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Abstract

In the article, the sufficient and necessary conditions such that a class of functions which involve the psi function � and the ratio
�(x + t)/�(x + s) are logarithmically completely monotonic are established, the best bounds for the ratio �(x + t)/�(x + s) are
given, and some comparisons with known results are carried out, where s and t are two real numbers and x > − min{s, t}.
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1. Introduction

Recall [25,29,52,54] that a function f is said to be completely monotonic on an interval I if f has derivatives of all
orders on I such that (−1)kf (k)(x)�0 for x ∈ I and k�0. Recall also [3,29,39,41–43] that a positive function f is
said to be logarithmically completely monotonic on an interval I if its logarithm ln f satisfies (−1)k[ln f (x)](k) �0
for k ∈ N on I. For our own convenience, the sets of the completely monotonic functions and the logarithmically
completely monotonic functions on I are denoted by C[I ] and CL[I ], respectively.

The famous Bernstein–Widder’s Theorem [54, p. 161] states that f ∈ C[(0, ∞)] if and only if there exists a bounded
and nondecreasing function �(t) such that

f (x) =
∫ ∞

0
e−xt d�(t) (1)

converges for 0 < x < ∞.
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In [5,35,39,41–43,52] and many other references, the inclusionsCL[I ] ⊂ C[I ] andS ⊂ CL[(0, ∞)] were revealed
implicitly or explicitly, where S denotes the class of Stieltjes transforms [5,54]. There are three different proofs in
[5,39,41,35,45] for the inclusion CL[I ] ⊂ C[I ]. The class CL[(0, ∞)] is characterized in [5, Theorem 1.1] implicitly
and in [19, Theorem 4.4] explicitly: f ∈ CL[(0, ∞)] ⇐⇒ f � ∈ C for all � > 0 ⇐⇒ n

√
f ∈ C for all n ∈ N. In other

words, the functions in CL[(0, ∞)] are those completely monotonic functions for which the representing measure �
in (1) is infinitely divisible in the convolution sense: for each n ∈ N there exists a positive measure � on [0, ∞) with
nth convolution power equal to �.

By the way, recall [25,29,48,52,54] that a function f is said to be absolutely monotonic on an interval I if it has
derivatives of all orders and f (k−1)(t)�0 for t ∈ I and k ∈ N. In [35,45], it was defined that a positive function f is
said to be logarithmically absolutely monotonic on an interval I if it has derivatives of all orders and [ln f (t)](k) �0
for t ∈ I and k ∈ N and it was showed that a logarithmically absolutely monotonic function on an interval I is also
absolutely monotonic on I, but not conversely.

In recent years, the logarithmically completely monotonic functions and their properties have been investigated
extensively and explicitly in [3,5,9–11,16–18,23,30,34–36,38– 46,50] and the references therein.

Let � and � = �′/� stand for the classical Euler’s gamma function and the psi function, respectively. The first and
second Kershaw’s inequalities [21] state that

(
x + s

2

)1−s

<
�(x + 1)

�(x + s)
<

(
x − 1

2
+
√

s + 1

4

)1−s

(2)

and

exp[(1 − s)�(x + √
s)] <

�(x + 1)

�(x + s)
< exp

[
(1 − s)�

(
x + s + 1

2

)]
(3)

for s ∈ (0, 1) and x�1. There have been a lot of literature on these two double inequalities, for example,
[4,8,12,14,15,20–23,27,30–34,36,38,44,53] and the references therein.

For real numbers a, b, c and �= min{a, b, c}, let Ha,b,c(x)= (x + c)b−a(�(x +a)/�(x +b)) in (−�, ∞). Recently,
the following sufficient and necessary conditions are established elegantly in [37]: Ha,b,c(x) ∈ LC[(−�, ∞)] if and
only if (a, b, c) ∈ {(a, b, c) : (b − a)(1 − a − b + 2c)�0} ∩ {(a, b, c) : (b − a)(|a − b| − a − b + 2c)�0}\{(a, b, c) :
a = c + 1 = b + 1}\{(a, b, c) : b = c + 1 = a + 1} and Hb,a,c(x) ∈ LC[(−�, ∞)] if and only if (a, b, c) ∈
{(a, b, c) : (b − a)(1 − a − b + 2c)�0} ∩ {(a, b, c) : (b − a)(|a − b| − a − b + 2c)�0}\{(a, b, c) : b = c +
1 = a + 1}\{(a, b, c) : a = c + 1 = b + 1}. These conclusions can be used to extend, generalize, refine and sharpen
[30, Theorem 1], inequality (2) and some other known results.

