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a b s t r a c t

This paper considers the robust stability for a class of linear systems with interval time-
varying delay and nonlinear perturbations. A Lyapunov–Krasovskii functional, which takes
the range information of the time-varying delay into account, is proposed to analyze
the stability. A new approach is introduced for estimating the upper bound on the time
derivative of the Lyapunov–Krasovskii functional. On the basis of the estimation and
by utilizing free-weighting matrices, new delay-range-dependent stability criteria are
established in terms of linear matrix inequalities (LMIs). Numerical examples are given
to show the effectiveness of the proposed approach.
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1. Introduction

During the past few decades, considerable attention has been paid to the stability of time-delay systems (see, e.g.,
[1–4], and references therein). Usually, the range of delays considered in most of the existing references is from zero to
an upper bound [5]. In practice, however, the delay may vary in a range for which the lower bound is not restricted to being
zero. A typical example with interval time delay is the networked control system, which has been widely studied in the
recent literature (see, e.g., [6,7]). With the development of networked control technology, many efforts have been made to
investigate the stability of systems with interval time-varying delay (see [8–17]).
Since delay-dependent criteria are generally less conservative than delay-independent ones [4], many researchers have

focused on delay-dependent stability. Many significant results have been reported in the recent literature [18,1,2,19,6,3,
20–22,8–11,23,24,12–14,5,25,4,15–17,26]. For example, a novel Lyapunov–Krasovskii functional was introduced in [9]. An
augmented Lyapunov–Krasovskii functional approach was developed in [11,13]. A Jensen integral inequality approach was
employed in [10,24,12,14,17]. A novel piecewise analysis method was proposed in [15]. Delay-range-dependent stability
was investigated in [21] by using the free-weightingmatrix approach [22,25]. The stability problemof discrete-time systems
with interval time-varying delay was studied in [19,16].
In practice, real systems usually present some uncertainties due to environmental noise, uncertain or slowly varying

parameters, etc. Therefore, the stability problemof time-delay systemswith nonlinear perturbations has received increasing
attention (see, e.g., [18,20,26,27]). A model transformation method was used in [18]. A bounding technique for some cross
terms was proposed in [23]. A descriptor model transformation together with a decomposition technique using the delay
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term matrix was employed in [20]. Recently, a less conservative delay-dependent stability criterion was provided in [26]
by employing the free-weighting matrix approach. Robust stabilization for nonlinear discrete-time systems was studied
in [27]. In the above references, reducing the conservatism of the existing stability criteria is a central issue. As we know, a
bounding technique [23] or model transformation [1] may increase the conservatism. The free-weighting matrix method,
by contrast, is helpful for reducing the conservatism of stability criteria [25]. On the other hand, choosing an appropriate
Lyapunov–Krasovskii functional and estimating the upper bound of its time derivative are very important in deriving the
stability criteria.
In this paper, we deal with the delay-dependent stability problem for a class of linear systems with nonlinear

perturbations and interval time-varying delay.We first introduce a new Lyapunov–Krasovskii functional by taking the range
information of the delay into account. The delay-dependent stability of systems is then analyzed by using the functional. An
approach is proposed in estimating the upper bound of the time derivative of the functional. New delay-range-dependent
stability criteria are obtained by introducing free-weightingmatrices and free-weighting parameters. The proposed stability
criteria are formulated in terms of a set of linear matrix inequalities (LMIs). Finally, two numerical examples are given to
show the effectiveness of the proposed approach.

Notations. Rn denotes the n-dimensional Euclidean space. The superscript ‘‘T ’’ stands for matrix transposition. X > Y
(respectively, X ≥ Y ), where X and Y are real symmetric matrices, means that the matrix X − Y is positive definite
(respectively, positive semi-definite). I is an identity matrix with appropriate dimension. In symmetric block matrices, we
use an asterisk (∗) to represent a term that is induced by symmetry. Matrices, if not explicitly stated, are assumed to have
compatible dimensions.

