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Abstract

An adaptive collocation method based upon radial basis functions is presented for the solution of singularly
perturbed two-point boundary value problems. Using a multiquadric integral formulation, the second derivative of
the solution is approximated by multiquadric radial basis functions. This approach is combined with a coordinate
stretching technique. The required variable transformation is accomplished by a conformal mapping, an iterated
sine-transformation. A new error indicator function accurately captures the regions of the interval with insufficient
resolution. This indicator is used to adaptively add data centres and collocation points. The method resolves extremely
thin layers accurately with fairly few basis functions. The proposed adaptive scheme is very robust, and reaches high
accuracy even when parameters in our coordinate stretching technique are not chosen optimally. The effectiveness
of our new method is demonstrated on two examples with boundary layers, and one example featuring an interior
layer. It is shown in detail how the adaptive method refines the resolution.
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1. Introduction

Recently, there has been a great deal of interest in radial basis functions (RBFs) for interpolation
problems, and as a tool for numerically solving differential equations. The idea of RBFs is to use linear
combinations of translates of a function ¢(r) of one real variable, centred at “data centres” or “knots” xy,
to approximate an unknown function:

n
s(x) = Z Ak@(llx — xg|) + low-order polynomials. (1)
k=1

Common choices for such functions ¢ are

Multiquadric (MQ): ¢(r) = v/r? + c2,

Inverse multiquadric: ¢(r) = (r2 + 02)_1/2

’

Gaussian: ¢(r) = e~/

The parameter c is the so-called shape parameter. As ¢ — o0, the basis functions are becoming increas-
ingly flat. The linear combination (1) can be used in an interpolation procedure, or when trying to find
the solution of a differential equation.

The distinct scattered data centres x; can be chosen arbitrarily in the domain of interest. Since RBF
methods only act upon the information at the data centres, the method requires no further domain or
surface integration or discretization. Hence, RBFs lead to “meshless methods”.

In [9], Franke’s numerical experiments compared 29 interpolation methods with analytic two-
dimensional test functions. According to his results, the most powerful methods are the radial basis
function methods based on the multiquadric basis function suggested by Hardy [12] and the thin plate
spline. Madych and Nelson [20,21] showed that interpolation with the multiquadric basis is exponen-
tially convergent. Their proof is based on reproducing kernel Hilbert spaces. Wu and Schaback [29] use
a different technique to prove the same results. Their technique is general enough to handle the case of
interpolation with the power spline and the thin plate spline. Since the Hilbert space is small when the
radial basis function is smooth, the function being interpolated has to be extremely smooth for the error
estimates to apply. Yoon [30] showed that the multiquadric basis function method converges exponentially
in a Sobolov space. This was verified numerically by Fedoseyev et al. [7].

Meshless methods have been under intense scrutiny in an effort to avoid some of the problems associated
with more traditional schemes. The 1990s have seen a rise in the use of meshless methods for solving
partial differential equations (PDEs), led by methods from the finite element community, including the
Partition of Unity Method of Babuska and Melenk [3], the h-p Cloud Method of Duarte and Oden [6],
and the Element Free Galerkin Method of Belytschko et al. [4]. Motivated by the success of surface
approximation, Kansa [15,16] pioneered the use of RBFs for the numerical solution of the Navier—Stokes
equations. Since then, RBFs have been used to solve a variety of ordinary and PDE:s.

In this paper we employ RBFs to solve boundary value problems with very thin layers. Our aim is
to demonstrate that RBF methods are capable of achieving high accuracy and robustness through the
introduction of adaptivity. Our solution method below is based on an integral formulation of multiquadric
collocation. Integration is a smoothing operation; the convergence rate may be expected to accelerate in
line with the convergence rate estimates of Madych and Nelson. Further applications of the RBF integral
formulation can be found in Mai-Duy and Tran-Cong [22,23], Kansa et al. [17].
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We consider the singularly perturbed linear two-point boundary value problem (BVP)

eu" (x) + p(ou’(x) + g(u(x) = f(x) Vx € [a,b],

u(a) =o, u(b)=4, (2)

where ¢ > 0 denotes a fixed (small) constant. In many applications (2) possesses boundary layers, i.e.,
regions of rapid change in the solution near the endpoints with widths o(1) as ¢ — 0.

