FEM, Lemma 5 is tight. However, for even-degree-p,
similar to constrained projections, the leading error term in the residual r is odd order, which may cancel out in the
integration. For GFDM, this error cancellation occurs with symmetric stencils, analogous to centered differences, leading
to O(hp) convergence rate. With AES-FEM, however, the error cancellation is primarily due to the numerical integration,
for example, see Fig. 4.

Theorem 6. Under the same assumptions as in Theorem 3, assuming exact arithmetic, the solution of a well-posed
even-degree-p AES-FEM for a coercive elliptic BVP with Dirichlet boundary conditions converges at O(hp) in ℓ∞ norm, if p = 2
or if p ≥ 4 and the local support is nearly symmetric.

Proof. Let uI,i denote the local interpolation at a node xi ∈ Ω◦

h . Let δui = uI,i − u, which is a smooth function over Ωi.
Apply L to δui. We note that

Lδui(xi + h) = C
(
sign

(
h · ĥ

)
∥h∥

)p−1
+ O(hp), (5.3)

where C is proportional to
∂p+1

ĥ
u(x)


∞

. If p = 2, because ψi is the hat function, the line integral of
(
sign

(
h · ĥ

)
∥h∥

)p−1

ψi(xi + h) cancels out exactly, so ∥r∥∞ ≤ ∥M∥∞ O(h2) in Lemma 5. For even p ≥ 4, the line integral cancels out if the
local support is (nearly) symmetric about xi.

In [12], quadratic AES-FEM was shown to converge at second order, but the proof did not explicitly state the error
cancellation. Theorem 6 indicates that AES-FEM may not enjoy the full O(hp) superconvergence for p ≥ 4 on highly
irregular meshes, but in practice we observe it to be close to O(hp) on quasiuniform meshes, as we will demonstrate in
Section 6.2.

6. Numerical results

In this section, we present some numerical results to verify the theoretical analysis in this work.

6.1. Comparison of mesh dependency

We first compare the mesh dependency of FEM to that of AES-FEM. As shown in Section 4.5, the well-posedness of FEM
depends on well-shapedness of the meshes, while AES-FEM is independent of element shapes, regardless of the degree
of the GLP basis functions. To demonstrate this, we solved the Poisson equation in 2D

−∆u = f (6.1)

with Dirichlet boundary conditions over [−1, 1]2. We obtained f and uD from the exact solution u = cos(πx) cos(πy)
and solved the equation using our own implementations of quadratic, quartic, and sextic AES-FEM, along with linear,
quadratic, and cubic FEM. We generated a series of meshes on a unit square with progressively worse element quality,
which we obtain by distorting a good-quality mesh. For AES-FEM and linear FEM, we used a mesh with 130,288 elements
and 65,655 nodes and distorted four elements by moving one vertex of each of these elements incrementally towards its
opposite edge. For quadratic FEM, the mesh had 32,292 elements and 65,093 nodes, and a single element was distorted
by moving one vertex and its adjacent mid-edge nodes incrementally towards its opposite edge. For cubic FEM, the mesh
had 32,292 elements and 146,077 nodes, and also a single element was distorted. Fig. 2 shows the condition numbers of
the stiffness matrices of FEM and AES-FEM.

In practice, the condition number may affect the efficiency of iterative solvers. Fig. 3 shows the numbers of iterations
required to solve the linear systems to a relative tolerance of 10−8 using GMRES for AES-FEM and CG for FEM, both with
Gauss–Seidel preconditioners. It can be seen that the condition numbers of FEM increased inversely proportional to the
minimum angle, and the number of iterations of CG grew correspondingly. In contrast, the condition numbers and the
number of iterations for AES-FEM remained constant. We observed similar behavior for 3D AES-FEM, which we omit from
the paper.

6.2. Convergence of high-order AES-FEM

Next, we verify the convergence analysis in Section 5.2, especially that of AES-FEM. To this end, we used AES-FEM of
degrees 2 to 6 to solve the equation

−∆u + ν · ∇u = f , (6.2)
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Fig. 2. Dependence of the condition numbers of the stiffness matrices of FEM and AES-FEM on the worse angles.

