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a b s t r a c t

The flow patterns in a steady, viscous L-shaped cavity are investigated using both analytic
solutions combined with methods from nonlinear dynamical systems and numerically
using the finite element method. A boundary value problem is formulated for the case of
Stokes flow,which is solved analytically,ψ , expressed as an infinite series of eigenfunctions
which depend on h1 and h2 which are related to the heights of the L-shaped domain. The
(h1, h2) control space diagram is constructed for exhibiting the mechanism by which new
eddies are obtained in the cavity.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The main objective of this article is to investigate flow bifurcations in an L-shaped cavity with horizontal motion of the
upper lid using ideas from nonlinear dynamical systems (as in [1]) and an analytic solution.

The topic of flow bifurcations in two-dimensional incompressible flow has been one of the interesting research areas in
fluid dynamics. These investigations are often related to the qualitative properties of fluid flows in the vicinity of a fixedwall
or away from boundaries. Examples include the flow in a rectangular cavity [2–5], the wake flow behind bluff bodies [6] and
vortex breakdown [7–9].

The topology and structural stability of flow patterns near a critical point on a stationarywall was studied by Bakker [10].
He used a Taylor series expansion of the velocity vector field near a critical point. Hartnack [11] has also considered bifur-
cations close to fixed (possibly curved) walls by using normal form transformations. A normal form transformation is a tool
for simplifying a stream function to the ones with the simplest order terms. This technique was first used by Brøns and
Hartnack [12] for investigating streamline topology near simple degenerate critical points away from boundaries.

There is a wealth of literature on cavity flows which are studied both analytically and numerically (see [13–16]). Gür-
can [17] considered the cavity problem to investigate streamline topologies near a non-simple degenerate critical point away
from boundaries. Gürcan [18,19] also investigated flow patterns in a single lid-driven cavity using analytic solution for the
stream function expanded about any critical point and one of themost important results from theseworks is an understand-
ing of how the single vortex at small (height to width) aspect ratio A develops into a three vortex pattern as A is increased.

In contrast to flow transformation and eddy generation in a rectangular cavity, there are few studies which examine
the genesis of eddies in an L-shaped cavity. Recently, Deliceoğlu and Aydın [1] addressed numerically the problem for the
L-shaped cavity with the lids moving in opposite directions. They used a standard Galerkin finite element method for the
solution of the Stokes equation and with a stabilization technique for the Navier–Stokes equation. These authors obtained
a vortex ring at the reentrant corner and exhibit the mechanism by which new eddies are obtained in the cavity as (h1, h2)
is varied.
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In the present study, we construct a control-space diagram for the L-shaped cavity by using the analytic solution for the
stream function. A control-space diagram exhibits several bifurcation curves representing flow bifurcations at degenerate
critical points. This paper is a follow-up of previous study [1] investigating eddy genesis for lids moving in the same
directions. Therefore, the same numerical solution procedure is used for the solution of the problem.

2. Governing equation and series solution

We consider the two-dimensional geometry as shown in Fig. 1. Flow in an L-shaped cavity is governed by the incom-
pressible Navier–Stokes equation. It is assumed that the fluid is Newtonian and incompressible with density ρ and viscosity
µ. The flow is steady and two dimensional in the (x, y) plane with velocity u = (u, v). Boundary conditions are specified in
terms of velocity components. However, stream function boundary conditions can be derived from velocity boundary condi-
tions in order to obtain the solution for the stream function. In non-dimensional form, thewidth of the cavity is fixed (L = 1),
but the heights of the lower side and the upper side, called h1 and h2, are varying. Then, the flow behavior is examined by
changing the values of both h1 and h2.

The steady-state slow, viscous and incompressible fluids, and incompressible Navier–Stokes equations in an open
bounded domainΩ ⊂ ℜ

2 with the boundary ∂Ω are given by
(∇u)u −

1
Re

△u + ∇p = f inΩ,

∇ · u = 0 inΩ,
u = 0 on ∂Ω .

(1)

The Stokes equation is the simplified form of the full Navier–Stokes equation (1) for incompressible Newtonian fluid flows
for a small Reynolds number. Therefore, the Stokes flow equation is written by ignoring the convective (nonlinear) terms in
Eqs. (1) as

−
1
Re

△u + ∇p = f inΩ,

∇ · u = 0 inΩ.
(2)

If we assume that the external force (f) is zero, then the equation is written as a biharmonic operator in terms of stream
function, ψ , as

∇
4ψ =

∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4
= 0, in Ω,

ψ = 0,
∂ψ

∂n
= 0, on ∂Ω.

