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a b s t r a c t

This paper is concerned with the convergence of the hp-version of the finite element
method (hp-FEM) for some nonsmooth unilateral problems in linear elastostatics. We con-
sider in particular the deformation of an elastic body unilaterally supported by a rigid foun-
dation, admitting Tresca friction (given friction) along the rigid foundation, solely subjected
to body forces and surface tractions without being fixed along some part of its boundary.
For the discretization of the unilateral constraint and the nonsmooth friction functional we
employ Gauss–Lobatto quadrature. We show convergence of the hp-FEM approximations
formechanically definite problemswithout imposing any regularity assumption.Moreover
we treat the coercive case, when the body is fixed along some part of the boundary. Based
on an abstract Céa–Falk estimate and operator interpolation arguments, we establish an a
priori error estimate in the energy norm under a reasonable regularity assumption.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we investigate the hp-version of the finite element method (hp-FEM) applied to unilateral contact with
Tresca friction in planar linear elastostatics. As already proposed by Panagiotopoulos [1] a fixed point approach to unilateral
contact problemsobeying themore realistic Coulomb law leads to a sequence of Tresca frictional unilateral contact problems.
This approach has been recently substantiated by Dostál, Haslinger and Kučera in [2,3], who implemented the fixed point
method by novel splitting techniques. Thus the efficient numerical solution of Tresca unilateral contact problems remains
an interesting topic of research.

While the analysis of the standard h-version FEM for nonsmooth unilateral contact problems is well documented in the
literature (see [4–10] and the references listed therein), the situation is less favorable for the p-version and particularly
the hp-version of the FEM, where the approximation properties of spaces of piecewise polynomials are quantified in terms
of both the local mesh size and the local polynomial degree. For the closely related variational inequalities of the first kind
arising fromnon-frictional Signorini and unilateral contact problems,Maischak and Stephan analyzed hp-boundary element
methods (hp-BEM) in [11,12] and obtained convergence rates under certain regularity assumptions on the exact solution.
Then Chernov, Maischak and Stephan [13] provided results for the frictional two-body contact problem in the hp-BEM;
however, the variational crimes associated with approximating the nondifferentiable friction functional j, which is clearly
necessary in a high order context, were not addressed. On the other hand, Dörsek andMelenk, based on an analysis in Besov
spaces, derived in [14] for the hp-FEM approximation of a pure frictional contact problem (without unilateral boundary
conditions) an a priori error estimate consisting of a polynomial error term and an additional log error term. An a priori
error estimate without such an additional log error term was earlier given by the author in [15], albeit for the p-BEM
approximation of a simplified scalar model problem extracted from the full friction unilateral contact problem.
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Let us also refer to [16] for a recent numerical study and comparison results for the h-, p-, hp-version of the FEM for the
solution of the unilateral frictionless 2D Hertzian contact problem. Moreover, Dörsek andMelenk were able to demonstrate
numerically in some friction model problems in [17,14] that the exponential convergence of the hp-FEM, well-known for
linear boundary value problems, can also obtained for this class of nonlinear free boundary value problems, if an appropriate
adaptive strategy is used.

In the present paper, we focus on two issues. Firstly, we apply the discretization theory of [6] and its extension to
semicoercive variational inequalities of the second type in [18]. We combine this theory with Gauss–Lobatto quadrature
for the discretization of the unilateral constraint and the nonsmooth friction functional. Thus we can show convergence of
the hp-FEM approximations on quadrilaterals for semicoercive unilateral Tresca friction problems without imposing any
regularity assumption. Secondly we treat the coercive case, when the body is fixed along some part of its boundary. Here
based on an abstract Céa–Falk estimate taken from [15] and operator interpolation arguments, we establish an hp-FEM a
priori error estimate on quadrilaterals in the energy norm under a reasonable regularity assumption. This error estimate
sharpens the error bound given earlier by [14] for the pure frictional contact problem and gives the same p-FEM error order
on quadrilaterals as in [11] for the frictionless unilateral contact problem. Moreover we close here a gap in the proof of
the consistency error in [15] which was communicated to the author by J.M. Melenk. Thus we complement and extend the
convergence analysis given in [13–15,12] in several respects.

The plan of the paper is as follows. The next Section 2 presents the variational problem, its hp-FEM approximation, and
collects preliminary material. The main results are in Sections 3 and 4; in Section 3 we establish hp-norm convergence
without a regularity assumption, in Section 4 we prove an a priori error bound under a reasonable regularity assumption.
Finally in Section 5 we give some concluding remarks and an outlook.