Fig. 3. Relationship of the number of iterations of the preconditioned iterative solvers and the worst angles.

with unstructured meshes over [−1, 1]2, where f = sinπx sinπy. Fig. 4(a) shows the convergence rates in the relative ℓ2
norm for the Poisson equation, for which ν = 0. Fig. 4(b) and (c) show the convergence rates for the advection–diffusion
equation with Dirichlet and Neumann boundary conditions, respectively, where ν = [x,−y]. The number to the right of
each convergence curve shows the average convergence rate under mesh refinement. Note that AES-FEMwith even-degree
basis functions converged at about pth order whereas with odd-degree basis functions, AES-FEM converged at (p − 1)st
order. For example, with quadratic and cubic basis functions, the convergence rate is approximately second order. This
difference in convergence rates is due to error cancelation in the numerical integration, as discussed in Section 5.2.

6.3. Comparison of FEM, GFDM, and AES-FEM

Finally, we compare the accuracy of FEM, GFDM, and FEM. We use the Poisson equation in this comparison. In
particular, we solved a 2D Poisson equation (6.1) over the square [−1, 1]2 with an elliptical hole of semi-axes 0.5 and
0.2 in the middle. The domain, as illustrated in Fig. 5(a), has nonuniform curvature along the inner boundary and has
corners along the outer boundary. We applied Neumann boundary conditions to the outer boundary and applied Dirichlet
boundary conditions to the inner boundary. We obtained the source term f and the boundary conditions by differentiating
the following analytic function

u = sin (πx) sin (πy) . (6.3)

First, let us focus on comparing linear and quadratic FEM, GFDM, and AES-FEM. For FEM, we used the Partial Differential
Equation (PDE) Toolbox in MATLAB R2018a [49], which supports linear and quadratic elements. Hence, we focus on
comparing linear and quadratic FEM with quadratic AES-FEM and GFDM. We refer to all these methods as ‘‘low-order’’.
We generated the meshes directly using PDE Toolbox and used the built-in solvers in MATLAB with default tolerances.
The number of nodes ranged between 709 and 40,872. Fig. 5(b) compares these lower-order methods, where the number
to the right of each convergence curve indicates the average convergence rates. Quadratic AES-FEM had slightly better
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Fig. 4. The errors in the function values from AES-FEM for 2D Poisson and advection–diffusion equations. The number to the right of each curve
indicates the average convergence rate.

Fig. 5. Comparison of FEM, GFDM, and AES-FEM for the Poisson equation.

accuracy than linear FEM on finer meshes. GFDM and AES-FEM have identical sparsity patterns, but GFDM had significantly
larger errors than AES-FEM.

Next, we compare quartic and sextic AES-FEM and GFDM. We used the same meshes as for quadratic AES-FEM. Fig. 5(c)
compares AES-FEM and GFDM for the problem. For GFDM, we applied Neumann conditions by averaging the one-sided
derivatives on both left- and right-hand sides at corners. It can be seen that AES-FEM slightly outperformed GFDM in all
the cases.

It should be noted that the linear systems for quadratic AES-FEM and linear FEM have nearly identical sparsity patterns.
Additionally, the linear systems of quartic AES-FEM has only slightly more nonzeros than that of quadratic FEM, but it
is significantly more accurate. Thus, when comparing matrices with similar numbers of DOFs and similar numbers of
nonzeros, AES-FEM is often more accurate than FEM. As a result, AES-FEM sometimes requires less computational time
than FEM [12,13, Chapter 6].

