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1. Introduction

Consider the nonlinear equation
F(x) =0, (1)

where F is the continuous operator defined on an open convex subset D of a Banach space X with values in a Banach space Y.
The best known method for solving Eq. (1) is the classical Newton’s method [1,2], which has a quadratic order of convergence
in the case of the Lipschitz continuity of the first order derivative of the operator F. In [3] M. Bartish first proposed the
method which is a two-step modification of Newton’s method, conducted the research of its semilocal convergence (under
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Kantorovich type conditions) and established the order of convergence 1 + /2 of the method. This iterative process for
solving (1) has the form [4-8]

-1
Xk + Vi
Xpr1 = X — [F/ <2<):| F (x) ,
-1
Xk + Vi
Ve = Xew1 — |:F’ (z‘ﬂ F(Xer1), k=0,1,2,....

Here xg, yo are initial values.
Difference analogous of the method (2)

X1 = Xk — [8F (i, YOI 7' F (%)

_ (3)
Vet = X1 — [F (e YOl 7' F (1), k=0,1,2, ...,

where X, yg are given, has been studied in the papers [9,10], where there has been established the order of convergence (3),
which also equals 1+ +/2.

In work [11] during the investigation of Newton’s method there have been proposed rather weak Lipschitz conditions for
the derivative operator, in which instead of constant L, there has been used some positive integrable function. The author
in his work [12] proposed the following Lipschitz conditions for the first order divided difference operator, and under these
conditions investigated the convergence of the Secant method [12] and the two-step difference method (3) for operator
equations [13], and in [14]—the two-step Newton type method for generalized Lipschitz conditions for the derivatives of
the first and second orders of the nonlinear operator.

In works [15-21] there have been studied the combined iterative processes that just as the difference methods [16,17]
can be applied for solving nonlinear equations with nondifferentiable operators, namely equations

H(x) = F(x) + G(x) = 0, (4)

where F and G are defined on an open convex subset D of the Banach space X with values in a Banach space Y; F is the Frechet
differentiable operator, and G is the continuous operator, differentiability of which, generally speaking, is not required. In
the first instance these are the methods that are a combination of the Newton and Secant method. They have the order of

convergence not higher than (] + ﬁ) /2. In particular, for the one-step method

Xer1 =X — AL (Fx) + G(x)), k=0,1,2,... (5)

while Ay = F’(x¢) let us conduct the analysis of the convergence of [20-22]; in works [16,17,19] there have been studied
the one-step modifications with Ay = F’(x;) + 8G(xk, X¢—1) and other selections of A,. In [19] we explored the semilocal
convergence of the one-step method for

A = F' (%) + 8G(2xk — Xy—1, Xk—1)-

Difference methods for solving equations with nondifferentiable operators were studied in [23,24].
In work [18] we first proposed a method that is built on the basis of methods (2) and (3) [3,6,9,10]. Its iterative formula
is:

-1
Xiwt = X — [F/ (@) + 6G<xk,yk)} (F (%) + G(x)) .

—1
X +
yk+1=xk+1—[ﬁ (kzy">+sc<xk,yk)} (F (p1) + Gxe)) . k=0,1,2,...,

Xo, Yo are given.

Just like Newton’s-Secant method which was studied by many authors, the new method requires at each iteration
the computation of one operator Ay and its inverse. The operator A; consists of a combination of a Frechet derivative
of one part of the operator (the differentiable part) and the divided difference of the second part (generally speaking,
nondifferentiable). The number of computations of the function value increases by one at each step. Therefore, the number
of computations at one iteration is almost identical in both methods. However, the convergence order of the new method

is higher (1+ v/2 ~ 2.41 vs. 125 ~ 1.62).
The investigations of method (6) in [ 18] have been conducted under Hoélder’s conditions for the second order derivatives
from F and usual Lipschitz conditions for the first order divided differences of G of Eq. (4).
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In this paper, we study the method (6) under relatively weak, generalized Lipschitz conditions for the second order
derivatives and divided differences of the first order.