2. The unilateral frictional contact problem and its hp-FEM approximation

Let us consider an elastic body represented by a bounded domain Ω ⊂ R2 with a Lipschitz boundary Γ that splits
into three disjoint parts Γ0,ΓT ,Γc such that Γ = Γ0 ∪ ΓT ∪ Γc . Zero displacements are prescribed on Γ0, surface tractions
T ∈ (L2(ΓT ))

2 act onΓT , and on the partΓc unilateral contact and Tresca friction conditions between the body and a perfectly
rigid foundation hold. Thus Γc contains the free boundary of the unilateral contact. In the model of Tresca friction (given
friction) one assumes a known slip bound g ∈ L∞(Γc), g ≥ 0. Moreover, the body is subject to body forces F ∈ (L2(Ω))2.
To make the contact problem meaningful, we assume meas (Γc) > 0, but we do not require meas (Γ0) > 0.

We denote byHs( ) the usual Sobolev spaces onΩ or on parts of Γ with norms defined using the Slobodeckij seminorms.
We also use the short Hs

= (Hs)2 for the vectorial Sobolev spaces. In particular, we have the space of virtual displacements

V = {v ∈ H1(Ω) | γ0 v = 0},

where γo = γΓ 0 : H1(Ω) → H
1
2 (Γ0) is the trace map onto Γ0, and its convex closed subset of kinematically admissible

displacements

K = {v ∈ V | (γc v)n ≤ d}.

Here, likewise γc = γΓ c : H1(Ω) → H
1
2 (Γc) ⊂ (L2(Γc))

2, further d ∈ C(Γc), d ≥ 0 is the initial gap between the body and
the rigid foundation, and with the unit outer normal n ∈ (L∞(Γ ))2 to the boundary, a vector fieldw at the boundary has its
normal componentwn = w · n and its normal componentwt = w − wn n.

Adopting standard notations from linear elasticity, ε(v) =
1
2 (∇v+∇vT ) denotes the small strain tensor to the displace-

ment field v and σ(v) = C : ε(v) the stress tensor. Here, C is the Hooke tensor, assumed to be uniformly positive definite
with L∞ coefficients. This leads to the bilinear form, linear functional, sublinear functional, and to the total potential energy
of the body, respectively,

a(u, v) =


Ω

ε(u) : C : ε(v) dx,

l(v) =


Ω

F · v dx +


ΓT

T · v ds,

j(v) =


Γc

g |vt | ds,

J(v) =
1
2
a(v, v)− l(v)+ j(v).

In these terms, the variational formulation of the unilateral contact problem with Tresca friction reads as follows:
Find a minimizer u ∈ K of the functional J(v), v ∈ K!
Another equivalent formulation is the variational inequality problem (π) of second kind: Find u ∈ K such that for all v ∈ K ,

a(u, v − u)+ j(v)− j(u) ≥ l(v − u). (1)
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There exists a unique solution u (see e.g [19,8]), if Γ0 has positive measure and hence the bilinear form is coercive by Korn’s
inequality, see e.g. [20,21]. In the semicoercive case, when Γ0 = ∅, following [22,10], one introduces the subspace of rigid
body motions:

R =

r ∈ [H1(Ω)]2 : ε(r) = 0


=


r ∈ [H1(Ω)]2 : r1 = a1 − bx2, r2 = a2 + bx1; a1, a2, b ∈ R


and the recession cone [23],

Krec = {v ∈ V | (γc v)n ≤ 0}

of the convex subset K . Then choose r∗
∈ R with r∗

n ≤ min{d(x) : x ∈ Γc}, insert r∗
∈ K in (1), obtain since j(u) ≥ 0

a(u, u)− l(u) ≤ j(r∗)− l(r∗),

hence the a priori estimate

a(u, u) ≤ c0 + c1∥u∥H1(Ω) (2)

for some constants c0, c1 ≥ 0. Further inserting v = r∗
+ ρr ∈ K in (1) with arbitrary ρ ≥ 0, r ∈ R ∩ Krec and letting

ρ → ∞ gives as a necessary condition for the existence of a solution to the recession condition

l(r) ≡


Ω

F · r dx +


ΓT

T · r ds ≤ j(r) ≡


Γc

g |r t | ds, ∀r ∈ R ∩ Krec.