It would not be difficult to extend the methods to nonlinear problems, although for small perturbation
parameter ¢ one may have to use continuation methods as well.

One can discretize (2) with finite difference methods, piecewise polynomials [1,2], spectral collocation
methods (e.g., [27]), with radial basis functions [19] as suggested by expansion (1), or with any other
discretization method having n degrees of freedom. With a very small parameter ¢ in (2) large n is required
to obtain accurate solutions. For good resolution of the numerical solution at least one of the collocation
points should lie in the boundary layer. For example, if the problem possesses a boundary layer of width
0(¢), then on a uniform grid with ¢(n~") spacing between the points we need n = ¢(¢~"), which is
not practical when ¢ < 1. Therefore, most numerical methods use specially designed grids that contain
more points in and around the layer(s). For instance, Miller et al. [24] developed a successful upwind
central difference scheme on a piecewise uniform mesh. Gartland [10] and Vulanovié¢ [28] suggested
exponentially distributed grid points. These special meshes have a limitation: collocation points must not
coincide numerically.

Polynomial spectral collocation (PSC) methods have underlying grids which are denser near the bound-
ary, and hence are attractive in solving boundary layer problems, see [5]. Tang and Trummer [27] em-
ployed a Chebyshev spectral collocation (a. k. a. pseudospectral) method with coordinate stretching, and
achieved a good resolution of boundary layers with relatively few collocation points. The coordinate
stretching is accomplished via an analytic variable transformation; an advantage of the transformed BVP
is that many more collocation points can be placed in the boundary layer without causing numerical
difficulty. Recent developments of spectral collocation method can be found in [8,25,26].

In[19], the authors combined the transformation technique used in [27] with an MQ integral formulation
to solve problems with thin boundary layers. In the computational domain we have a fixed, well separated
grid, so the scheme does not suffer from numerical coincidence of collocation points. Furthermore, the
“meshless” MQs allow a simple modification when there is only one layer. Numerical comparisons with
the PSC method of [27], and Hon’s adaptive MQ scheme [14] show that our MQ scheme can achieve
superior accuracy for problems with very thin layers and relatively smooth solutions.

In this paper, we build upon the ideas of [19] to develop a robust adaptive scheme. The new adaptive
scheme is much less sensitive to the number of transforms applied. It does not provide a huge improvement
on the non-adaptive scheme using the optimal variable transform, but performs well for a range of
transforms. Furthermore, our scheme shows impressive results for extremely thin boundary layers, i.e.,
very small ¢ in (2).

The paper is organized as follows. In Section 2, we provide an overview of the multiquadric scheme
with integral formulation [19]. The adaptive scheme is introduced in Section 3. Section 4 provides
detailed numerical results for three problems: a singularly perturbed boundary value problem with an
extremely small perturbation parameter ¢, namely ¢ = 10~'2; an exponentially ill-conditioned boundary
layer problem; and an interior layer problem with a moderately small perturbation parameter .
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2. MQ integral formulation of the transformed BVP

This section summarizes the features of our non-adaptive scheme of [19] which forms the basis for the
new adaptive scheme introduced in this paper. Without loss of generality we assume [a, b] =[—1, 1]. For
m > 1 we consider the one-to-one mapping x (£) = g,,(£) given by

. /T
20(O) =&, gm(&) =sin (Egm_l(@)  m>1. 3)

As can be seen from Fig. 1 the graphs of the transforms are flat towards the end points of the interval. This
means that the very thin boundary layer is mapped onto a much wider region. Effectively, collocation
points are moved into the thin region. For example, for equidistant points ¢; =2j/N — 1, j =0, ..., N,
we have the estimate (see [19])

gn (&) = 8m(£0) = gm(EN) — gm(En—1) = O(N ). @)
With the variable transformation x +— £(x), the singularly perturbed linear BVP (2) is transformed into

ev"(&) + P(OV'(O) + Qv = F() Viela, bl

v(a) =a, v(b) =4, &)

where v is the transplant of u, v(&) =u(x(&)). Throughout the paper we refer to x as the physical variable,
and to ¢ as the computational variable. The transformed coefficients are given by

p(x) &’ (x)
P& == +e——0,
O=am Tony

q(x) f(x)