7. Conclusions and discussions

In this paper, we introduced the framework of generalized weighted residual formulations (GWR), which unifies gener-
alized finite differences, Lagrange finite elements, and adaptive extended stencil FEM (AES-FEM). Under this framework,
we presented a unified analysis of the well-posedness of these methods, which depend on the quasiuniformity and the
consistency and stability of the trial functions and test functions. While the stability of the Lagrange basis functions in
FEM depends on the well-shapedness of the elements, the GLP basis functions of GFDM and AES-FEM depend on the
selections of the stencils, which can be adapted locally, due to the least-squares nature of the GLP basis functions. In
addition, high-order AES-FEM requires only first-order meshes for its implementation, so its implementation is simpler
than high-order finite elements. However, Lagrange FEM can achieve O(hp+1) convergence rate in L2 norm. In contrast,
GFDM and AES-FEM significantly simplify mesh generation, but it comes at the cost of a lower-order convergence rate,
which is O(hp−1) with odd-degree GLP basis functions. However, with even-degree basis functions, GFDM can achieve
O(hp) convergence rate with nearly symmetric stencils, whereas AES-FEM can achieve O(hp) convergence with nearly
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symmetric local support. We presented numerical results to verify our theoretical analysis, and we showed that AES-FEM
in general outperforms GFDM in terms of accuracy. For Neumann boundary conditions, we only considered polygonal
domains. For curved geometries, we can overcome mesh quality dependency, namely the Ciarlet–Raviart condition, in
AES-FEM by using techniques similar to GFDM, but a rigorous analysis of optimal convergence rates is challenging, which
we plan to report elsewhere. One direction of future work is to investigate the development of new hybrid methods by
mixing FEM and AES-FEM for different orders of terms.
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Appendix A. Computation of GLP basis functions

Given a node x0, without loss of generality, assume it is at the origin of a local coordinate system. Let P (p)
k (x) denote

the set of all d-dimensional monomials of degree p and lower; for example, P (2)
2 (x) = [1, x, y, x2, xy, y2]T . Let D(p)

k be a
diagonal matrix consisting of the fractional factorial part of the coefficients in the Taylor series corresponding to P (p)

k ;
for example, D(2)

2 = diag (1, 1, 1, 1/2, 1, 1/2). Let c be a vector containing the partial derivative of f evaluated at x0; for
example, c =

[
f , fx, fy, fxx, fxy, fyy

]T
|x=x0 . Then, we may write the truncated Taylor series of a smooth function f as

f (x) ≈ cTD(p)
k Pk

(p) (x) . (A.1)

Suppose there are n coefficients in c , and the stencil about the point x0 contains m points, including the point x0. To
obtain the jth basis function φj, let f (xi) = δij, the Kronecker delta function. Therefore, we obtain an m × n least squares
problem

Vc j ≈ ej, (A.2)

where ej denotes the jth column of the m × m identity matrix, and V is the generalized Vandermonde matrix. Eq. (A.2)
may potentially be ill-conditioned and even rank deficient, even if m ≥ n. We solve (A.2) by minimizing a weighted norm
(or semi-norm)

min
c

Vc j − ej

W ≡ min

c

W (
Vc j − ej

)
2 , (A.3)

where W is an m × m diagonal weighting matrix, and it is a constant for a given node. In general, heavier weights are
assigned to nodes that are closer to x0; for example,

wi =

(
∥vi∥

h
+ ϵ

)−p/2

, (A.4)

where ϵ is a small number, such as ϵ = 0.01, for avoiding division by zero.
The matrix WV can be poorly scaled. We address this by right-multiplying a diagonal matrix S . Let aj denote the jth

column of an arbitrary matrix WV . A typical choice for the ith entry of S is either 1/∥ai∥2 or 1/∥ai∥∞. This is known
as column equilibration [50]. Note that a row equilibration or a general matrix equilibration should not be used, since it
would undermine the weighting scheme W . After weighting and scaling, the least-squares problem becomes

min
d

Ṽ d − Wej

2
, where Ṽ ≡ WVS and d ≡ S−1c j. (A.5)

We solve the problem using the truncated QR factorization with column pivoting, where the pivoting scheme is
customized to preserve low-degree terms. The solution of the least squares problem is c j = SṼ

+

Wej. The complete
set of basis functions is then given by

Φ =

(
SṼ

+

W
)T

DP. (A.6)
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Fig. B.6. Example of 1-ring neighbor elements with the control volume of the center node in light green. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. B.7. Examples of 2D stencils (blue circles) of four nodes (red dots) with neighborhood sizes of 1-ring, 11/2-ring, 2-ring, and 21/2-ring,
counterclockwise from lower left.