(3)

The velocity components are expressed in terms of the stream function ψ:

u =
∂ψ

∂y
, v = −

∂ψ

∂x
, (4)

whereψ is a solution of the biharmonic equation (3). Using the relations (4), the no-slip conditions for the upper and lower
lids and four stationary walls can be written in terms of derivatives of the stream function as

∂ψ

∂y
(x, 2h2) = 1, (0 ≤ x ≤ 1),

∂ψ

∂y
(x, 2h1) = 0,


1
2

≤ x ≤ 1

,

∂ψ

∂x
(0, y) = 0, (0 ≤ y ≤ 2h2),

∂ψ

∂x


1
2
, y


= 0, (2h1 ≤ y ≤ 0), (5)

∂ψ

∂x
(1, y) = 0, for 2h1 ≤ y ≤ 2h2.

Therefore, the problem is reduced to the boundary value problem as shown in Fig. 1. This boundary value problem can
be solved numerically many different ways. In our study, we consider the standard Galerkin finite element method for the
corresponding biharmonic differential equation (Eq. (3)) with the boundary conditions in terms of the unknown functionψ
(Eq. (5)) using bilinear quadratic elements (for the details of the numerical method and solution procedure, see [1]).

For the analytical solution; following the process performed by Driesen et al. [20] and Trogdon and Joseph [21], the flow
domain is divided into three subregions. For each subregion the resulting series of eigenfunctions is given below.
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Fig. 1. The boundary value problem for the L-shaped cavity.

The stream function for the first region can be written as

ψ1(x, y) =

∞
n=−∞

φa,n(x)
λa,n

2


An

sinh

λa,n(y − h2)


sinh(λa,nh2)

+ Bn
cosh(λa,n(y − h2))

cosh(λa,nh2)



+

∞
n=−∞

φs,n(x)
λs,n

2


Cn

sinh

λs,n (y − h2)


sinh(λs,nh2)

+ Dn
cosh


λs,n(y − h2)


cosh(λs,nh2)



+

∞
n=−∞

ξa,n(y)
µa,n

2


En

sinh

µa,n


x −

1
4


sinh(µa,n)

+ Fn
cosh


µa,n


x −

1
4


cosh(µa,n)



+

∞
n=−∞

ξs,n(y)
µs,n

2


Gn

sinh

µs,n


x −

1
4


sinh(µs,n)

+ Hn
cosh


µs,n


x −

1
4


cosh(µs,n)


where the functions

φa,n(x) = sa,n[sin(sa,n) cos(sa,n(4x − 1))− (4x − 1) cos(sa,n) sin(sa,n(4x − 1))], (6)

φs,n(x) = ss,n[cos(ss,n) sin(ss,n(4x − 1))− (4x − 1) sin(ss,n) cos(ss,n(4x − 1))], (7)

ξa,n(y) = sa,n


sin(sa,n) cos


sa,n (y − h2)

h2


−


y − h2

h2


cos(sa,n) sin


sa,n (y − h2)

h2


, (8)

ξs,n(y) = ss,n


cos(ss,n) sin


ss,n (y − h2)

h2


−


y − h2

h2


sin(ss,n) cos


ss,n (y − h2)

h2


(9)

are the symmetric and antisymmetric Papkovich–Fadle eigenfunctions [22,23]. The sidewall boundary conditions (5) are
applied to the eigenfunctions which are defined above, one finds that the parameters sa,n and ss,n have to satisfy the
eigenvalue equations

sin(2sa,n) = −2sa,n, sin(2ss,n) = 2ss,n (10)
respectively. The sa,n and ss,n are determined by the Newton iteration procedure described by Robbins and Smith [24] using
an initial estimate of the form

2sa,n = (2n − 1.5)π + i ln(4n − 1)π −


2 ln(4n − 1)π
(4n − 1)π

+ i
4 ln(4n − 1)π + 1
(4n − 1)2π2


+ · · · , (11)

2ss,n = (2n + 1.5)π + i ln(4n + 1)π −


2 ln(4n + 1)π
(4n + 1)π

+ i
4 ln(4n + 1)π + 1
(4n + 1)2π2


+ · · · (12)

and

λa,n = 4sa,n, λs,n = 4ss,n, µa,n =
λa,n

h2
, µs,n =

λs,n

h2
. (13)

In the same way, the stream functions for the region II and III can also be derived.