Existence of a solution is guaranteed (see [23]) under the strengthened condition

l(r) < j(r), ∀r ∈ R ∩ Krec \ {0},

or under the simpler, but stronger condition (see [19])

l(r) < 0, ∀r ∈ R ∩ Krec \ {0}.

Both sufficient conditions clearly only make sense if R ∩ Krec does not contain a subspace; for a study of the case of a
nontrivial subspace we also refer to [19].

To conclude the preliminaries for our finite element analysiswe state an essential hypothesis, namely the density relation

K ∩ [C∞(Ω)]2 = K. (3)

We note that (see [8]) (3) holds true in a polygonal domainΩ (what we assume from now on for simplicity), if there is only
a finite number of ‘‘end points’’ Γ c ∩ Γ T ,Γ 0 ∩ Γ T ,Γ c ∩ Γ 0.

For simplicity let Ω be a polygonal, planar domain and let g be a piecewise constant function on ΓC . These are no
restrictions of generality. In fact, the p- and hp-finite element approximation on curvilinear domains is well-understood,
see [24]. The analysis to follow can be extended to higher dimensional domains by tensor product approximation.

Let TN (N ∈ N) be a shape regular [25] sequence of meshes consisting of affine quadrilaterals Q ∈ TN with diameter hN,Q

such that all corners of Γ and all ‘‘end points’’ Γ c ∩ Γ T ,Γ T ∩ Γ 0,Γ 0 ∩ Γ c are nodes of TN . Moreover, we introduce the set
of edges on the contact boundary,

Ec,N = {E : E ⊂ Γc is an edge of TN}

and assume that g is constant on each edge E ∈ Ec,N . Obviously, for every E ∈ Ec,N there exists a unique QE ∈ TN such that
E is an edge of QE .

Further we denote by pN,Q ∈ N a polynomial degree for each Q ∈ TN . We assume that neighboring elements have
comparable polynomial degrees, i.e. there exists a constant c > 0 such that for elements Q ,Q ′

∈ TN with Q ∩ Q ′ ≠ ∅ there
holds

c−1 pN,Q ≤ pN,Q ′ ≤ c pN,Q .

LetΠp(Q ) be the tensor product space of polynomials of degree p in each variable. This gives the FE subspace

VN = {vN ∈ V : vN | Q ∈ (ΠpN,Q (Q ))2,∀Q ∈ TN}.

Similar to [17,14,11,12] we employ Gauss–Lobatto quadrature in the discretization procedure. To this end we introduce for
q ≥ 1 on the reference interval [−1, 1] the q+1Gauss–Lobatto points, i.e., the zeros ξ q+1

j (0 ≤ j ≤ q) of (1−ξ 2)L′
q(ξ), where

Lq denotes the Legendre polynomial of degree q. Note that ξ q+1
0 = −1 and ξ q+1

q = 1 are the end points of the reference
interval. It is known (see [26, Chapter I, Section 4]) that there exist positive weights

ω
q+1
j :=

1

q(q + 1)L2q(ξ
q+1
j )
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such that the quadrature formula 1

−1
φ(ξ) dξ =

q
j=0

ω
q+1
j φ(ξ

q+1
j )

is exact for all polynomials φ up to degree 2q − 1.
For any E ∈ Ec,N we introduce the quadrature order qN,E such that qN,E = pN,QE . By affine transformation FE : [−1, 1] →

E we define the set GE,N of qN,E + 1 Gauss–Lobatto points for each element E of Ec,N and set Gc,N :=


{GE,N : E ∈ Ec,N}.
Choosing the Gauss–Lobatto points as control points of the unilateral constraint, we define

KN := {vN ∈ VN : (γc vN)n ≤ d on Gc,N}.

Clearly, KN is a convex closed subset of VN . Note however, KN is generally not contained in K for polynomial degree ≥ 2
or for a non-concave obstacle d.

We also approximate the nonlinear nonsmooth functional j using the above quadrature rule by

jN(v) = jc,N(γc v)t , jc,N(ψ) =


E∈Ec,N

gE
qN,E
j=0

ω
qN,E+1
j

ψ ◦ FE(ξ
qN,E+1
j )

 ,
where gE denotes the constant value of the function g on E. Then jN , jc,N are sublinear functionals, with jc,N uniformly
bounded on C(Γc). Note that for the piecewise polygonal boundary Γ , vt ◦ FE is piecewise polynomial of the same degree
as v.