Appendix B. Selection of stencils

To achieve high-order accuracy, a critical question is the selection of the stencils at each node for the construction of
the GLP basis functions. We utilize meshes for speedy construction of the stencils. Given a simplicial mesh (i.e., a triangle
mesh in 2D or a tetrahedral mesh in 3D), the 1-ring neighbor elements of a node are defined to be the elements incident
on the node. See Fig. B.6 for an example of the 1-ring neighborhood elements and the control volume of a node. The
1-ring neighborhood of a node contains the nodes of its 1-ring neighbor elements [36]. For any integer k ≥ 1, we define
the (k + 1)-ring neighborhood as the nodes in the k-ring neighborhood plus their 1-ring neighborhoods.

The 1-ring neighborhood of a node may supply a sufficient number of nodes for constructing quadratic GLP basis
functions. However, 2- and 3-rings are often too large for cubic and quartic constructions. We refine the granularity of
the stencils by using fractional rings. In 2D we use half-rings, as defined in [36]. For an integer k ≥ 1, the (k + 1/2)-ring
neighborhood is the k-ring neighborhood together with the nodes of all the faces that share an edge with the k-ring
neighborhood. See Fig. B.7 for an illustration. For 3D, we use 1/3- and 2/3-rings, as defined in [12]. For any integer k ≥ 1,
the (k + 1/3)-ring neighborhood contains the k-ring neighborhood together with the nodes of all elements that share a face
with the k-ring neighborhood. The (k + 2/3)-ring neighborhood contains the k-ring neighborhood together with the nodes
of all faces that share an edge with the k-ring neighborhood. See Fig. B.8 for an illustration of rings, one-third rings and
two-third rings in 3D.

In practice, for degree-p basis functions in d-dimensional space, we typically choose the ring size (p + 1) /d. This offers
a good balance of accuracy, stability, and efficiency for basis functions up to degree 7. To illustrate, Table B.1 compares the
average number of nodes in a given sized ring to the number of unknowns for a given degree in (A.2) on an example mesh.
It can be seen that the (p + 1) /d-ring size offers approximately 1.3 to 2 times the number of coefficients on average.
If a particular neighborhood does not provide enough points, especially for nodes near boundaries, we further expand
the stencil to a larger ring. The construction of the neighborhood requires an efficient mesh data structure, such as the
Array-based Half-Facet (AHF) data structure [51].
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Fig. B.8. Examples of 3D stencils with 1-ring neighborhood, 1-ring elements, 11/3-ring neighborhood, 12/3-ring neighborhood and 2-ring neighborhood
of the center node (in solid black).

Table B.1
Comparison of the average number of nodes per ring versus the number of coefficients
for 2D (left) and 3D (right) Taylor polynomials.
Degree #Coeffs. Ring #Nodes

2 6 11/2 11.76
3 10 2 18.30
4 15 21/2 29.23
5 21 3 37.47
6 28 31/2 53.17
7 36 4 63.56

Degree #Coeffs. Ring #Nodes

2 10 1 13.53
3 20 11/3 29.44
4 35 12/3 46.25
5 56 2 67.86
6 84 21/3 121.54
7 120 22/3 156.86

Appendix C. Overview of AES-FEM

Starting with a PDE with Dirichlet boundary conditions

Lu = f on Ω
u = uD on ΓD

(C.1)

AES-FEM can be derived from (3.8) as follows. AES-FEM uses generalized Lagrange polynomials as the basis functions{
φj
}
and the traditional FEM hat functions as the test functions {ψi}. The solution u is approximated as u =

∑
ujφj. As a

concrete example, consider the Poisson equation. For a given node and corresponding test function ψi, we have

−

n∑
j=1

uj

∫
Ω

∇ψi · ∇φj dV =

∫
Ω

ψif dV . (C.2)

The stiffness matrix is assembled row by row. For each interior node, a stencil is selected (see Appendix B) and the
GLP basis functions are calculated on that stencil (see Appendix A). If the stencil contains too few nodes, the stencil is
enlarged (hence the word adaptive in the name adaptive extended stencil-FEM). The adaptive expansion of the stencil
ensures the stability of the basis functions. The entries in the ith row of the stiffness matrix and the ith entry of the load
vector are calculated using (C.2). Dirichlet boundary conditions are enforced strongly.