It is easy to see that inequality (3) can be rewritten for s ∈ (0, 1) and x�1 as

exp[�(x + √
s)] <

[
�(x + 1)

�(x + s)

]1/(1−s)

< exp

[
�

(
x + s + 1

2

)]
. (4)

Now it is natural to ask: What are the best constants �1(s, t) and �2(s, t) such that

exp[�(x + �1(s, t))]�
[

�(x + t)

�(x + s)

]1/(t−s)

� exp[�(x + �2(s, t))] (5)

holds for x > − min{s, t, �1(s, t), �2(s, t)}, where s and t are two real numbers? In order to give an answer to this
problem, we would like to establish the logarithmically complete monotonicity of the function

�s,t (x) = 1

exp[�(x + 	(s, t))]
[

�(x + t)

�(x + s)

]1/(t−s)

. (6)

Our first main result is the following Theorem 1.

Theorem 1. Let s and t be two real numbers with s �= t and 	(s, t) a constant depending on s and t.

(1) If 	(s, t)� min{s, t}, then �s,t (x) ∈ CL[(−	(s, t), ∞)].
(2) 1/�s,t (x) ∈ CL[(− min{s, t}, ∞)] if and only if 	(s, t)�(s + t)/2.



446 F. Qi, B.-N. Guo / Journal of Computational and Applied Mathematics 212 (2008) 444–456

Our second main result, as a straightforward consequence of Theorem 1, is the following Theorem 2.

Theorem 2. Let s and t be two real numbers with s �= t .

(1) Inequality[
�(x + t)

�(x + s)

]1/(t−s)

< exp

[
�

(
x + s + t

2

)]
(7)

is valid in (− min{s, t}, ∞). The constant (s + t)/2 in (7) is the best possible.
(2) Inequality[

�(x + t)

�(x + s)

]1/(t−s)

�
[

�(� + t)

�(� + s)

]1/(t−s)

(8)

validates for x�� > − min{s, t}.
(3) Inequality[

�(x + t)

�(x + s)

]1/(t−s)

� exp(−�(x + 	(s, t))) (9)

holds for x > − 	(s, t) > − min{s, t}.
(4) Inequality[

�(x + t)

�(x + s)

]1/(t−s)

<

[
�(
 + t)

�(
 + s)

]1/(t−s)

exp[�(
 + 	(s, t)) − �(x + 	(s, t))] (10)

sounds for x > 
� − 	(s, t) > − min{s, t}.

Before proving Theorems 1 and 2 in Section 3, we would like to compare them with some recent known results and
to give several remarks in Section 2.

2. Comparisons of theorems with some known results

2.1.

In order to refine and extend the first Kershaw’s double inequality (2), the logarithmically complete monotonicity of
the function (x + c)b−a(�(x + a)/�(x + b)) for x ∈ (−�, ∞) was studied in [30], where a, b and c are real numbers
and � = min{a, b, c}.

2.2.

It is clear that inequality (7) extends the ranges of variables of the right-hand side inequality in (4) which is a
rearranged form of (3).

2.3.

Taking t = � = 1 and s ∈ (0, 1) in (8) gives[
�(x + 1)

�(x + s)

]1/(1−s)

� 1

[�(1 + s)]1/(1−s)
. (11)

When

1�x��−1((s − 1) ln �(1 + s)) − √
s (12)
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inequality (11) is better than the left-hand side inequality in (4), where �−1 stands for the inverse function of �. This
can be realized since lims→0+ [�−1((s − 1) ln �(1 + s)) − √

s] equals the unique zero 1.4626 · · · of �(x) in (0, ∞)

clearly.

2.4.

Inequality (9) for the case of t =−	(s, 1)= 1 and s ∈ (0, 1) is better than the lower bound in (4) when �(x +√
s)+

�(x −1)�0 which can be rewritten as 0 < s�[�−1(−�(x −1))−x]2 < 1. This can be realized since limx→1+ [�(x +√
s) + �(x − 1)] = −∞ obviously.

2.5.

Inequality (10) for the case of 
 = t = 1, s ∈ (0, 1) and −1 < 	(s, 1) < s = min{s, t} is better than the right-hand
side inequality in (4) when x > 1 and

ln �(1 + s)

s − 1
��

(
x + s + 1

2

)
− �(1 + 	) + �(x + 	). (13)

This can be realized since limx→∞ [�(x+(s+1)/2)−�(1+	)+�(x+	)]=∞ for any given s and 	(s, 1) apparently.

2.6.

Inequality (8) can also be deduced from a fact obtained in [44, Proposition 3]: the function [�(x+ t)/�(x+s)]1/(s−t)

is logarithmically completely monotonic in the interval (− min{s, t}, ∞) with s �= t .

2.7.