2. Definitions and auxiliary lemma

Definition 1. Let F be a nonlinear operator defined on a subset D of a Banach space X with values in a Banach space Y and
X, y be two points of D. A linear operator from X into Y, denoted by §G(x, y), which satisfies the condition

8G(x, y)(x —y) = G(x) — GY) (7
is called a divided difference of G at the points x and y.

Let us denote as B (xg, 1) = {x : ||[x — Xo|| < r} anopen,andasB (xo, r) = {x : ||x — xo|| < r}aclosed ball of radius r with
center at the point xq.

In the study of iterative methods traditional are the Lipschitz conditions with constant L. However L in Lipschitz
conditions does not need to be a constant, and can be a positive integrable function. In this case, we consider the conditions

llx=yl
IF&x) —FwIl < / Lu)du VYx,y€B(x,1), (8)
0

and

[lx=ull+lly—vll
Ma&w—aawmnsf M@ dz ¥ xy.u,v € B (o, r) ©)
0

where L and M are positive integrable functions. Lipschitz conditions (8) and (9) we will call generalized Lipschitz conditions
or Lipschitz conditions with the L (or M) average. Note that in the case of constant L, M we obtain from (8) and (9) the classical
Lipschitz conditions.

Lemma 1 ([11]). Let h(t) = %fot L(u)du, 0 < t < r, where L(u) is a positive integrable function that is nondecreasing
monotonically in [0, r]. Then h(t) is nondecreasing monotonically with respect to t.

Lemma 2. Let g(t) = }3 fot N@)(t —u)®>du, 0 < t < r, where N(u) is a positive integrable function that is nondecreasing
monotonically in [0, r]. Then g(t) is a nondecreasing monotonically with respect to t.

Proof. Indeed, in the case of monotonousness of N for 0 < t; < t; we have

1 ty 1 t
mm—mm=7/'mwm—ww—?/ N (6 —w? du
tz 0 t1 0

1 [ 1 (0 1 (0
= 7/ N() (t; — u)* du + —3/ N() (t; — u)* du — —3/ N() (t; — u)* du
5 Jy ty Jo ' Jo

1 [o 1 1 f
= —3/ N(u) (tz—u)Zdu+<—3——3)f N(@) (t; — u)® du
5 Jy, 5t

2 1

0

> N(t LAY . 2d RN Y 2d

> N (t1) 3 (t; —w)du+ 50 (ti —u)’du
2 Jh 2 1 0

—N@) |~ ’ -1 [ 2du| =
=N (t) 2, (t —w)”du — 2 (ty —wdu| =0.
2 1

Therefore, g(t) = [13 fot N(u)(t — u)?>du, 0 <t < ris nondecreasing monotonically with respect to t.

Lemma 3 ([11]). Let p(t) = % fot M(u) (t —u) du, 0 <t < r, where M is a positive integrable function that is nondecreasing
monotonically in [0, r]. Then p(t) is increasing monotonically with respect to t.

3. Local convergence of the iterative process (6)

Let us study the convergence of method (6). Let D C X be an open convex subset, B (x*, r) € D, rg, ry are the solutions
of the systems of equations

Jii+Cn =1, (10)
[]ro2 +E (279 + rl)] =T

on the interval (0, r), constants r, J, C, E are defined below.
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The radius of the convergence ball and the order of convergence of the method (6) are defined by the following theorem.