= F(&) =2"2 6
0O =575 FO=155 ©6)

- 01
— 9

Fig. 1. Variable transformation g (&) and g2 (&).
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—e— Computational domain: v(&)
—+— Physical domain: u(x)
2+
1.5+

Numerical solution
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Fig. 2. Solution of a BVP plotted against the computational variable and the physical variable, respectively.
where x = x(¢). For the SINE-transformations g, (3), the quantity 1/¢ (x) can be easily calculated as
m—1 o ”
= —cos(—ké)), m=1, 7
o k]jlo(z 28k > )

whereas the quantity H,, = &’ (x)/[¢'(x)]* can be computed using the recursion

Hy =0,
Hk:gtan< g,(n 1]3(X)> COS< glgl lz(x)) H._, k=1,...,m. (8)

Here, g,(n_l) denotes the inverse function of g, i.e.,

g =x, ¢ V)= —arcsm(gm D (x)).

The interested reader is referred to [19] and [27] for details.

We note that the SINE-transforms (3) also map the intervals [—1, 0] and [0, 1] onto themselves. Hence,
as suggested in [19], if (2) has only one layer on the left (or right), we translate the physical domain
to [—1, 0] (or [0, 1], respectively). This avoids unnecessary collocation points in the smooth region. In
Fig. 2, we show a solution of a BVP (our Example 1 in Section 4) in both the computational domain
and the physical domain. Some of the data points in the physical domain coincide numerically near the
boundaries. This does not cause difficulties, as there is no coincidence in the computational domain.
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In our MQ integral formulation, the second derivative v”(¢) in (5) is approximated by the MQ basis.
The expansion of the unknown function v(¢) is then of the form

N

V@O =) 48O+ + 1 ©)
j=1

where the last two terms are the polynomials resulting form integrations, and

2

1 c;
9j() = 24D — &)+ F1E = IO = (€= &) = ;O]

2
1 ¢
@) = 3(E = )9;(O) + L In(6;() + (€ = &),

U =¢;(O) =/ =P+

The unknown coefficients in the numerical approximation (9) are determined by making (9) satisfy the
transformed BVP (5) at all collocation points. Collocating the transformed BVP (5) at all N data centres
(knots) & js for j =1,..., N, provides N linear equations:

N
Zii[s B} (E)) + P (&) P(E) + Q&) @i(E))]
i=1

+710) + 91 [PEj) +E0EN]I=F()), (10)

for 1 < j < N.The remaining 2 equations are obtained by substituting (9) into the boundary conditions in
(5). This yields

N

Z/li@i(a) +71+na=a,
i=1

N

D i®i(b) + 91 + b =p. (1)
i=1

The N + 2 linear equations (10) and (11) determine all unknown coefficients in (9).

The numerical results in [19] show this method to be very effective. The PSC method of [27] has
superior performance for “large” values of ¢, but the MQ method (with constant ¢ = 0.815/(N — 1) as
suggested by Hardy [13]) produces better results for very small values of ¢ (i.e., = 10~8 and smaller). The
MQ scheme provides more flexibility on centres placement, as it is based on a meshless method. Although
the size of ¢ provides a good basis for choosing a good value of m (the number of sine transformations),
there is no obvious way to choose the optimal m a priori. With the optimal m, the MQ scheme is very
accurate; it produces more accurate results than a recently proposed adaptive multiquadric scheme [14].
The new adaptive scheme proposed below has the advantage that high accuracy can be achieved even if
one does not have the “best” m.
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3. Adaptive scheme

Hon [14] proposes an adaptive MQ-RBF technique using an “a posteriori” indicator based on the weak
formulation of the governing equation to add collocation points where deemed necessary. Hon’s indicator
I; is given by

I = / e + pOou’ +q(ou — Flw; dx, (12)

i—1

for a BVP of the form (2), where u is the current numerical approximation to the solution, and

X — Xji—]

ﬁ Vx € (xi—1, Xi),
wi=wix) =17 Y

——  Vx € (x;, Xi4+1).