2. Problem formulation

Consider the following system with a time-varying state delay and nonlinear perturbations:{
ẋ(t) = Ax(t)+ Ahx(t − h(t))+ f (x(t), t)+ g(x(t − h(t)), t)
x(t) = φ(t), ∀t ∈ [−hM , 0]

(1)

where x(t) ∈ Rn is the state vector; A and Ah are known matrices in Rn×n. The delay h(t) is time varying and satisfies

0 ≤ hm ≤ h(t) ≤ hM , ḣ(t) ≤ hd, (2)

where hm and hM are constants representing respectively the lower and upper bounds of the delay, hd is a positive constant.
The initial condition φ(t) is a continuous vector-valued function. Moreover, the functions f (x(t), t) and g(x(t − h(t)), t)
are unknown and denote the nonlinear perturbations with respect to the current state x(t) and delayed state x(t − h(t)),
respectively. They satisfy that f (0, t) = 0, g(0, t) = 0 and

f T (x(t), t)f (x(t), t) ≤ α2xT (t)F T Fx(t), (3)

gT (x(t − h(t)), t)g(x(t − h(t)), t) ≤ β2xT (t − h(t))GTGx(t − h(t)), (4)

where α ≥ 0 and β ≥ 0 are known scalars, F and G are known constant matrices.
In this paper, we investigate the stability problem of system (1) with the interval time-varying delay satisfying (2) and

the nonlinear perturbations f (x(t), t) and g(x(t − h(t)), t) satisfying (3) and (4). Our main objective is to derive new delay-
range-dependent stability conditions under which system (1) is asymptotically stable.

3. Main results

In this section, we present new delay-range-dependent stability conditions for system (1) with the delay satisfying (2)
and the perturbations satisfying (3) and (4).

Theorem 1. System (1) subject to (2)–(4) is asymptotically stable for given 0 ≤ hm ≤ hM and hd if there exist scalars ε1 ≥ 0,
ε2 ≥ 0 and matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, R1 > 0, R2 > 0, X ≥ 0, Y ≥ 0, LT =

[
LT1 LT2 LT3 LT4

]
,

MT =
[
MT1 MT2 MT3 MT4

]
and NT =

[
NT1 NT2 NT3 NT4

]
of appropriate dimensions such that the following LMIs hold:

Φ + hmX + ρY M − L −N
√
hmSTR1

√
ρSTR2

∗ −Q1 0 0 0
∗ ∗ −Q3 0 0
∗ ∗ ∗ −R1 0
∗ ∗ ∗ ∗ −R2

 < 0, (5)

[
X L
∗ R1

]
≥ 0,

[
Y M
∗ R2

]
≥ 0,

[
Y N
∗ R2

]
≥ 0, (6)
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where ρ = hM − hm, S =
[
A Ah I I

]
,

Φ =

Φ11 Φ12 P + LT3 P + LT4
∗ Φ22 NT3 −M

T
3 NT4 −M

T
4

∗ ∗ −ε1I 0
∗ ∗ ∗ −ε2I

 , (7)

Φ11 = PA+ ATP + L1 + LT1 + Q1 + Q2 + Q3 + ε1α
2F T F ,

Φ12 = PAh + LT2 + N1 −M1,

Φ22 = −(1− hd)Q2 + N2 + NT2 −M2 −M
T
2 + ε2β

2GTG.

Proof. Choose a Lyapunov–Krasovskii functional candidate as

V (t) = V1(t)+ V2(t)+ V3(t)+ V4(t), (8)

where

V1(t) = x(t)TPx(t),

V2(t) =
∫ t

t−hm
xT (s)Q1x(s)ds+

∫ t

t−h(t)
xT (s)Q2x(s)ds+

∫ t

t−hM
xT (s)Q3x(s)ds,

V3(t) =
∫ 0

−hm

∫ t

t+θ
ẋT (s)R1ẋ(s)dsdθ,

V4(t) =
∫
−hm

−hM

∫ t

t+θ
ẋT (s)R2ẋ(s)dsdθ.