Let a, b and c be real numbers and � = min{a, b, c}. Define

Fa,b,c(x) =
⎧⎨
⎩
[

�(x + b)

�(x + a)

]1/(a−b)

exp[�(x + c)], a �= b,

exp[�(x + c) − �(x + a)], a = b �= c

(14)

for x ∈ (−�, ∞). Furthermore, let 	(t) be an implicit function defined by equation:

et − t = e	(t) − 	(t) (15)

with 	(t) �= t for t �= 0 and let p(t) = t − 	(t − 1) in (−∞, ∞), where p−1 stands for the inverse function of p. In
[34], the following conclusions are proved:

(1) Fa,b,c(x) ∈ CL[(−�, ∞)] if (a, b, c) ∈ D1(a, b, c), where

D1(a, b, c) = {c�a, c�b} ∪ {c�a, 0�c − b�	(c − a)}
∪ {c�a, c − b�	(c − a)}\{a = b = c}. (16)

(2) [Fa,b,c(x)]−1 ∈ CL[(−�, ∞)] if (a, b, c) ∈ D2(a, b, c), where

D2(a, b, c) = {c�a, c�b} ∪ {c�a, c − b�	(c − a)}
∪ {c�a, 0�c − b�	(c − a)}\{a = b = c}. (17)

(3) If (a, b, c) ∈ D1(a, b, c), then[
�(x + b)

�(x + a)

]1/(b−a)

< exp[�(x + c)] (18)
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Plot[{Exp[x] - x, Exp[Abs[x]] - Abs[x]},{x, -3, 2}]
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	2(t) -ts 	1(s) t

Fig. 1. Graphs of the functions et − t and e|t | − |t | by MATHEMATICA 5.2.

for x ∈ (−�, ∞) and

[
�(x + b)

�(x + a)

]1/(b−a)

�
[

�(� + b)

�(� + a)

]1/(b−a)

exp[�(x + c) − �(� + c)] (19)

for x ∈ [�, ∞) are valid, where � is a constant greater than −�.
(4) If (a, b, c) ∈ D2(a, b, c), inequalities (18) and (19) are reversed.

As special cases of inequalities (18) and (19), inequalities

�(x + 1)

�(x + s)
< exp[(1 − s)�(x + p−1(s))] (20)

for x ∈ (−s, ∞) and

�(x + 1)

�(x + s)
� �(� + 1)

�(� + s)
exp[�(x + p−1(s)) − �(� + p−1(s))] (21)

for x ∈ (�, ∞) are valid, where s ∈ (0, 1), � > − s and s�p−1(s)�1.
Since the function et − t is increasing in (0, ∞) and decreasing in (−∞, 0), as showed by Fig. 1, then t	(t) < 0

for 	(t) �= t . A ready differentiation on both sides of Eq. (15) yields 	′(t) = (et − 1)/(e	(t) − 1) < 0, and then 	(t) is
decreasing and p(t) is increasing for t ∈ (−∞, ∞).

It is claimed that t+	(t) < 0 for	(t) �= t , as showed by Fig. 1. This claim can be verified as follows. Let�1(t)=e|t |−|t |
and �2(t)= et − t in (−∞, ∞). If t ∈ (−∞, 0], then �1(t)= e−t + t ; if t ∈ [0, ∞), then �1(t)=�2(t). It is clear that
�1(0)=�2(0)= 0 and limt→−∞ �1(t)= limt→−∞ �2(t)= limt→∞ �1(t)= limt→∞ �2(t)=∞. An easy calculation
gives �′

1(t)=−e−t +1 and �′
2(t)=et −1 in (−∞, 0]. It is obvious that �′

1(t) < �′
2(t) < 0 in (−∞, 0). This implies that

the functions �1(t) and �2(t) are decreasing with 0 < �2(t) < �1(t)in (−∞, 0). Accordingly, since the function �1(t)

is even in (−∞, ∞), for any given negative number s < 0, there exists a unique point 	1(s) > 0 such that s <−	1(s) < 0
and �2(s) = �1(−	1(s)) = �1(	1(s)); for any given positive number t > 0, there exists a unique point 	2(t) < 0 such
that 	2(t) < − t < 0 and �2(	2(t)) = �1(−t) = �1(t). In conclusion, for any given t ∈ (−∞, ∞)\{0}, there exists a
unique point 	(t) �= t such that t + 	(t) < 0 and �1(t) = �2(	(t)) which is equivalent to Eq. (15). In other words, if t
and 	(t) with t �= 	(t) satisfy Eq. (15), then t + 	(t) < 0.



F. Qi, B.-N. Guo / Journal of Computational and Applied Mathematics 212 (2008) 444–456 449

Now we can claim that, for x�1 and s ∈ (0, 1), inequality (20) is better than the right-hand side inequality in (3),
since

�

(
x + 1 + s

2

)
> �(x + p−1(s)) ⇐⇒ p

(
1 + s

2

)
> s

⇐⇒ 1 + s

2
− 	

(
1 + s

2
− 1

)
> s ⇐⇒ 	

(
s − 1

2

)
<

1 − s

2

is valid, where the monotonicities of � and p and the fact that t + 	(t) < 0 for t	(t) < 0 are used.