Xi+1 — Xi

An extra data point is added at both midpoints of the intervals [x; 1, x;] and [x;, x; 1] if [I; — 1, >01,,
where 1, and I, denote the mean and the standard deviation of the indicators /;, and 0 > 0. We refer to
the original article [14] for details. As shown in [19], Hon’s indicator is not suitable for the transformed
BVP (5). In this section, we propose a new indicator that appears to work well with our scheme.

We want to use our indicator to add points in the regions of the domain where the indicator is “large”;
these regions should correspond to the regions where the (unknown) error in our solution is also large. To
design such an indicator, we look at two main sources of error. When the solution of the transformed BVP
(5) still changes rapidly in the region corresponding to the boundary layer of the original BVP (2), the
error is usually large and more data points are needed to capture the solution, see Fig. 3 where Example
1 in Section 4 is solved with three SINE-transforms (m = 3) and 128 points. On the other hand, when
the number of collocation points used in the approximation (9) is small on some region, it is common to
observe oscillations, and therefore a large error, see Fig. 4 where the same BVP is solved with N = 32
points only. In all figures in this paper we plot dimply the function values at the data centres, not the RBF
interpolant. We want to emphasize that although the curves in some figures may look piecewise linear
(when the number of data points is small or when the functions are oscillatory), all RBF interpolants are
smooth (i.e., infinitely differentiable).

In both cases, as shown in Figs. 3 and 4, we expect a close relation between the error and the second
derivative values of the computed solution: rapid changes and oscillations result in a large value of the
second derivative. Since all the derivatives of the MQ basis are globally defined, we define an indicator
using the second derivative value evaluated at the midpoint of two nearby data points:

d®v (& + &
o _dv sty oy (13)
i dﬁz 2

One problem with this indicator is that the sum of / l.(l) will grow without bound as N increases. A bounded
version of (13) mimics the integral of the third derivative of the numerical solution, and retains some
information on the grid spacing:

d3v (& + &
@ _ . . Ei1 .
I; =(<l~—gi_1)@ (T’) i=1,...,N. (14)
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Error

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Fig. 3. The computed solution changes rapidly in the boundary layer: the error in the layer is large in comparison to the error on
the smooth region (m =3, N = 128).

We employ the indicator 7 to solve Example 1 with e= 10712, Starting with N =40 points initially and
after six iterations, we run into a situation as shown in Fig. 5. From the plot of the error, we see that past
iterations added most of the points to the boundary layer around ¢ = +0.7, and the region in between.
The new indicator 1® is successful in adding points into the region with the largest error, namely the
boundary layer. However, only very few data points are located near the boundary of the interval [—1, 1].
The undersampling near the boundary causes the numerical solution to oscillate, and therefore adversely
affects the accuracy of the scheme. Proceeding with the adaptive iteration further with 1, as shown in
the plot of the indicator in Fig. 5 (bottom), all new points will eventually be added near the boundary
layer. Due to its inability to refine data points in the smooth region, an adaptive iteration using ® works
well when one starts with a sufficiently large number of data points, and only lets the adaptive scheme
run for a small number of iterations so that the ratio of maximum and minimum centre spacing remains
small.

A robust adaptive scheme, however, should also have some control over the ratio between the maximum
and minimum centre spacing. Hence, we modify (14) to obtain our new indicator

v (& +¢ .
11=<5i—5i_1)p<">d—53(’7’1>, i=1,...,N, (15)

where £k is the iteration counter for our adaptive scheme, and p(-) is any non-decreasing function.
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&

Fig. 4. When collocation points are not dense enough, the numerical solution oscillates in the smooth region (m = 3, N = 32).