Thus we arrive at the following discrete variational problem (πN) as an approximation to our variational problem (π):
Find uN ∈ KN such that for all vN ∈ KN

a(uN , vN − uN)+ jN(vN)− jN(uN) ≥ l(vN − uN). (4)

Similarly to the above bound (2) we obtain the a priori bound

a(uN , uN) ≤ c0 + c1∥uN∥H1(Ω) (5)

for some constants c0, c1 ≥ 0 independent of N .
Note that we only replaced the nonlinear functional j by its approximate jN . In most computations, however, also a and l

have to be replaced by some approximations that take into account e.g. numerical integration or approximation of a curved
boundary. Since such approximations are well documented in the literature of h- and hp-finite element analysis of elliptic
boundary value problems (see [24,25]), we omit this aspect here.

Associated to the Gauss–Lobatto points GE,N we have the local interpolation operator iE,q = iE,N : C0(E) → Pq(E) with
q = qN,E given by

(iE,Nη)(x) = η(x), ∀ x ∈ GE,N , η ∈ C0(E)

and the global interpolation operator ic,N on C0(Γc) defined by

ic,Nη =


E∈Ec,N

(iE,Nη)|E, ∀ η ∈ C0(Γ ).

Likewise associated to the Gauss–Lobatto points GQ ,N = FQ {(ξ
p+1
i , ξ

p+1
j ) | 0 ≤ i, j ≤ p} with p = pN,Q and the affine

transformation FQ : [−1, 1]2 → Q we have the local interpolation operator iQ ,p = iQ ,N : C0(Q ) → Pp(Q ) with p = pN,E
given by

(iQ ,Nψ)(x) = ψ(x), ∀ x ∈ GQ ,N , ψ ∈ C0(Q )

and the global interpolation operator iN on C0(Ω) defined by

iNψ =


Q⊂Ω

(iQ ,Nψ)|Q , ∀ ψ ∈ C0(Ω).

For later use we recall from [26, Theorems 13.4, 14.2]; [27, Theorems 4.7, 5.9] the following results on the polynomial
interpolation error in the reference interval Ê = (−1, 1), respectively in the reference square Q̂ = (−1, 1)2.

Theorem 2.1. (i) For any real numbers r and s satisfying s > (1 + r)/2 and 0 ≤ r ≤ 1, there exists a positive constant c
depending only on s such that for any function η ∈ Hs(Ê) the following estimate holds

∥η − iÊ,qη∥Hr (Ê) ≤ c qr−s
∥η∥Hs(Ê). (6)

(ii) For any real numbers r and s satisfying s > 1 + r/2 and 0 ≤ r ≤ 1, there exists a positive constant c depending only on s
such that for any function ψ ∈ Hs(Q̂ ) the following estimate holds

∥η − iQ̂ ,pψ∥Hr (Q̂ ) ≤ c pr−s
∥ψ∥Hs(Q̂ ). (7)
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3. A hp-approximation result

Without any regularity assumption for the solution u of (π)we can show the following convergence result for the hp-FEM
solutions uN of (πN) in the energy norm.

Theorem 3.1. Let the solution u of (π) exist uniquely. Suppose that for the polygonal domainΩ , there are only a finite number
of ‘‘end points’’ Γ c ∩ Γ 0,Γ c ∩ Γ T ,Γ T ∩ Γ c and the gap function d belongs to H1/2+ε(Γc) for some ε > 0. Then for N → ∞

with minQ∈TN h−1
N,Q pN,Q → ∞ there holds uN → u with respect to the H1(Ω) norm.

Proof. Here we adapt the discretization theory of Glowinski [6] to more general semicoercive variational inequalities of
the second kind over a convex subset instead over the whole space, see also [18, Theorem 2.2]. Thus we have to show the
following hypotheses:

H1 If vN ⇀ v (weak convergence) in V for N → ∞ with vN ∈ KN , then v ∈ K and

lim inf
N→∞

jN(vN) ≥ j(v).

H2 There exist a subset M ⊂ K dense in K and mappings ϱN : M → VN such that, for each w ∈ M, ϱN(w) → w for
N → ∞,

lim
N→∞

jN

ϱN(w)


= j(w),

and ϱN(w) ∈ KN for all N ≥ N0(w) for some N0(w) > 0.