Theorem 1. Let H(x) = F(x) + G(x) be a nonlinear operator, defined in an open convex subset D of space X with values in the
space Y. Suppose that

(i) H(x) = 0 has a solution x* € D, in which there exists the Frechet derivative H' (x*) and it is invertible;
(ii) there exist Frechet derivatives F’ and F” in B (x*, r) C D, satisfying Lipschitz conditions with L and N average

[ ) P —F ()| < /0 " L

lix=yll ()
HH/ )" (') — F' ) H < / N(u) du,
0
and divided differences satisfy the Lipschitz condition with M average
1 llx—ull+lly—vli
HH’ (¢) " (5G(x. ) — 8G (u, v)) H < / M(2) dz (12)
0
where x,y,u,v € B(x*,r), p(x) = ||x—x*|| and L, M and N are positive integrable functions and are nondecreasing
monotonically;
(iii) let r > 0O satisfy the equality
% Jo Nw)(r — u)? du + rf3r/2 L(u) du + rf03rM(u) du . (13)

r (1 — Jo L)y du — 02r M(u) du)

Then for all Xy € B (x*, r9) and yo € B (x*, 1) sequences {Xi},en and {yi}en, are defined according to formulas (6), converge
to the solution x*, x, € B (x*, 1) and y, € B (x*, rq) for k = 0, 1, 2, ... and the estimations are being fulfilled

p K1) = [Xie1 — x| <Jp >+ Co @) p ). k=0,1,2,...,
P Wir1) = [|[Yirr = X[ £Jo Gir)* +E (0 ) + o Kir) + 0 0)) p (K1) . k=0,1,2,...,

where zg = p (Xo) + p (Vo) + p (X1),

Qo p(x0) Qo 2/2 )
= 73/ N@) (p (xo) — u)? du; E=— </ L(u)du +/ M(u)du) ;
8p (x0)” Jo Z0 \Jo 0

Qo p(o)/2 p(o)
= (f L(u)du +/ M(u)du) ;
P Vo) 0 0
P(Xo+y0)/2 PX0)+p (o) -1
Q = (1 —/ L(u)du —/ M(u)du) . (15)
0 0

The order of convergence of sequences {Xy}icy and {yi}xen to the solution x* equals 1 + /2.

(14)

Proof. Let us chose arbitrarily xo € B (x*, rg) and yo € B (x*, r1), where r satisfies (13). Then in the case of monotonousness
L, M and N according to Lemmas 1and 2 we have, that { fot L(u) du, fot M (u) duand }3 fot N(u)(t—u)? du are nondecreasing

with respect to t.
Let us denote as A = A(x, y) the linear operator A = F' (*3¥) + 8G(x, y) with x, y € B(x, r). Then, by (11)-(12), we get
[T—H&HTA| = |[H&H ™ (H &) - A)|

HH/(x*)—1 [F/(x*) +8G(x*, x*) — F' (%) — SG(x,y)] H

p(%) PR +0()
gf L(u)du+/ M (u)du.
0 0

From the definition r it follows that

r 2r 1 r 3r/2 3r
/ L(u)du —|—/ M@)du=1-— —/ Nw)(r — u)*du — / L(u) du — Mu)du < 1.
0 0 8r Jo 0 0
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Then from the identity
_ _ -1
Jam o) = | (1= (- e 'a) 7|

according to the Banach lemma on the invertible operator [1,21] it follows that A is invertible and

xhy -1

p( 5 ) PX)+p¥)
[A7"H' &) < [1- / L(u)du — / M(u)du)
0 0

Let us now suppose that x;, € B (x*, 1) , yx € B (x*, r1). Set Ay = A(X, yx). Then Ay is invertible and, according to (6), we can
write

X1 — X = x— x* — A (F () + Glx) — F(x*) — G(x*))

S [F (x) + G(x) — F(X) — G(¢') — (F’ ("—" ;y ") + sc(xk,y,a) (xi — x*)]
= Ak_lH/(X*) [H/(x*)] I:F/ (@) (Xk _ x*) —F (Xk) + F(X*)]
+H (x*)_l [8G (xx, x*) — 8G (xk, yi) ] (% — x*)]

X + x*

= A 'H (x) {H/(x*)_l |:F/ ( 5 ) (xk —x*) — F (%) + F(x*)]

e (452 o (53

+H (x*)_l [8G (X, x*) — 8G (xk, yi) ] (% — x¥) } ) (16)

Let us write down the identity [6, Lemma 1, p. 336] for values w = 1/2

L (X+y ot [ (xty
F(x)_FU')_F(T>(X_y)_Z/O(1 t)[F< ) +2(x ;v))

—F" <X;y + %(y —X))} (x = y)(x = y)dt.