2.8.

In [4, Theorem 2.4], the following double inequality was obtained:

exp

[
(x − y)�

(
x − y

ln(x + 1) − ln(y + 1)
− 1

)]
� �(x)

�(y)
� exp

[
(x − y)�

(
x + y

2

)]
, (22)

where x and y are positive real numbers.
The right-hand side inequality in (22) is the same as (7) essentially.
It is noted that a more strengthened conclusion than the right-hand side inequality in (22) has been established in

[12, p. 250] and [44, Proposition 4]: Let s and t be two real numbers and � = min{s, t}. Then the function

exp

[
�

(
x + s + t

2

)][
�(x + t)

�(x + s)

]1/(s−t)

∈ CL[(−�, ∞)]. (23)

Consequently, inequality (7) follows.
In the left-hand side inequality of (22), substituting x by x + s and y by x + t for two real numbers s and t and

x ∈ (− min{s, t}, ∞) leads to

exp

[
�

(
s − t

ln(x + s + 1) − ln(x + t + 1)
− 1

)]
�
[

�(x + t)

�(x + s)

]1/(t−s)

. (24)

It was proved in [12, p. 248] that

exp

(
�

(
x + �−1

(
1

t − s

∫ t

s

�(u) du

)))
�
[

�(x + t)

�(x + s)

]1/(t−s)

, (25)

where x�0, s > 0, t > 0, and �−1 denotes the inverse function of �. The lower bounds in (24) and (25) do not contain
each other, since a simple numerical computation by the well-known software MATHEMATICA 5.2 shows that

�

(
s − t

ln(x + s + 1) − ln(x + t + 1)
− x − 1

)
− 1

t − s

∫ t

s

�(u) du

equals 0.21728 · · · if (x, s, t) = (191, 1, 92) and −0.10331 · · · if (x, s, t) = (11, 1, 92).

2.9.

In [6] the following complete monotonicity were established:

(1) The functions

�(x + s)

�(x + 1)
exp

[
(1 − s)�

(
x + s + 1

2

)]
and

�(x + 1)

�(x + s)

(
x + s

2

)s−1
(26)

are completely monotonic on (0, ∞) for 0�s�1. When 0 < s < 1, the functions in (26) satisfy (−1)nf (n)(x) > 0
for x > 0.
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(2) Let 0 < s < 1 and x > 0. Then both

�(x + 1)

�(x + s)
exp

[
(s − 1)�

(
x + √

s
)]

and
�(x + s)

�(x + 1)

[
x − 1

2
+
√

s + 1

4

]1−s

(27)

are strictly decreasing functions.

The complete monotonicities of the second functions in (26) and (27) are generalized in [30] to logarithmically
complete monotonicities.

It is clear that the complete monotonicities of the first functions in (26) and (27) are included in Theorem 1 of this
paper.

3. Proofs of theorems

In order to prove our main result, the following more general proposition than our need are presented.

Propsition 1. Let � be the psi function defined by �′/�, and s and t are two positive numbers.

(1) If m > n�0 are two integers, then

(�(m))−1
(

1

t − s

∫ t

s

�(m)(v) dv

)
�(�(n))−1

(
1

t − s

∫ t

s

�(n)(v) dv

)
. (28)

(2) Inequality

�(i)

(
t − s

ln t − ln s

)
� 1

t − s

∫ t

s

�(i)(u) du (29)

is valid for i being positive odd number or zero or reversed for i being nonnegative even number.
(3) The function

(�(�))−1
(

1

t − s

∫ t

s

�(�)(x + v) dv

)
− x (30)

for ��0 is increasing and concave in x > − min{s, t} and has a sharp upper bound (s + t)/2.

Proof. It was presented in [13, Theorem 3] that if the second derivative of f is continuous on an interval I such that f
is increasingly concave and f ′′/f ′ is increasing then

(f ′)−1
(

1

t − s

∫ t

s

f ′(u) du

)
�f −1

(
1

t − s

∫ t

s

f (u) du

)
(31)

holds for s, t ∈ I , where (f ′)−1 and f −1 stand for the inverse functions of f ′ and f.
It was presented in [24, p. 366, Theorem 1 and 54, p. 167] that if w(x) ∈ C[I ] then

w(k+1)(x)w(k−1)(x)�[w(k)(x)]2 (32)

for k ∈ N and x ∈ I . This means that[
w(k)(x)

w(k−1)(x)