Calculating the time derivatives of Vi(t), i = 1, . . . , 4, along the trajectory of system (1) yields

V̇1(t) = 2xT (t)P[Ax(t)+ Ahx(t − h(t))+ f (x(t), t)+ g(x(t − h(t)), t)], (9)

V̇2(t) = xT (t)[Q1 + Q2 + Q3]x(t)− (1− ḣ(t))xT (t − h(t))Q2x(t − h(t))
− xT (t − hm)Q1x(t − hm)− xT (t − hM)Q3x(t − hM)

≤ xT (t)[Q1 + Q2 + Q3]x(t)− (1− hd)xT (t − h(t))Q2x(t − h(t))
− xT (t − hm)Q1x(t − hm)− xT (t − hM)Q3x(t − hM) (10)

V̇3(t) = hmẋT (t)R1ẋ(t)−
∫ t

t−hm
ẋT (s)R1ẋ(s)ds, (11)

V̇4(t) = ρẋT (t)R2ẋ(t)−
∫ t−hm

t−h(t)
ẋT (s)R2ẋ(s)ds−

∫ t−h(t)

t−hM
ẋT (s)R2ẋ(s)ds. (12)

Define ξ T1 (t) =
[
xT (t) xT (t − h(t)) f T (x(t), t) gT (x(t − h(t), t))

]
. Then, the following equations hold for any

matrices L,M and N with appropriate dimensions:

2ξ T1 (t)L
[
x(t)− x(t − hm)−

∫ t

t−hm
ẋ(s)ds

]
= 0, (13)

2ξ T1 (t)M
[
x(t − hm)− x(t − h(t))−

∫ t−hm

t−h(t)
ẋ(s)ds

]
= 0, (14)

2ξ T1 (t)N
[
x(t − h(t))− x(t − hM)−

∫ t−h(t)

t−hM
ẋ(s)ds

]
= 0. (15)

Moreover, for matrices X and Y with appropriate dimensions, we have

hmξ T1 (t)Xξ1(t)−
∫ t

t−hm
ξ T1 (t)Xξ1(t)ds = 0, (16)

ρξ T1 (t)Yξ1(t)−
∫ t−hm

t−h(t)
ξ T1 (t)Yξ1(t)ds−

∫ t−h(t)

t−hM
ξ T1 (t)Yξ1(t)ds = 0. (17)
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On the other hand, for any scalars ε1 ≥ 0, ε2 ≥ 0, it follows from (3) and (4) that

ε1[α
2xT (t)F T Fx(t)− f T (x(t), t)f (x(t), t)] ≥ 0, (18)

ε2[β
2xT (t − h(t))GTGx(t − h(t))− gT (x(t − h(t)), t)g(x(t − h(t)), t)] ≥ 0. (19)

Adding the terms on the left sides of (13)–(19) to the sum of Vi(t), i = 1, . . . , 4, yields

V̇ (t) ≤ 2xT (t)P[Ax(t)+ Ahx(t − h(t))+ f (x(t), t)+ g(x(t − h(t)), t)] + xT (t)[Q1 + Q2 + Q3]x(t)
− (1− hd)xT (t − h(t))Q2x(t − h(t))− xT (t − hm)Q1x(t − hm)− xT (t − hM)Q3x(t − hM)

+ hmẋT (t)R1ẋ(t)−
∫ t

t−hm
ẋT (s)R1ẋ(s)ds+ ρẋT (t)R2ẋ(t)−

∫ t−hm

t−h(t)
ẋT (s)R2ẋ(s)ds−

∫ t−h(t)

t−hM
ẋT (s)R2ẋ(s)ds

+ 2ξ T1 (t)L
[
x(t)− x(t − hm)−

∫ t

t−hm
ẋ(s)ds

]
+ 2ξ T1 (t)M

[
x(t − hm)− x(t − h(t))−

∫ t−hm

t−h(t)
ẋ(s)ds

]
+ 2ξ T1 (t)N

[
x(t − h(t))− x(t − hM)−

∫ t−h(t)

t−hM
ẋ(s)ds

]
+ hmξ T1 (t)Xξ1(t)−

∫ t

t−hm
ξ T1 (t)Xξ1(t)ds

+ ρξ T1 (t)Yξ1(t)−
∫ t−hm

t−h(t)
ξ T1 (t)Yξ1(t)ds−

∫ t−h(t)

t−hM
ξ T1 (t)Yξ1(t)ds+ ε1[α

2xT (t)F T Fx(t)