Putting in this equality x = x*, y = x, we will obtain the estimation

e e (]

1 1 7o)~ 1 " X/<+X* t *

Z /(;(]—I)H (x) [F <T+5(X —Xk))
(M L ) ) ()]

1 1 [||xk—x*|| )
*f ( —t)/ N@)du |x —x*|”dt
4 Jo 0

1 [l u 2 2
gv/(; N(u)(l—m> du ||Xk—X ”

1

p(xk)
§f N() (p (x¢) — u)* du,
0

IA

and also

* PYK)/2
H (X*)—l |:F/ (Xk -;Yk) _F (Xk ‘;X )] H < / L(u)du:
0

PWk)
< / M(u)du | x, — x*|| .
0

1 ()7 [5G (v ) = 56 0 90] (v = %)
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Then according to Lemmas 1-3 and conditions (11)—(13) taking into account the latter inequalities we obtain

[t — x| < [|ATH' &9 {HH/(X*)‘l [F/ (%) (xe — Xx*) — F (%)) +F(x*)] H
+ HH/ (X*)*l |:F/ (@) _ F/ (Xk ‘lz—x*)] (Xk —X*)

1 s«
< A H @] [l f (1-0) ‘H’(x*)] [F” (% + g (xic— x*))
0
—F" (Xk -;X + % (X* _XI<)>] (Xk _ X*) (Xk —X*)

+ HH/(X*)_l [F/ (’“;—”‘) —F (X’;x)} (x = x7)

1 [P@) PYk)/2 PK)
< A H @ {8 f N (p (4) — u)? du + / L(wydu p (%) + / M(u)dup(xu}.
0 0 0

+ [ () 86 (v ) = 56 5 0] (% = )

dt

) 166 (o ) — 56 0] (1~ )

Therefore
H I Qk{ ! /p(Xk)N()( (%) — w2 dup (x)?
X, — X < u X —u u Xk
k+1 = 80 (x0)° Jo P Xk P (X
2 pYK)/2 1 PYk)
+ / Lwdup x0) p 00 2+ —— [ Mdup (x) p (y,a}
o k) Jo o k) Jo
1 p(X0) 5 3
<Q {W /O N(w) (o (o) — ) dup (xe)
2 p¥o)/2 1 ro)
+ f L(u)du p (%) p (k) /2 + M(u)du p (x) p cyk)}
o o) Jo o (Vo) Jo
<Jp®)>+Cp x) p ) < (Jrg 4+ Cri) p (xi) = p (x) < To, (17)

X +YVk

~1
where Q= | 1— fop( : )L(u)du - fop(x")“(y") M(u)du) .

Analogously
Vit — & = X1 — X — A (F (1) + Gir) — F(X) — G(x¥))
= A [Ac®isr — X)) = F (trs1) + F(X*) — G(xi1) + G(x) ]

= Ak1Hf(x*){H/(x*)—1 [Fr <Xk+Tyk> (Xk+] _ x*) —F (tesn) + F(x*)]
+H (X*)*l [5(; (Xk, Vi) — 8G (ka, X*)] (XI<+1 _ X*)}

= ACH (x) {H’(x*)—1 [F' (%) (X1 — X7) = F (tey1) + F(x*)]

*
+H' (x)" [F’ (L ;Ly") —F (Lrl;x )} (Xir1 —x%)

+H (X)) 7 [6G (e, i) — G (Xup1, X)] (xiesr — x°) ]
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Out of that

1

£ (%41) 2/2 2k
Hmﬂ—fﬂs@[gf meuwo—mww+/ L@Mwuﬂo+/ MprmH4
0 0 0

1 o (%er1) N .y 3
—<gﬁayﬂ () (p (es1) — W dup (Xerr)