Classical h-FEM convergence for the variational problem under study is already treated in [18], where Newton–Cotes
formulas in numerical quadrature are used instead of Gauss–Lobatto quadrature. Inspecting the proof of [18, Theorem 4.1]
shows that the norm convergence for a fixed quadrature order hinges on the positiveness of the quadrature weights, what
is satisfied for all quadrature orders with Gauss–Lobatto quadrature. Therefore in the following we can focus to the case
where hN,Q is fixed for all Q ∈ TN and minQ∈TN pN,Q → ∞.

To verify H1 it is enough to show that for any λ ∈ C0(Γ )with λ|Γc ≥ 0,
Γc

(vn − d)λ ds ≤ 0, (8)

and to show that for any µ ∈ C0(Γ )with |µ| ≤ 1 on Γc there holds
ΓC

g vt µ ds ≤ lim inf
N→∞

jN(vN), (9)

since by duality with respect to (L1, L∞) and density

j(v) = sup


Γc

g vtµ ds : µ ∈ C0(Γ ), |µ| ≤ 1

.

Moreover, since the mesh TN is independent of N , we can simply consider the above integrals on any fixed edge E ∈ Ec,N .
Thus fixλ,µ ∈ C0

[E]withλ ≥ 0, |µ| ≤ 1 and also q := qN,E . Similarly as [11] approximate these functions by a combination
of Bernstein polynomials Bq with the local mapping FE : [−1, 1] → E to define λq := Bqλ ◦ FE, µq := Bqµ ◦ FE via

λq(t) = (Bqλ ◦ FE)(t) :=

q
k=0

q
k

 
1 + t
2

k 
1 − t
2

q−k

(λ ◦ FE)

2k
q

− 1

.

Since the Bernstein operators are monotone, λq ≥ 0 and |µq| ≤ 1. By [28, Chapter 1, Theorem 2.3],

lim
q→∞

∥λq − λ∥L∞(E) = lim
q→∞

∥µq − µ∥L∞(E) = 0. (10)

For the obstacle function d ∈ H1/2+ε(Γc) we use the interpolate dN := iE,q d as approximation. By Theorem 2.1(i) with
r = 0, s =

1
2 + ε

lim
N→∞

∥dN − d∥L2(E) = 0. (11)

Since the embedding H1/2(Γ ) ↩→ L1(E) is weakly continuous, vN ⇀ v in L1(E) and ∥vN∥(L1(E))2 is bounded. Therefore from
E


(vN,n − dN)λqN,E−1 − (vn − d)λ


dt

 ≤ ∥vN,n − dN∥L1(E) ∥λqN,E−1 − λ∥L∞(E)

+


E


(vN,n − dN)− (vn − d)


λ dt

 ;
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E
[vN,t µqN,E−1 − vtµ] dt

 ≤
vN,t∥L1(E) ∥µqN,E−1 − µ


L∞(E) +


E
[vN,t − vt ]µ dt

 ,
(10), (11) and using λ,µ ∈ L∞(e) = (L1(e))∗, we conclude

lim
N→∞


E
(vN,n − dN) λqN,E−1 dt =


E
(vn − d) λ dt, (12)

lim
N→∞


E
vN,t µqN,E−1dt =


E
vt µ dt. (13)

On the other hand, (vN,n − dN)|E λqN,E−1 and vN,t |E µqN,E−1 are polynomials of degree 2q− 1. Hence the above integrals can
be evaluated exactly by the Gauss–Lobatto quadrature formula to obtain

E
(vN,n − dN) λqN,E−1 dt =

q
j=0

ω
q+1
j


(vN,n − dN) λq−1


◦ FE(ξ

q+1
j ),


E
vN,t µqN,E−1 dt =

q
j=0

ω
q+1
j (vN,t µq−1) ◦ FE(ξ

q+1
j ).

Since the weights ωq+1
j > 0, λq−1 ≥ 0, (vN,n − dN) ◦ FE(ξ

q+1
j ) ≤ 0 by vN ∈ KN , respectively |µq−1| ≤ 1, ge ≥ 0 we arrive

at 
E
(vN,n − dN)λqN,E−1 dt ≤ 0;

gE


E
vN,t µqN,E−1 dt ≤ gE

q
j=0

ω
q+1
j |vN,t ◦ FE(ξ

q+1
j )| =: jE,N(vN),

E∈Ec,N

jE,N(vN) = jN(vN).