− f T (x(t), t)f (x(t), t)] + ε2[β2xT (t − h(t))GTGx(t − h(t))− gT (x(t − h(t)), t)g(x(t − h(t)), t)]

= ξ T3 (t)
[
Θ + hmS̄TR1S̄ + ρS̄TR2S̄

]
ξ3(t)−

∫ t

t−hm
ξ T2 (t, s)

[
X L
LT R1

]
ξ2(t, s)ds

−

∫ t−hm

t−h(t)
ξ T2 (t, s)

[
Y M
MT R2

]
ξ2(t, s)ds−

∫ t−h(t)

t−hM
ξ T2 (t, s)

[
Y N
NT R2

]
ξ2(t, s)ds, (20)

where

ξ T3 (t) =
[
ξ T1 (t) xT (t − hm) xT (t − hM)

]
, ξ T2 (t, s) =

[
ξ T1 (t) ẋT (s)

]
,

and

Θ =

[
Φ + hmX + ρY M − L −N

∗ −Q1 0
∗ ∗ −Q3

]
, S̄ =

[
S 0 0

]
.

Applying the Schur complement, we know that Θ + hmS̄TR1S̄ + ρS̄TR2S̄ < 0 is equivalent to (5). Thus, if (5) and (6) hold,
then (20) implies that there exists a scalar δ > 0 such that V̇ (t) ≤ −δ‖x(t)‖2 [3]. Therefore, system (1) is asymptotically
stable under the conditions of Theorem 1. �

Remark 1. In the proof of Theorem 1, we introduce a new estimation on the upper bound of the time derivative of V (t).
More precisely, the identity equalities (16) and (17) are employed. In contrast, the following inequalities (here the ζ (t), Z1,
Z2, N , S andM are defined in [21]):

hMζ T (t)NZ−11 N
T ζ (t)−

∫ t

t−h(t)
ζ T (t)NZ−11 N

T ζ (t)ds ≥ 0,

ρζ T (t)S(Z1 + Z2)−1ST ζ (t)−
∫ t−h(t)

t−hM
ζ T (t)S(Z1 + Z2)−1ST ζ (t)ds ≥ 0

and

ρζ T (t)MZ−12 M
T ζ (t)−

∫ t−hm

t−h(t)
ζ T (t)MZ−12 M

T ζ (t)ds ≥ 0

were employed in [21]; and h(t), hM − h(t) and h(t)− hm were enlarged to hM , ρ and ρ, respectively. It is easy to see that
their treatment is more conservative than the expression in the proof of Theorem 1.

Remark 2. In some existing literature, for example [26], the term of
∫ t
t−hM

ẋT (s)R2ẋ(s)ds in the time derivative of V (t)

was often estimated as
∫ t
t−h(t) ẋ

T (s)R2ẋ(s)ds and the term
∫ t−h(t)
t−hM

ẋT (s)R2ẋ(s)ds was ignored. This treatment, as shown in

Example 2, may lead to conservativeness. In the proof of Theorem 1, the term
∫ t−h(t)
t−hM

ẋT (s)R2ẋ(s)ds is retained.
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Remark 3. The range of varying delay considered inmany existing references is from0 to an upper bound. For example, [18]
investigated the stability problem for system (1) in the case of hm = 0. When hm = 0, i.e., the time-varying delay satisfies

0 ≤ h(t) ≤ hM , ḣ(t) ≤ hd, (21)

the robust stability problem of system (1) is reduced to the problems discussed in [20] or [26]. Following the same lines as
in the proof of Theorem 1, we can obtain the following result.

Theorem 2. System (1) subject to (3)–(4) and (21) is asymptotically stable for given hM > 0 and hd > 0 if there exist
scalars ε1 ≥ 0, ε2 ≥ 0 and matrices P > 0, Q1 > 0, Q2 > 0, Z ≥ 0, R > 0, MT =

[
MT1 MT2 MT3 MT4

]
and

NT =
[
NT1 NT2 NT3 NT4

]
of appropriate dimensions such that the following LMIs hold:Φ + hMZ −N
√
hMSTR

∗ −Q2 0
∗ ∗ −R

 < 0, [
Z M
∗ R

]
≥ 0,

[
Z N
∗ R

]
≥ 0, (22)

where S =
[
A Ah I I

]
,

Φ =

Φ11 Φ12 P +MT3 P +MT4
∗ Φ22 NT3 −M

T
3 NT4 −M

T
4

∗ ∗ −ε1I 0
∗ ∗ ∗ −ε2I

 , (23)

with

Φ11 = PA+ ATP +M1 +MT1 + Q1 + Q2 + ε1α
2F T F ,

Φ12 = PAh +MT2 + N1 −M1,

Φ22 = −(1− hd)Q1 + N2 + NT2 −M2 −M
T
2 + ε2β

2GTG.