]′
= w(k+1)(x)w(k−1)(x) − [w(k)(x)]2

[w(k−1)(x)]2 �0 (33)

and the function w(k)(x)/w(k−1)(x) is increasing.
It is easy to see that an inverse function has the property that

(af (x))−1 = f −1
(x

a

)
(34)

for a �= 0, where [af (x)]−1 denotes the inverse function of af (x).
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It is well known that �′(x) ∈ C[(0, ∞)] and (−1)i[�′(x)](i) �0 for nonnegative integer i. This implies �(2k−1)(x) ∈
C[(0, ∞)], −�(2k)(x) ∈ C[(0, ∞)] and

�(k+2)(x)�(k)(x)�[�(k+1)(x)]2 (35)

for k ∈ N. Hence, the functions −�(2i+1)(x) and �(2i)(x) are increasingly concave in (0, ∞) and{
[−�(2i+1)(x)]′′
[−�(2i+1)(x)]′

}′
=
[

�(2i+3)(x)

�(2i+2)(x)

]′

= �(2i+4)(x)�(2i+2)(x) − [�(2i+3)(x)]2

[�(2i+2)(x)]2
�0,

{
[�(2i)(x)]′′
[�(2i)(x)]′

}′
=
[

�(2i+2)(x)

�(2i+1)(x)

]′
= �(2i+3)(x)�(2i+1)(x) − [�(2i+2)(x)]2

[�(2i+1)(x)]2
�0,

which are equivalent to the functions [−�(2i+1)(x)]′′/[−�(2i+1)(x)]′ and [�(2i)(x)]′′/[�(2i)(x)]′ are increasing in
(0, ∞) for given nonnegative integer i�0. Accordingly, substituting −�(2i+1)(x) and �(2i)(x) into (31) and utilizing
(34) yields

(�(2i+2))−1
(

1

t − s

∫ t

s

�(2i+2)(u) du

)
�(�(2i+1))−1

(
1

t − s

∫ t

s

�(2i+1)(u) du

)
(36)

and

(�(2i+1))−1
(

1

t − s

∫ t

s

�(2i+1)(u) du

)
�(�(2i))−1

(
1

t − s

∫ t

s

�(2i)(u) du

)
(37)

for positive real numbers s and t and nonnegative integer i�0. As a result, by induction, inequality (28) follows.
By using Jensen’s inequality, it was obtained in [7] that if g is strictly monotonic, f is strictly increasing and f ◦ g−1

is convex (or concave, respectively) on an interval I, then

g−1
(

1

t − s

∫ t

s

g(u) du

)
�f −1

(
1

t − s

∫ t

s

f (u) du

)
(38)

holds (or reverses, respectively) for s, t ∈ I . It is apparent that f (x) = (−1)i�(i)(x) for i�0 is increasing strictly and
g(x) = 1/x is decreasing strictly and g−1(x) = g(x). Direct computation gives

g−1
(

1

t − s

∫ t

s

g(u) du

)
= t − s

ln t − ln s
, (39)

h(x)�f ◦ g−1(x) = (−1)i�(i)

(
1

x

)
(40)

and

h′′(x) = (−1)i[2x�(i+1)(1/x) + �(i+2)(1/x)]
x4

= (−1)iu3[2�(i+1)(u) + u�(i+2)(u)].

It was proved in [2] that the function x�(k+1)(x)/�(k)(x) is strictly increasing from [0, ∞) onto [−(k + 1), −k) for
k ∈ N. This means that

(−1)k(k + 1)�(k)(x)�(−1)k+1x�(k+1)(x) < (−1)kk�(k)(x) (41)
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holds in (0, ∞) for k ∈ N, which can be rewritten as

(−i)[(−1)i�(i+1)(x)]�(−1)i[2�(i+1)(u) + x�(i+2)(x)]
< (1 − i)[(−1)i�(i+1)(x)] (42)

in (0, ∞) for given nonnegative integer i. Consequently, the function h(x) is convex if i = 0 or concave if i�1. So,
the conditions of inequality (38) (or reversed inequality of (38), respectively) are satisfied by f (x) = (−1)i�(i)(x) and
g(x) = 1/x for i = 0 (or for i�1, respectively). The case of i = 0 in (38) is just inequality (29) for i = 0. For i�1, this
leads to

t − s

ln t − ln s
�((−1)i�(i))−1

(
1

t − s

∫ t

s

(−1)i�(i)(u) du

)

= (�(i))−1
(

1

t − s

∫ t

s

�(i)(u) du

)
. (43)

Since �(2i)(x) is increasing and �(2i−1)(x) for i ∈ N, inequality (29) or its reversed form is deduced from (43).
Let �s,t;�(x) denote function (30). It is said in [13, p. 194, Corollary 1] that if f is an increasing function such

that f ′ is completely monotonic on an interval I, then the function hf ;s,t (x) = f −1(1/(t − s))
∫ t

s
f (x + v) dv) − x

is increasing and concave for s, t ∈ I and x > − min{s, t}. It is clear that the functions �(2i)(x) is increasing such
that �(2i+1)(x) ∈ C[(0, ∞)] for i�0, so do the functions −�(2i+1)(x) for i�0. From (34) it is easy to deduce that
haf ;s,t (x) = hf ;s,t (x) holds for any given nonzero constant a. Consequently, the increasing concavity of the functions
h�(�);s,t (x) = �s,t;�(x) for ��0 is proved.