In view of (12) and (13) this proves our claim (8), (9).
In the last step let us prove H2.
By the finiteness assumption we have due to [8] the density relation

K ∩ [C∞(Ω)]2 = K.

Therefore we can take M = K ∩ [C∞(Ω)]2 and define ϱN : M → VN by ϱN := iN . Moreover, since w ∈ M satisfies the
constraints in K pointwise, ϱNw ∈ KN for allw ∈ M . By Theorem 2.1(ii), ϱNw → w in H1(Ω). Finally by jN(w) = j(ϱNw),
we conclude for N → ∞,

|j(w)− jN(ϱNw)| ≤ |j(w)− j(ϱNw)| + |jN(w)− jN(ϱNw)|
≤ ∥g∥L∞(Γc )


∥wt − (ϱNw)t∥L1(Γc ) + ∥wt − (ϱNw)t∥L∞(Γc )


→ 0. �

4. An a priori hp-error estimate

In this section we provide an a priori error estimate for the hp-approximate uN of the variational problem (π) under the
regularity assumptions of [12], which in particular via the trace theorem amounts to H2(Ω) regularity of the solution u.

To this end, we apply an abstract Céa–Falk lemma for variational inequalities of the second kind taken from [15] together
with Falk’s cutting technique [29], adapt some arguments of Maischak and Stephan [12], and use some results of operator
interpolation theory [20,25].

Let us first recall the abstract Céa–Falk lemma from [15]. Consider real normed vector spaces (E, ∥.∥E), (G, ∥.∥G) and
their duals E∗,G∗ such that E ⊂ G continuously. Let EN be a subspace of E (N ∈ N) with the embedding ιN ∈ L(EN , E). Let
K ⊆ E and KN ⊆ EN be convex sets with some x0 ∈ K ∩


N∈N KN . Let f ∗

∈ E∗ and for simplicity, f ∗

N = ι∗nf
∗. Let B ∈ L(E, E∗)

be positive definite with respect to ∥ · ∥E ; i.e., there exist some cB, cB > 0 such that

cB∥v∥
2
E ≤ B(v)(v) ≤ cB∥v∥2

E (∀ v ∈ E).

Lemma 4.1. Let the preceding assumptions on E,G, K , KN , f ∗, B be satisfied; let u ∈ K and uN ∈ KN such that

(Bu − f ∗) ∈ G∗,

B(u)(v − u)+ j(v)− j(u) ≥ f ∗(v − u) (∀ v ∈ K),
B(uN)(vN − uN)+ jN(vN)− jN(uN) ≥ f ∗

N (vN − uN) (∀ vN ∈ KN).
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Then there exists a constant c > 0 which depends on cB, cB, x0, f
∗, B but not on N such that

c∥u − uN∥
2
E ≤ inf

v∈K


∥Bu − f ∗

∥G∗ ∥uN − v∥G + |jN(uN)− j(v)|


+ inf
vN∈KN


∥u − vN∥

2
E + |j(u)− jN(vN)| + ∥Bu − f ∗

∥G∗∥u − vN∥G

.

We apply the lemma in the setting: E ≡ H1(Ω) := (H1(Ω))2 ⊂ G ≡ H1/2(Ω), Bu − f ∗
≡ a(u, ·)− l(·). Thus we obtain the

main result of this section.

Theorem 4.2. Let u ∈ K be the solution of the coercive problem (π) with meas (Γ0) > 0. Assume u ∈ H2(Ω), d ∈ H3/2(Γc),

a(u, ·)− L(·) ∈ (H1/2(Ω))′. Then there exists c = c(u, d, F , T , g) > 0, independent of N such that

∥u − uN∥H1(Ω) ≤ c max
Q∈TN

h1/4
N,Q p−1/4

N,Q .