Remark 4. If there is no perturbation, that is, f (x(t), t) = 0, g(x(t − h(t)), t) = 0, then the stability problem of system (1)
is reduced to analyzing the stability of the system{

ẋ(t) = Ax(t)+ Ahx(t − h(t))
x(t) = φ(t), ∀t ∈ [−hM , 0].

(24)

This problem has beenwidely studied in the recent literature (see, e.g., [21,8–14,17]). For system (24), we have the following
conclusion, which can be obtained directly from Theorem 1.

Corollary 1. System (24) subject to (2) is asymptotically stable for given 0 ≤ hm ≤ hM and hd if there exist matrices P > 0,
Q1 > 0, Q2 > 0, Q3 > 0, R1 > 0, R2 > 0, X =

[
X11 X12
∗ X22

]
≥ 0, Y =

[
Y11 Y12
∗ Y22

]
≥ 0, LT =

[
LT1 LT2

]
, MT =

[
MT1 MT2

]
and

NT =
[
NT1 NT2

]
of appropriate dimensions such that the following LMIs hold:

Ψ11 Ψ12 M1 − L1 −N1
√
hmATR1

√
ρATR2

∗ Ψ22 M2 − L2 −N2
√
hmAThR1

√
ρAThR2

∗ ∗ −Q1 0 0 0
∗ ∗ ∗ −Q3 0 0
∗ ∗ ∗ ∗ −R1 0
∗ ∗ ∗ ∗ ∗ −R2

 < 0, (25)

[
X L
∗ R1

]
≥ 0,

[
Y M
∗ R2

]
≥ 0,

[
Y N
∗ R2

]
≥ 0, (26)

where ρ = hM − hm,

Ψ11 = PA+ ATP + L1 + LT1 + Q1 + Q2 + Q3 + hmX11 + ρY11,

Ψ12 = PAh + LT2 + N1 −M1 + hmX12 + ρY12,

Ψ22 = −(1− hd)Q2 + N2 + NT2 −M2 −M
T
2 + hmX22 + ρY22.

When the information of hd is unknown, for system (24) the following result can be obtained directly from Corollary 1 by
setting Q2 = 0.
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Table 1
Allowable upper bound of hM for different hd , α and β .

α and β α = 0, β = 0.1 α = 0.1, β = 0.1
hd hd = 0.5 hd = 0.9 hd = 1.1 hd = 0.5 hd = 0.9 hd = 1.1

Theorem 2, [18] 0.546 0.279 – 0.495 0.255 –
Theorem 1, [20] 0.674 – – 0.571 – –
Theorem 1, [26] 1.142 0.738 0.735 1.009 0.714 0.714
Theorem 2 1.442 1.280 1.280 1.284 1.209 1.209

Corollary 2. System (24) subject to (2) is asymptotically stable for given 0 ≤ hm ≤ hM and unknown hd if there exist matrices
P > 0, Q1 > 0, Q3 > 0, R1 > 0, R2 > 0, X =

[
X11 X12
∗ X22

]
≥ 0, Y =

[
Y11 Y12
∗ Y22

]
≥ 0, LT =

[
LT1 LT2

]
, MT =

[
MT1 MT2

]
and

NT =
[
NT1 NT2

]
of appropriate dimensions such that (26) and the following LMI holds:

Υ11 Υ12 M1 − L1 −N1
√
hmATR1

√
ρATR2

∗ Υ22 M2 − L2 −N2
√
hmAThR1

√
ρAThR2

∗ ∗ −Q1 0 0 0
∗ ∗ ∗ −Q3 0 0
∗ ∗ ∗ ∗ −R1 0
∗ ∗ ∗ ∗ ∗ −R2

 < 0, (27)

where ρ = hM − hm,

Υ11 = PA+ ATP + L1 + LT1 + Q1 + Q3 + hmX11 + ρY11,

Υ12 = PAh + LT2 + N1 −M1 + hmX12 + ρY12,

Υ22 = N2 + NT2 −M2 −M
T
2 + hmX22 + ρY22.