The indicator I® is a special case of (15) with p(k) = 1. For any constant p(k) > 1, a new balance or
equilibrium between grid spacing and solution derivative will be achieved. Note that the value of each J;
by itself is not important to the scheme. It is the relative magnitude of J; that controls the addition of new
data points. The interesting case is when p(k) increases with k. The indicator J; behaves very much like
Il i(z) when k is small. The problem shown in Fig. 5, however, will be corrected as k gets large. Suppose
& — &1 is large in comparison to the other separation distances. The term (&; — é,-_l)p(k) assigns a
relatively large value to J;, so the adaptive scheme will add an extra point between &;_; and ¢&;. The
adaptive scheme eventually reduces the large grid spacing. In general, a rapidly growing p(k) will favour
equally distributed grids, whereas a slowly increasing p(k) will tend to add more points to the boundary
layer. All our computations in the next section use the indicator J; with p(k) = k.

4. Numerical results

Example 1. Boundary layer problem with very thin layer.

We first demonstrate the robustness of our adaptive scheme with the example found in [27]. The BVP
with variable coefficients is given by

eu"(x) —xu'(x) —ux) = f(x), xel[-1,1], (16)
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Fig. 5. The error function and the indicator function of an adaptive scheme using / @) after a few iterations. The big bullets
shown in the plots of the indicator are points that will be added in the next iteration.

where

f(x) = <x L 1) e t/e 9 (x miL 1) e /e
&

&

is chosen such that the function
u(x) — e—(x—H)/S + 2e(x—1)/s

is an exact solution of the BVP. Boundary conditions are given by the values of the exact solution. This is
not an easy test problem; besides exhibiting two boundary layers, it also features a turning point at x = 0.

We use the indicator J with p(k) =k to solve the BVP with ¢= 10~ '2. The number m always refers to the
number of SINE-transforms applied to obtain (5). The MQ shape parameter is set to ¢; =0.8154 j, where
h; is the minimum distance between the centre ¢; and its nearby centres. An extra point (&; + ¢j41)/2
will be added to the set of data points if |J; — J,| > 0J,, where J,, and J,; denote the mean and the standard
deviation of these indicators J;. In our tests, we use 0 = 0.5. The adaptive iteration starts with N = 40
data points and stops when the ¢,-norm difference of two consecutive solutions ||vy — vk—i||2, that is
computed on the physical domain with trapezoidal rule evaluating at all data centres of vy, is less than
0g = 10~*. Note that in [19], the authors use £~,-norm, which is identical on both the computational and
physical domain, to measure accuracy. To monitor convergence, however, we employ the £;-norm for
better stability. On the other hand, errors in both norms are reported in this section.
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106 points will be added to the next iteration

Fig. 6. Errors and indicators J for boundary layer problem (16) with p(k) =k, e=10" 12 and m =5 after 1-3 adaptive iterations.

In Figs. 6 and 7 the exact error function and the indicator for all adaptive iterations with m =5 are
provided. The big bullets ( e ) shown in the plots of the indicator are points that will be added in the next
adaptive iteration. Initially, at k = 1, the number of data points, N = 40, is too small for the boundary
layer problem with such a thin layer. Our scheme refines the set of data points throughout the whole
computational domain. For k = 2 and k = 3, extra points are added only to the interior. At the fourth
adaptive iteration, extra data points are added in the boundary layers, because of the large value of the third
derivative, and near the origin, where relatively wide spacing of the data centres is causing an oscillation.
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Fig. 7. Errors and indicators J for boundary layer problem (16) with p(k) =k, e=10" 12 and m =5 after 4-6 adaptive iterations.