Proof. Let us write h = maxQ∈TN hN,Q , p = minQ∈TN pN,Q for short. Lemma 4.1 splits the error under study into two
different error terms:

c∥u − uN∥
2
H1(Ω)

≤ inf
v∈K


∥Bu − f ∗

∥H1/2(Ω)′ ∥uN − v∥H1/2(Ω) + |jN(uN − j(v))|


+ inf
vN∈KN


∥u − vN∥

2
H1(Ω)

+ |j(u)− jN(vN)| + ∥Bu − f ∗
∥H1/2(Ω)′ ∥u − vN∥H1/2(Ω)


. (14)

To bound first the approximation error inf{. . . |vN ∈ KN} take vN = u∗

N := iNu ∈ KN , the interpolate of u ∈ H2(Ω) ⊂

(C0(Ω))2. By Theorem 2.1(ii) and by affine equivalence of Q ∈ TN to Q̂ using [20, Theorem 4.4.20], there are constants
c1, c2 > 0 independent of u and N such that

∥u − u∗

N∥H1(Ω) ≤ c1
h
p

∥u∥H2(Ω),

∥u − u∗

N∥H1/2(Ω) ≤ c2


h
p

3/2

∥u∥H2(Ω).

Further, by construction,

jN(u∗

N) =


E∈Ec,N

gE
qN,E
j=0

ω
qN,E+1
j |(u∗

N,t ◦ FE) (ξ
qN,E+1
j )|

=


E∈Ec,N

gE
qN,E
j=0

ω
qN,E+1
j |(ut ◦ FE) (ξ

qN,E+1
j )| = jN(u).

Hence using the interpolation operators iE,N , ic,N and the exactness of Gauss–Lobatto quadrature,

|j(u)− jN(u∗

N)| ≤


E∈Ec,N

ge


E
|ut |ds −


E
iE,N


|ut |


ds


≤ ∥g∥L∞(Γc )


Γc

 |ut | − ic,N

|ut |

 ds
≤ meas (Γc)

1/2
∥g∥L∞(Γc )

|ut | − ic,N

|ut |


L2(Γc )

. (15)

Since |ut | can only be guaranteed to lie in H1(Γ ) (as the max of the two absolutely continuous functions ut ,−ut , see also
[30, Corollary A.6]) we can use the regularity assumption to derive only

∥|ut |∥H1(Γ ) ≤ ∥ut∥H1(Γ ). (16)

Therefore we can conclude by Theorem 2.1(ii) and by affine equivalence of E ∈ Ec,N to Ê using [20, Theorem 4.4.20],

|j(u)− jp(u∗

p)| ≤ c̃
h
p

∥|ut |∥H1(Γ ) ≤ c̃
h
p

∥ut∥H1(Γ ).

Thus for the approximation error,

inf

. . . |vN ∈ KN


≤ cI(u, g)

h
p
. (17)
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To bound the consistency error inf

. . . |v ∈ K


we use Falk’s cutting technique [29] and similarly as [12] define

v∗

Γ =

0 on Γ0
γT uN on ΓT
(γc uN)t + [d + inf((γc uN)n − dN , 0)] n on Γc

where dN := ic,N d interpolates the gap function d.
To show that v∗

Γ ∈ H1(Γ )we use the arguments of [12]: For any E, the polynomial uN,n − dN | E, which is of degree qN,E ,
has at most qN,E zeros on E. Hence, the level set {x ∈ Γc : (uN,n − dN)(x) < 0} is the finite union of open subintervals and
δN := inf(uN,n −dN , 0) is continuous and piecewise a polynomial on Γc . Therefore δN ∈ H1(Γc) and v∗

Γ ∈ H1(Γ ) as claimed.
Now we use that the trace map γ possesses a right inverse χ and that χ : L2(Γ ) → H1/2(Ω) is bounded, see [31,32].

We let v∗
= χ v∗

Γ . Then v
∗

∈ K and using the estimates (20)–(24) in [12, proof of Theorem 2] we obtain

∥v∗
− uN∥H1/2(Ω) ≤ cχ∥v∗

Γ − γ uN∥(L2(ΓC ))2

≤ c h1/2 p−1/2

∥d∥H1/2(ΓC )

+ ∥u∥H1(Ω)


. (18)

Finally we prove that |jN(uN)− j(v∗)| has the same error order of h1/2 p−1/2. To this end we use real interpolation between
H1(Γc) and L2(Γc), see [20,25].

First note that by construction the tangential components of v∗
Γ and γc uN coincide, hence we have jN(v∗) = jN(uN).