The degree of the basis functions controls the order of convergence of the method. Note that regardless of the degree
of the GLP basis functions, AES-FEM can always use piecewise linear hat functions for the test functions, so it requires
only first-order meshes, at least for Dirichlet boundary conditions.
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Appendix D. Functional analysis and variational crimes

Unlike FDM, of which the convergence follows from the fundamental theorem of numerical analysis, proving conver-
gence of FEM is more complicated. It requires an intricate integration of functional analysis and approximation theory,
which were traditionally incompatible, and hence the term ‘‘variational crimes’’ coined by Strang [52,3].

D.1. Functional analysis of coercive PDEs

The convergence analysis of FEM is best known for coercive PDEs. One of the most fundamental results is the
Lax–Milgram lemma [53,41, p. 83], which states that an FEM is well-posed (or invertible) for bounded and coercive bilinear
forms. Its proof boils down to the Riesz representation theorem [41, p. 479] for C0 functions and the Poincaré inequality [41,
p. 489]. In practice, the boundedness and coercivity are satisfied on quasiuniform and well-shaped meshes. In terms of
convergence, for simpler cases, such as FEM with Dirichlet boundary conditions, the error is bounded in L2 norm, for
which the most successful technique is the Aubin–Nitsche duality argument [54,55], a.k.a. ‘‘Nitsche’s trick’’ [3, p. 166]. When
approximation errors are involved, the convergence rates are often proven only in H1 norm (see e.g. [9, p. 288] and [27,
p. 199]).

D.2. Functional analysis of noncoercive PDEs

The generalization of functional analysis of FEM to noncoercive PDEs requires the use of Banach or Sobolev spaces. The
best known result is the Banach-Nečas-Babuška (BNB) theorem [41, p. 84–85], attributed to Nečas [56] and Babuška [57],
regarding the invertibility (or well-posedness). It generalizes the Lax–Milgram lemma. The theorem states that an FEM with
a specific trial space Φ and test space Ψ is invertible if and only if

∃α > 0, inf
φ∈Φ\{0}

sup
ψ∈Ψ \{0}

a(φ,ψ)
∥φ∥Φ∥ψ∥Ψ

≥ α (D.1)

and

∀ψ ∈ Φ, sup
φ∈Φ\{0}

|a(φ,ψ)| = 0 H⇒ ψ = 0, (D.2)

where ∥ · ∥Φ and ∥ · ∥Ψ are some norms associated with the spaces Φ and Ψ over Ω , respectively. An assumption of the
BNB theorem is the boundedness of the bilinear form [41, p. 82]

∃C < ∞, sup
φ∈Φ\{0}

sup
ψ∈Ψ \{0}

a(φ,ψ)
∥φ∥Φ∥ψ∥Ψ

≤ C (D.3)

under some continuity requirements on Φ and Ψ (such as C0 continuity). Eq. (D.1) is known as the inf–sup condition. For
coercive problems, ∥ · ∥Φ and ∥ · ∥Ψ in (D.1) typically correspond to some norm over Ω . In practice, the boundedness and
inf–sup conditions also require quasiuniform and well-shaped meshes. Since the invertibility condition is purely algebraic,
the solutions may suffer from spurious oscillations for noncoercive PDEs.

D.3. Variational crimes

In the classical functional analysis, a deviation from exact computations or conforming FEM is considered a ‘‘variational
crime’’ [9,3]. This includes interpolation errors that are not intrinsic in the Lp (or H1) norms, numerical integration
errors, rounding errors, etc. A fundamental ‘‘crime’’ is the loss of continuity, which is introduced by nonconforming finite
elements [9, Section 10.3]. AES-FEM involves a similar but more severe ‘‘crime’’ due to its use of least-squares-based local
trial functions, making the classical duality argument inapplicable.
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