The different behaviour of I® and J is obvious at the last two adaptive steps. Comparing to Fig. 5, J will
add points near the boundaries where the error is large. In all cases, our indicator correctly indicates the
regions of large error. A comparison of the non-adaptive method with N = 512 and the adaptive method
is given in Table 1. Details of the adaptive iterations are shown in Table 2.
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Table 1
Errors for boundary layer problem (16) with ¢ = 10~12
m Error: non-adaptive Error: adaptive
N £ 5o-norm £o-norm N £ 5o-norm £o-norm
4 512 8.14e — 04 8.85¢ — 07 407 2.00e — 04 1.15¢ — 05
5 512 6.09¢ — 04 3.05¢ — 05 305 1.54e — 04 7.62¢ — 06
6 512 1.56e — 03 9.30e — 05 257 2.24e — 04 2.19¢ — 06
7 512 2.30e — 03 6.30e — 04 430 1.84¢ — 04 8.12¢ — 05
Comparison of the non-adaptive method with N = 512 and the adaptive method.
Table 2
Performance of the adaptive scheme on an exponentially ill-conditioned problem (17)
P 170 1,70 1/70 10~4 10~4 10-8 108
m 0 1 2 2 3 3 4
# iterations 8 4 4 7 6 7 7
N 71 33 39 179 95 313 155
Final error 3.9(-3) 7.8(=3) 4.6(-3) 2.7(—4) 7.5(—4) 6.6(—3) 6.1(=2)
Example 2. Exponentially ill-conditioned problem.
For our next example, we consider the equation found in [11],
eu"(x) —xu'(x) +ux)=0, xe[-1,1], (17

with
u(—=H =1, u(l)=2,

whose exact solution is

2 2
_M erf _x_ + e(x2/23)
2¢

n 1
[——erf( —— | +el1/22
2¢ ( 28) *

—1/2¢

() = ix gl
ux)= X —
2

This problem contains an eigenvalue of the order e

, and is exponentially ill-conditioned. An analysis

of this problem can be found in [10]. In [18], the problem is solved for ¢ =1/70 with an adaptive method;
the final error obtained is 2.2 x 10~2 under the £>-norm. It appears that the method of [10] cannot handle

smaller values of &.

A consequence of the ill-conditioning of this problem is that one may observe numerical divergence. We
implement an extra stopping criterion which terminates the iteration and discards the newest numerical

solution if divergence is detected.



278 L. Ling, M.R. Trummer / Journal of Computational and Applied Mathematics 188 (2006) 265-282
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Fig. 8. Numerical solution (+) and exact solution (=) of (17) withm =3 and ¢ = 10~% in the physical domain.

We solve the exponentially ill-conditioned problem (17) with our adaptive scheme for e=1/70, =104,
and =108, The scheme begins with 11 equally spaced points, and 0 =0.5. For comparison, we also list
the final error in the £>-norm. Plots of the numerical solution for ¢ = 10~ and m = 3 against the physical
variable x, and the computational variable & are shown in Figs. 8 and 9. Fig. 9 reveals the difficulty
coming from the interior transition region. We summarize our results in Table 2. Our adaptive scheme
shows clear advantage over the method in [10] on this ill-conditioned problem in terms of accuracy and
the ability to solve problems with very small ¢. On the other hand, we emphasize that the method found
in [10] applies to a broader range of problems because of its domain decomposition feature. The adaptive
method in [10] can even accurately capture the solution behaviour in regions where the exact solution is
highly oscillatory.

Example 3. Interior layer problem.

The SINE-transforms are designed to work specifically on boundary layer problems, see Appendix.
Hence, our method is not a natural candidate for solving problems with interior layers. To demonstrate
the robustness of our new adaptive scheme, we apply it to an interior layer problem without using any
coordinate transform. We solve the example in [14] where the coefficient functions of (2) are given by

p(x)=4(x —0.5)(1 +0.3121(x — 1.5)),
and

qg(x)=—1-0.2764(x —0.5).
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Fig. 9. Numerical solution (+) and exact solution (=) of (17) withm =3 and ¢ = 10~% in the computational domain.

The right-hand side function f(x) in (2) is chosen such that

[\/0.291(x 052 e+ (x — 0.5)]
)0.375

—x2/2

ulx)= +e

(0.291(x — 0.5)* +¢

is the exact solution. Without the help of coordinate stretching, our scheme is not capable of dealing with
extremely small layers; here, we solve this internal layer problem with ¢ = 10~*. No SINE-transform is
applied, i.e., m = 0. We start our adaptive scheme with 21 data points and iteratively refine it to 103 data
points after 6 iterations for the numerical solutions, see Fig. 10. The corresponding errors in the £.,-norm
and £-norm are 5.84 x 107> and 2.85 x 1077, respectively. Without the use of an appropriate transform
it appears difficult to solve this problem with much smaller perturbation parameter e.