3. The formation of eddy structures in an L-shaped cavity

In this section we describe how eddies are generated within the L-shaped cavity as the heights of the lower side (h1) and
upper side (h2) (see Fig. 1) are varied for S = 0 at which the upper lid moves in the horizontal direction. In discussing the
formation of eddies, bifurcation curves are obtained to analyze structural bifurcation of the flow caused by varying (h1, h2)
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Fig. 2. Representations of the observed flow topologies (contours of the stream function) found in the steady domain. (a) h1 = −0.2, h2 = 0.6;
(b) h1 = −0.2, h2 = 0.95; (c) h1 = −0.6, h2 = 0.6; (d) h1 = −0.2, h2 = 1.65; (e) h1 = −0.9, h2 = 1.0; (f) h1 = −1.1, h2 = 1.0; (g) h1 = −0.63,
h2 = 1.65; (h) h1 = −0.7, h2 = 1.65; (i) h1 = −0.2, h2 = 1.78; (j) h1 = −0.41, h2 = 1.8; (k) h1 = −0.6, h2 = 2.0.

parameters. There are critical values of h1 and h2 at which flow bifurcations occur. Namely, at these critical values of h1 and
h2, the type of stagnation points changes. At stagnation points velocity components (u, v) is zero and so such points are
solutions of the equation

ẋ = u =
∂ψ

∂y
= 0, ẏ = v = −

∂ψ

∂x
= 0. (14)

When h1 and h2 are varied in the range −1.4 < h1 < 0 and 0.1 < h2 < 3.2, we have encountered the 11 distinct flow
topologies which are shown in Fig. 2.

Using both the analytical and numerical methods mentioned in Section 2, we have obtained a set of codimension-one
bifurcation curves in the (h1, h2) parameter space. The codimension of a bifurcation is the smallest number of parameters
needed to describe the bifurcation. All figures presented in this study can be tracked either by fixing h1 and varying h2 or by
fixing h2 and varying h1. The corresponding bifurcation curves can then be illustrated in Fig. 3.



A. Deliceoğlu, S.H. Aydın / Journal of Computational and Applied Mathematics 259 (2014) 937–943 941

3.1. Bifurcation of critical points near a stationary wall

There are two types of degenerate critical points (simple and non-simple) which depend on the Jacobian matrix of the
velocity field. The first case, concerning simple degenerate critical points (i.e. a singular non-zero Jacobian matrix), was
already examined by Hartnack [11]. He used normal form transformations via a generating function. We briefly show how
to simplify fourth order terms of the stream function

ψ = y2
∞

i,j=0

ai,j+2xiyj. (15)

If a0,2 = a1,2 = 0 in (15), the origin is a simple degenerate critical point. To analyze the possible flow patterns close to
simple degeneracy, the small parameters a0,2 = ϵ1, a1,2 = ϵ2 are introduced. The new coordinates (ξ , η) are found from a
canonical transformation defined by the generating function

G = yξ +
a1,3
6a0,3

yξ 2 −
a2,2
9a0,3

y2ξ +
2a2,2
27a20,3

yξϵ (16)

such that

x =
∂G
∂y
, η =

∂G
∂ξ
. (17)

Solving Eq. (17) with respect to x and y and inserting this transformation in (15), the normal form of the stream function is
obtained. The method for finding the normal form of bifurcation of critical point proceeds as in the previous study [11]. We
omit computation steps and only give the following transformed stream function:

ψ = η2

ση + b +

1
2
ξ 2


(18)

where

b = −
ϵ2

2

4a0,3a2,2
−

a1,32ϵ12

9a2,2a0,33
+

ϵ1

a0,3
−

4
27

a2,2ϵ12

a0,33
+

ϵ2a1,3ϵ1
3a2,2a0,32

. (19)

Hartnack [11] derived the following theorem for the stream function of codimension one.

Theorem 1. Let ψ be expanded in a power series,

ψ = y2
∞

i,j=0

ai,j+2xiyj. (20)

Assuming the non-degeneracy conditions a0,3 ≠ 0, a2,2 ≠ 0 a normal form of order 4 for the stream function is,

ψ = y2

σy + b +

1
2
x2


(21)

where

σ =


1 for

a2,2
a0,3

> 0

−1 for
a2,2
a0,3

< 0

and b is a transformed small parameter.