Since the function (−1)�+1�(�)(x) for ��0 is decreasingly convex in (0, ∞), by Hermite–Hadamard–Jensen’s
integral inequality [47,49] and (34), it is deduced that

(�(�))−1
(

1

t − s

∫ t

s

�(�)(x + v) dv

)
= ((−1)�+1�(�))−1

(
1

t − s

∫ t

s

[(−1)�+1�(�)(x + v)] dv

)

�((−1)�+1�(�))−1
(

(−1)�+1�(�)

(
x + s + t

2

))

= x + s + t

2
. (44)

Combining this with inequality (29) yields

t − s

ln(x + t) − ln(x + s)
− x��s,t;�(x)� s + t

2
. (45)

Since

lim
x→∞

[
t − s

ln(x + t) − ln(x + s)
− x

]
= s + t

2

by L’Hôspital’s rule, then the function �s,t;�(x) has a sharp upper bound (s + t)/2. The proof of Proposition 1 is
complete. �

Now we are in a position to prove Theorems 1 and 2.

Proof of Theorem 1. It is well known [1, 6.1.50 and 6.3.21] that

ln �(x) =
∫ ∞

0

1

u

[
(x − 1)e−u − e−u − e−xu

1 − e−u

]
du, (46)

�(x) =
∫ ∞

0

(
e−u

u
− e−xu

1 − e−u

)
du. (47)
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Straightforward calculation gives

ln �s,t (x) = 1

t − s
[ln �(x + t) − ln �(x + s)] − �(x + 	(s, t))

=
∫ ∞

0

e−xu

1 − e−u

[
e−tu − e−su

(t − s)u
+ e−u	(s,t)

]
du

�
∫ ∞

0

e−[x+	(s,t)]u

1 − e−u
[qs,t (u) + 1] du,

where

qs,t (u) = e−tu − e−su

(t − s)u
eu	(s,t)

= − eu	(s,t)

(
1

t − s

∫ t

s

e−uv dv

)

= − exp

{
u

[
	(s, t) + ln

(
1

t − s

∫ t

s

e−uv dv

)1/u
]}

� − exp{u[	(s, t) + ln ps,t (u)]}
and, by using [26, p. 2; 25, Theorem 3.3 or 51, Theorem 1.1], see also [28], the function ps,t (u) is increasing in u�0
with

lim
u→0

ps,t (u) = e−(s+t)/2 and lim
u→∞ ps,t (u) = e− min{s,t}.

Accordingly, if 	(s, t)� min{s, t} then hs,t (u)�0, if 	(s, t)�(s + t)/2 then hs,t (u)�0. This means

(−1)k[ln �s,t (x)](k)

{
�0, 	(s, t)� min{s, t}
�0, 	(s, t)�(s + t)/2

for k ∈ N.

Conversely, if 1/�s,t (x) is logarithmically completely monotonic, then [ln �s,t (x)]′ �0 which can be rearranged as

�(x + t) − �(x + s)

t − s
��′(x + 	(s, t)). (48)

Since �′ is decreasing, thus

	(s, t)�(�′)−1
(

�(x + t) − �(x + s)

t − s

)
− x

= (�′)−1
(

1

t − s

∫ t

s

�′(x + v) dv

)
− x = �s,t;1(x), (49)

where (�′)−1 denotes the inverse function of �′ and �s,t;�(x) is defined by (30). Proposition 1 tells us that the
function �s,t;1(x) has a sharp upper bound (s + t)/2, thus, it holds that 	(s, t)�(s + t)/2. The proof of Theorem 1
is complete. �

Proof of Theorem 2. If 	(s, t)�(s + t)/2, then the function �s,t (x) defined by (6) is increasing by Theorem 1. Hence,
for any given � > − min{s, t} and 	(s, t)�(s + t)/2, inequality

�s,t (�)��s,t (x) (50)

holds in [�, ∞) and

�s,t (x) < lim
x→∞ �s,t (x) (51)

is valid in (− min{s, t}, ∞).
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For a and b being two constants, as x → ∞, the following asymptotic formula is given in [1, p. 261, 6.1.47]:

xb−a �(x + a)