On the other hand, by Theorem 2.1(i),

∥v∗

Γ ∥H1(ΓC )
≤ ∥(γc uN)n − dN∥H1(ΓC )

+ ∥d∥H1(ΓC )
+ ∥(γc uN)t∥H1(ΓC )

≤ ∥γ uN∥H1(Γ ) + 2∥d∥H1(ΓC )
+ ch1/2 p−1/2

∥d∥H3/2(ΓC )
,

∥v∗

Γ ∥(L2(ΓC ))2 ≤ ∥(γc uN)n − dN∥L2(ΓC ) + ∥d∥L2(ΓC ) + ∥(γc uN)t∥L2(ΓC )

≤ ∥γ uN∥(L2(Γ ))2 + 2∥d∥L2(ΓC ) + c ′h3/2 p−3/2
∥d∥H3/2(ΓC )

.

Hence by real interpolation of the nonlocal H t-norm and by the boundedness of ∥uN∥ in virtue of the a priori bound (5) or
in virtue of Theorem 3.1, v∗

Γ is bounded, too, in H1/2(ΓC ).
Then with similar arguments as above, see (15) and (16), we can conclude for v∗

t := v∗
Γ · t, |v∗

t | ∈ H1(ΓC ),

|j(v∗)− jN(uN)| ≤


E∈Ec,N

gE


E
|v∗

t |ds −


E
iE,qN,E


|v∗

t |

ds


≤ meas (Γc)

1/2
∥g∥L∞(Γc )

|v∗

t | − iE,qN,E

|v∗

t |


L2(Γc )

≤ c h p−1
∥v∗

t ∥H1(Γc ).

To show the analogue estimate with respect to the L2 norm we estimate separately:

j(v∗

t ) =


E∈Ec,N

gE


E
|v∗

t |ds ≤ meas (Γc)
1/2

∥g∥L∞(Γc )∥v
∗

t ∥L2(Γc )

and with Cauchy–Schwarz inequality

jN(v∗

t ) = jN(uN,t) =


E∈Ec,N

gE
qN,E
j=0

ω
qN,E+1
j

uN,t ◦ FE(ξ
qN,E+1
j )


≤ ∥g∥L∞(ΓC )


E

qN,E
j=0

ω
qN,E+1
j

1/2 
E

qN,E
j=0

ω
qN,E+1
j {uN,t ◦ FE(ξ

qN,E+1
j )}2

1/2

≤ 3∥g∥L∞(Γc )meas (Γc)
1/2

∥uN∥(L2(Γc ))2 ,

where we use the L2 stability of Gauss–Lobatto quadrature, see [33, Lemma 2.2]. Therefore by real interpolation we arrive
at

|j(v∗)− jN(uN)| ≤ c h1/2 p−1/2
∥v∗

t ∥H1/2(Γc ),

hence for the consistency error,

inf

. . . |v ∈ K


≤ cII(u, f ∗, d, g) h1/2 p−1/2. (19)

Altogether, (14), (17) and (19) yield the claimed error estimate. �
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Thus for our more general problem (π) we arrive at the same convergence order of h1/4 p−1/4 as Maischak and Stephan
in [12]. Under the weaker regularity assumption u ∈ H3/2(Ω), Dörsek and Melenk proved for the pure frictional problem
a weaker convergence order with an additional log term. Both error estimates are suboptimal because of the consideration
of the consistency error in the nonconforming approximation scheme and because of the regularity threshold in unilateral
problems [30].

5. Some concluding remarks

It is noteworthy that although the present paper is only concerned with the primal hp-finite element method, duality
methods come into play in the proof of Theorem 3.1. — Also the proof shows the usefulness of Bernstein operators — a
well-known topic in classic approximation theory — in the numerical analysis of unilateral nonsmooth problems. In this
connection let us refer to the recent paper of Ainsworth, Andriamaro, and Davydov [34] which employs Bernstein–Bézier
polynomials to derive optimal assembly procedures for the finite elementmethod. — Finally let us point out the decisive rôle
of the high integration order and of the positivity of the quadrature weights in the Gauss–Lobatto quadrature. This extends to
higher dimensional rectangles via tensor products in a straightforward way. Therefore our results pertain to quadrilateral
meshes. It may be worthwhile to invent such an effective quadrature rule on a triangle. However recently, Helenbrook [35]
has shown that an integration rule similar to Gauss–Lobatto quadrature does not exist on triangles and that a possible
remedy is the use of a nonnodal basis. Moreover, Yuan Xu [36] has strengthened these negative results by giving a lower
bound for the number of nodes of such quadrature rules and advocates a newmethod of constructing Lobatto-type cubature
rules on triangles. Thus the efficient treatment of unilateral nonsmooth problems by the hp-FEM on triangular meshes seems
to be wide open.
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