5. Conclusion

We develop an adaptive scheme based on a multiquadric collocation method with a variable transform
and integral formulation to solve boundary layer problems. Taking advantage of the meshless nature of
RBF methods we easily add extra data points where necessary. The differentiability of the MQ basis
allows us to design a suitable indicator using the derivative values of the numerical solution. The adaptive
scheme makes the tuning of the parameter m (which controls the variable transformation) unnecessary,
and therefore increases the robustness of our solution scheme. Our adaptive scheme appears to work
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Fig. 10. The solution of an internal layer problem with 103 refined data points.

extremely well for small perturbation parameters ¢, and in situations where the exact solution is not
highly oscillatory.

We give an example of solving an interior layer problem with our RBF scheme; however, our method
is not designed for such a problem. Like many of the existing schemes, we see that our scheme fails to
capture very thin interior layers. One of our goals is to develop a new coordinate transform that allows us
to handle interior layers as efficiently as boundary layers. On the other hand, finding the exact location
of the interior layer may not be trivial. Quite a sophisticated adaptive scheme may be required to capture
an interior layer.

In this paper we only presented linear examples, and demonstrate our results to those in [11,14,27].
Reports on the method in [27] indicate that the accuracy attained is comparable to the results with
COLSYS. We are currently implementing a nonlinear variant of our method, and shall report on its
performance relative to COLSYS in a future paper. The present work validates the RBF approach we
have taken, and demonstrates the usefulness of adding adaptivity to the method.

The authors are working on extending the preliminary adaptive scheme presented in this paper to two
dimensions. In particular, extending the indicator, which uses information about the third derivative of
the numerical approximation, is not straightforward.

Appendix

The boundary layer problems are specifically given in Table 3.
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Table 3
Detailed data of the k adaptive iteration for boundary layer problem (16) ¢ = 10~ 12 with different m

m=4/k N Error in £o-norm Error in £>-norm lvg — ve—1ll2
1 40 1.03¢ + 00 6.07¢ — 01 —

2 78 1.68e 4 00 1.18e 4 00 1.01e + 00
3 154 1.40e — 01 7.81e — 02 1.37¢ + 00
4 287 3.47¢ —03 1.57¢ — 03 8.20e — 02
5 366 2.50e — 04 1.44e — 05 1.34¢ — 03
6 407 2.00e — 04 1.15¢ — 05 8.09¢ — 06
m=>5/k

1 40 8.43¢ — 01 8.70e — 01 —

2 78 1.22e + 00 1.04e + 00 6.98¢ — 01
3 131 4.88¢ — 02 2.62¢ — 02 1.20e 4 00
4 237 9.42¢ — 04 4.66e — 04 2.66e — 02
5 263 2.82¢ — 04 1.12¢ — 05 4.11e — 04
6 305 1.54e — 04 7.62¢ — 06 3.63¢ — 06
m==6/k

1 40 1.22e + 00 1.38¢ + 00 —

2 78 6.60e 4 00 6.88¢ + 00 6.88¢ + 00
3 115 2.51e — 01 1.56e — 01 8.06e + 00
4 185 2.78e — 02 8.32¢ — 03 1.58e — 01
5 206 4.38¢ — 04 3.04e — 05 7.44e — 03
6 257 2.24e — 04 2.19¢ — 06 1.32¢ — 05
m="7/k

1 40 2.86e + 01 3.54e + 01 —

2 78 6.78¢ + 00 7.55e + 00 3.00e + 01
3 105 6.84¢ — 02 1.23¢ — 02 8.97¢ + 00
4 161 5.40e — 01 3.82e — 01 3.67e — 01
5 202 9.75¢ — 02 6.68¢ — 02 4.03¢ — 01
6 252 7.38¢ — 03 6.22¢ — 04 6.61e — 02
7 302 1.69¢ — 04 9.11e — 05 5.81e — 04
8 430 1.84e¢ — 04 8.12¢ — 05 7.69¢ — 05
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