�(x + b)
= 1 + (a − b)(a + b − 1)

2x
+ 1

12

(
a − b

2

)
3(a + b − 1)2 − a + b − 1

x2 + O

(
1

x3

)

= 1 + O

(
1

x

)
. (52)

In [36], it was proved that �(x) − ln x + (�/x) ∈ C[(0, ∞)] if and only if ��1 and ln x − (�/x) − �(x) ∈ C[(0, ∞)]
if and only if �� 1

2 . From this, it is deduced that

ln x − 1

x
< �(x) < ln x − 1

2x
(53)

in (0, ∞). Utilization of (52) and (53) leads to

lim
x→∞

1

�s,t (x)
= lim

x→∞

{
exp[�(x + 	(s, t))]

x
[1 + O(1)]1/(t−s)

}

= lim
x→∞

exp[�(x + 	(s, t))]
x

� lim
x→∞

{
x + 	(s, t)

x
exp

[
− 1

2(x + 	(s, t))

]}
= 1

and

lim
x→∞

1

�s,t (x)
� lim

x→∞

{
x + 	(s, t)

x
exp

[
− 1

x + 	(s, t)

]}
= 1,

thus limx→∞ �s,t (x) = 1 and inequality (51) is reduced to[
�(x + t)

�(x + s)

]1/(t−s)

< exp[�(x + 	(s, t))] (54)

for x > − min{s, t} and 	(s, t)�(s + t)/2. From the increasing monotonicity of �, inequality (7) is proved.
By standard calculation, inequality (50) can be rearranged as[

�(x + t)

�(x + s)

]1/(t−s)

�
[

�(� + t)

�(� + s)

]1/(t−s)

exp[�(x + 	(s, t)) − �(� + 	(s, t))] (55)

for x ∈ [�, ∞) and 	(s, t)�(s + t)/2. From the decreasing monotonicity in y of the function �(x + y) − �(� + y)

and limy→∞ [�(x + y) − �(� + y)] = 0 for x��, inequality (8) is concluded.
Combination of the conclusion �s,t (x) ∈ CL[(−	(s, t), ∞)] for 	(s, t)� min{s, t} in Theorem 1 with limx→∞

�s,t (x) = 1 and discussion by standard argument yields inequalities (9) and (10). The proof of Theorem 2
is complete. �
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[24] D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, Boston, London,

1993.
[25] F. Qi, Generalized weighted mean values with two parameters, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1978) (1998) 2723–2732.
[26] F. Qi, Generalized abstracted mean values, J. Inequal. Pure Appl. Math. 1 (1) (2000), Art. 4. Available online at 〈http://jipam.vu.edu.

au/article.php?sid=97〉. RGMIA Res. Rep. Coll. 2 (5) (1999), Art. 4, 633–642. Available online at 〈http://rgmia.vu.edu.au/v2n5.html〉.
[27] F. Qi, Monotonicity results and inequalities for the gamma and incomplete gamma functions, Math. Inequal. Appl. 5 (1) (2002) 61–67. RGMIA

Res. Rep. Coll. 2 (7) (1999), Art. 7, 1027–1034. Available online at 〈http://rgmia.vu.edu.au/v2n7.html〉.
[28] F. Qi, The extended mean values: definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Mat.

Ed. 5 (3) (2003) 63–90. RGMIA Res. Rep. Coll. 5 (1) (2002), Art. 5, 57–80. Available online at 〈http://rgmia.vu.edu.au/v5n1.html〉.
[29] F. Qi, Certain logarithmically N-alternating monotonic functions involving gamma and q-gamma functions, RGMIA Res. Rep. Coll. 8 (3)

(2005), Art. 5. Available online at 〈http://rgmia.vu.edu.au/v8n3.html〉.
[30] F. Qi, A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw’s double inequality, J. Comput.

Appl. Math. (2007), doi: 〈http://dx.doi.org/10.1016/j.cam.2006.09.005〉. RGMIA Res. Rep. Coll. 9 (2) (2006), Art. 16. Available online at
〈http://rgmia.vu.edu.au/v9n2.html〉.

[31] F. Qi, A completely monotonic function involving divided difference of psi function and an equivalent inequality involving sum, RGMIA Res.
Rep. Coll. 9 (4) (2006), Art. 5. Available online at 〈http://rgmia.vu.edu.au/v9n4.html〉.

[32] F. Qi, A completely monotonic function involving divided differences of psi and polygamma functions and an application, RGMIA Res. Rep.
Coll. 9 (4) (2006), Art. 8. Available online at 〈http://rgmia.vu.edu.au/v9n4.html〉.

[33] F. Qi, The best bounds in Kershaw’s inequality and two completely monotonic functions, RGMIA Res. Rep. Coll. 9 (4) (2006), Art. 2. Available
online at 〈http://rgmia.vu.edu.au/v9n4.html〉.