The bifurcation structure of (21) is shown in Fig. 4(a) and (b). The relevant computation can be found in [8,9,11,10].
Near a stationarywall there are two possible degenerate critical pointswhich are illustrated in Fig. 4(a) and (b). In the first

case, a degenerate critical point is created on the stationarywall (Fig. 4(a)), and the critical point bifurcates into a center away
from boundaries and two on-wall saddles. In the second case, a bifurcation occurs on the wall at which two on-wall saddle
points coalesce to produce an off-wall saddle point, Fig. 4(b). This type of bifurcation is illustrated with BM (i = 1, . . . , 5)
in Fig. 3. Apart from these degenerate points on the wall, there is also an off-wall degenerate point which bifurcates into a
saddle and a center, Fig. 4(c). A cusp bifurcation curve is denoted by CP (i = 1, . . . , 5).

In Fig. 2, we display a series of flow structures for different values of the heights of the lower side (h1) and upper side (h2)
of the L-shaped cavity. A topology of type (a) has a large vortex and two corner eddies. By varying the (h1, h2) parameter
space, the corner eddies meet each other along the bubble merging curve BM1. Then we see that now a region (b) consisting
of a large vortex with an inner separatrix. Entering region (c) from (b), the cusp bifurcation curve CP1 is passed on which
the separatrix has disappeared. Hence the genesis of second eddy in the lower part of the cavity is complete as shown in
Fig. 2(c). This flow transformation is similar to that observed by Gürcan [18] for the S = 0 case.
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Fig. 3. Control-space diagram for an L-shaped cavity. h1–h2 parameter space is split into a number of distinct regions by the bifurcation curves (BM1, BM2 ,
BM3 , BM4, BM5 , CP1, CP2, CP3 , CP4, CP5). The labels in each region correspond to the flow patterns in Fig. 2.

Fig. 4. Local behavior of degenerate critical points close to a stationary wall (a) and (b) and away from boundaries (c).

A dividing streamline which is placed under the reentrant corner moves to the reentrant corner when h2 is increased
in regions (c)–(e). When the bubble merging curve BM3 reaches a value of 1.625, the dividing streamline separates the
upper and lower cavities from the reentrant corner. Apart from the case of the lids moving in opposite directions, which has
been studied by Deliceoğlu and Aydın [1], the dividing streamline does not move upstream along the horizontal wall. As
h2 increases it is observed that the corner eddies of the upper cavities grow in size and meet the dividing streamline at the
reentrant corner. When (h1, h2) crosses the curve BM3 in the (c → f ), (d → g) and (e → h) direction in the control space
diagram, a new eddy is obtained with a separatrix. As h2 is increased beyond the cusp bifurcation curve CP3, in the middle
eddy a separatrix has been replaced by a single eddy (see Fig. 2(k)).

It is observed that two basic bifurcation scenarios occur in the L-shaped cavity with horizontal motion of the upper lid.
The first type of bifurcation scenarios can occur on the bottom of the lower cavities. A new eddy is obtained by decreasing
the height of the lower cavities, as shown in Fig. 3 (a → b → c). The number of eddies increases from one to two. When h1
is further decreased, Fig. 3 (c → d → e) shows that the same bifurcation sequence of flow pattern changes appear in the
lower eddy with upper eddies remain unaffected. We have now three eddies in the L-shaped cavity.

The second type of scenarios corresponding to the horizontal band between MB3 and CP3 can be seen in Fig. 3. As h2
increases it can be seen that the lower eddy in region (c) is displaced towards the upper lid in region (i). Possible flow pattern
sequences which can occur near the horizontal band between MB3 and CP3 are shown in Fig. 3 (c → f → i, d → g → j
and e → h → k). The flow patterns labeled in the horizontal band between MB3 and CP3 are quite similar to those in the
horizontal bandbetweenMB5 and CP5. For this reason, the relevant parameter range is outside the scope of the present paper.



A. Deliceoğlu, S.H. Aydın / Journal of Computational and Applied Mathematics 259 (2014) 937–943 943

4. Conclusion

In this paper, we have presented the flow patterns and the genesis of eddies in an L-shaped cavity, where the motion is
created by the horizontalmotion of the upper lid. The control-space diagram (Fig. 3) demonstrates the effect of the reentrant
corner on the behavior of the flow in the L-shaped cavity. It is observed that the corner eddies of the upper part of the cavity
meet the separation line at the reentrant corner. It is interesting to notice that the bifurcation curve BM3 remains at almost
the same value (1.62) for the L-shaped and rectangular cavities. Hence the reentrant corner does not affect the location of
the saddle–node bifurcation of the upper part of the cavities. Transition patterns in an L-shaped cavity were investigated for
−1.4 < h1 < 0 and 0.1 < h2 < 3.2. It was also shown that the single eddy structure develops into a three eddy structure
via several flow transformations.
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