4. Numerical examples

In this section, we give two numerical examples in order to compare several existing criteria and those obtained in this
paper. All the numerical results are calculated via the LMI toolbox of MATLAB.

Example 1 ([20]). Consider the system described by (1) with the following parameters:

A =
[
−1.2 0.1
−0.1 −1

]
, Ah =

[
−0.6 0.7
−1 −0.8

]
, F = G = I. (28)

Assume that the nonlinear perturbations f (x(t), t) and g(x(t − h(t)), t) satisfy (3) and (4) respectively and the delay h(t)
satisfies (21). Now we calculate the allowable upper bound of hM that guarantees the robust stability of system (1) under
different α and β listed in Table 1. On the basis of the stability criteria given in [18,20,26] and Theorem 2 in this paper,
computational results are obtained and these are shown in Table 1. From the table, it can be seen that Theorem 2 provides
much less conservative results than others. Moreover, when hd ≥ 1, the stability criteria proposed in [18,20] cannot be
applied to check the robust stability of system (1).

Example 2 ([21]). Consider the system (24) with

A =
[
2 0
0 −0.9

]
, Ah =

[
−1 0
−1 −1

]
. (29)

Assume the time delay satisfies (2). For given hm and hd, we calculate the allowable upper bound of hM that guarantees
the asymptotical stability of system (24). Using different methods, computational results are obtained and these are listed
in Table 2. It is seen that the stability criteria in [12] and Corollary 1 in this paper are not covered by each other, although
they are less conservative than those in [21,10,11].
For unknown hd, the comparison of allowable upper bounds of hM is listed in Table 3. It is seen that the stability criteria

in [9] and Corollary 2 are not covered by each other, although they are less conservative than those in [21,14]. Note that,
for unknown hd, the results in [15] are better than those for Corollary 2 in this example. However, the criteria in [15] are
complex and involve more matrix variables than ours. Moreover, it seems that Corollary 2 can give less conservative results
when the lower bound of the varying delay, i.e., hm, is small.

5. Conclusion

We have studied the robust stability problem for a class of linear systemswith interval time-varying delay and nonlinear
perturbations. An appropriate Lyapunov–Krasovskii functional is proposed for deriving the delay-range-dependent stability
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Table 2
Allowable upper bound of hM for various hm and hd .

hm hm = 0 hm = 1 hm = 2
hd hd = 0.5 hd = 0.9 hd = 0.5 hd = 0.9 hd = 0.5 hd = 0.9

Theorem 1, [21] 2.04 1.37 2.07 1.74 2.43 2.43
Theorem 1, [10] 2.04 1.37 2.07 1.74 2.43 2.43
Theorem 1, [11] 2.04 1.37 2.07 1.74 2.43 2.43
Corollary 2, [24] 2.33 1.87 – – – –
Theorem 1, [12] 2.08 1.66 2.15 2.12 2.71 2.71
Corollary 1 2.33 1.87 2.33 2.07 2.61 2.61

Table 3
Allowable upper bound of hM for various hm and unknown hd .

hm 0 0.5 1 1.5 2 3 4

Theorem 1, [21] 1.34 1.47 1.74 2.06 2.43 3.22 4.06
Proposition 2, [9] 1.34 1.51 1.80 2.14 2.52 3.33 4.18
Corollary 2, [14] 1.34 1.49 1.76 2.08 2.44 3.22 4.06
Theorem 1, [15] 1.98 2.05 2.16 2.37 2.64 – –
Corollary 2 1.86 1.90 2.06 2.31 2.61 3.31 4.09

criteria. A new approach, different from the existing analysis methods, is introduced in estimating the upper bound on the
difference of Lyapunov functions without ignoring any useful terms. Numerical examples have illustrated the effectiveness
of the proposed method.
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