[34] F. Qi,A class of logarithmically completely monotonic functions and application to the best bounds in the second Gautschi–Kershaw’s inequality,
Comput. Math. Appl. (2007), in press. RGMIA Res. Rep. Coll. 9 (4) (2006), Art. 11. Available online at 〈http://rgmia.vu.edu.au/v9n4.html〉.

[35] F. Qi, A property of logarithmically absolutely monotonic functions and logarithmically complete monotonicities of (1 + �/x)x+�, Integral
Transform Spec. Funct. (2007), accepted for publication.

[36] F. Qi, Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms Spec. Funct.
18 (2007), accepted for publication. RGMIA Res. Rep. Coll. 9 (2006), Suppl., Art. 6. Available online at 〈http://rgmia.vu.edu.au/v9(E).html〉.

[37] F. Qi, Wendel–Gautschi–Kershaw’s inequalities and sufficient and necessary conditions that a class of functions involving ratio of gamma
functions are logarithmically completely monotonic, Math. Comp. (2007), accepted for publication. RGMIA Res. Rep. Coll. 10 (1) (2007),
Art. 2. Available online at 〈http://rgmia.vu.edu.au/v10n1.html〉.

[38] F. Qi, J. Cao, D.-W. Niu, Four logarithmically completely monotonic functions involving gamma function and originating from problems of
traffic flow, RGMIA Res. Rep. Coll. 9 (3) (2006), Art 9. Available online at 〈http://rgmia.vu.edu.au/v9n3.html〉.

[39] F. Qi, Ch.-P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl. 296 (2) (2004) 603–607.
[40] F. Qi, W.-S. Cheung, Logarithmically completely monotonic functions concerning gamma and digamma functions, Integral Transform Spec.

Funct. 18 (2007), in press.
[41] F. Qi, B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7 (1) (2004)

63–72, Art. 8, Available online at 〈http://rgmia.vu.edu.au/v7n1.html〉.
[42] F. Qi, B.-N. Guo, Ch.-P. Chen, Some completely monotonic functions involving the gamma and polygamma functions, RGMIA Res. Rep. Coll.

7 (1) (2004) 31–36, Art. 5, Available online at 〈http://rgmia.vu.edu.au/v7n1.html〉.
[43] F. Qi, B.-N. Guo, Ch.-P. Chen, Some completely monotonic functions involving the gamma and polygamma functions, J. Austral. Math. Soc.

80 (2006) 81–88.
[44] F. Qi, B.-N. Guo, Ch.-P. Chen, The best bounds in Gautschi–Kershaw inequalities, Math. Inequal. Appl. 9 (3) (2006) 427–436. RGMIA Res.

Rep. Coll. 8 (2) (2005), Art. 17. Available online at 〈http://rgmia.vu.edu.au/v8n2.html〉.

http://www.rgmia.vu.edu.au/v8n1.html
http://www.jipam.vu.edu.au/article.php?sid{{mathsurround =2ptunhbox voidb@x hbox {$mathbin {=}$}}} 662
http://www.rgmia.vu.edu.au/v8n3.html
http://www.jipam.vu.edu.au/article.php?sid{mathsurround =2ptunhbox voidb@x hbox {$mathbin {=}$}}97
http://www.jipam.vu.edu.au/article.php?sid{mathsurround =2ptunhbox voidb@x hbox {$mathbin {=}$}}97
http://rgmia.vu.edu.au/v2n5.html
http://www.rgmia.vu.edu.au/v2n7.html
http://www.rgmia.vu.edu.au/v5n1.html
http://rgmia.vu.edu.au/v8n3.html
http://www.dx.doi.org/10.1016/j.cam.2006.09.005
http://www.rgmia.vu.edu.au/v9n2.html
http://www.rgmia.vu.edu.au/v9n4.html
http://www.rgmia.vu.edu.au/v9n4.html
http://www.rgmia.vu.edu.au/v9n4.html
http://www.rgmia.vu.edu.au/v9n4.html
http://www.rgmia.vu.edu.au/v9(E).html
http://www.rgmia.vu.edu.au/v10n1.html
http://www.rgmia.vu.edu.au/v9n3.html
http://www.rgmia.vu.edu.au/v7n1.html
http://www.rgmia.vu.edu.au/v7n1.html
http://www.rgmia.vu.edu.au/v8n2.html


456 F. Qi, B.-N. Guo / Journal of Computational and Applied Mathematics 212 (2008) 444–456

[45] F. Qi, W. Li, B.-N. Guo, Generalizations of a theorem of I. Schur, RGMIA Res. Rep. Coll. 9 (3) (2006), Art. 15. Available online at
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