2 zy/2 1 Zk
+— f Lwdu p (Xi1) /2 + — / Mdu p (Xi11) Zk}
Zk Jo Zk Jo

1 p(x0) , 3
=Q {Sp PRE /0 N() (p (x0) — w)” dup (Xk+1)

2 20/2 1 V4
+ — / Lw)du p (Xet1) 21/2 + — f MWdu p (Xey1) Zk}
Zy Jo 20 Jo
<Jp xes1)* +E(p %) + p ) + p Res1)) p (Res1)
<U@+Eam+nﬂpuﬂo=%puwo<n, (18)
where zy = p (x¢) + p (V) + 0 Kier1)-

In particular, sequence {||x; — x*||} according to (17) monotonically converges to a limit value a, 0 < a < ry. From
inequality (17) comes a < Ja® + Car;. For a # 0 we receive a contradiction

1<Ja®+Cry <Jrii+Cr=1.

From this we receive: limy_, oc Xy = X* = limy_ o0 Yk-
Wesetay = p (xx), by = p k), k=0, 1, 2,....From inequalities (17), (18) we get

age1 <Jag + Caxby, k=0,1,2,..., (19)

. I
bit1 < @41 min {r’ Jag,, +E (@ + a1 + bk)}
0

IA

r
41 Min r—l, (2E + Jay)ay + Eby
0

r r r
A1 Min {‘, (25 + Jro + E—1> ak} < (]ro +E (2 + i)) Q1. (20)
o o To

From the estimations (19) and (20) for big enough k with a certain positive constant C; follows a1 < C; aﬁa;H.
From the last inequality we obtain the equation for determining the order of convergence p?> —2p — 1 = 0, positive root
of which p* =1+ v/2 and is the order of the convergence of (6).

IA

4. The uniqueness ball for the solution of equations
The uniqueness ball for the solution is defined in the following theorem.

Theorem 2. Let us assume that H(x*) = F(x*) + G(x*) = 0, F has a continuous derivative in B (x*, r) , H' (x*)~" exists, and F’
satisfies the Lipschitz condition with L average

lx=yll

HH/ (x*)_1 (F'(x) —F' () H < / L(wdu, Vx,y€B(x",r), (21)
0
the divided difference §G(x, y) satisfies the Lipschitz condition with M average
1 lx—ull+lly—vll
HH/ (x*)" (8G(x,y) — 8G(u, v))H < / M(u)du, Vx,y,u,v€B(x",r), (22)
0
where p(x) = ||x — x*|| and L and M are the positive integrable functions. Let r satisfy
1 r r
- / (r — u)L(u)du + f M(u)du < 1. (23)
rJo 0

Then the equation H(x) = 0 has a unique solution x* in B (x*, r).
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Proof. Let us choose arbitrarily X, € B (x*, r) and consider the iteration

Xep1 = X — H )W Fx) +Gx), k=0,1,2,.... (24)
We obtain
x1 —x* = xo —x* — H'(x*) "' (F(x0) + G(x0))
= H'(x*)"' [H'(x*) (o — x*) — F(x0) + F(x*) — G(xo) + G(x")]
= H'(x") 7" [F'(x*) (xo — X*) — F(Xo) + F(x*) + 8G(x*, x*) (xo — X*) — G(xg) + G(x")]
= H'(x*)"" {F'(x) (xo — x*) — F(xo) + F(x) 4 [8G(x*, x*) — 8G(xo, x)] (xo — x*)} .

Let us estimate the rate of expression H'(x*) ! {F/(x*) (xo — x*) — F(xo) + F(x*)}.

1 t||x0—x*||
< / f L(u)du |xo — x*|| dt
0 0

[lxo—x* ||
< / ’ (] - L) L(u)du |xo — x*|
0 llxo — x|

p(X0)
= / (p(x0) — u) L(u)du.
0

IA

1
/ H ) F (¢t (0 — X)) — F'x)) (xo — x°) dt

0

|H' @)™ {F (&) (x0 — %) = Fxo) + F(x) }|

A

Then
1 p(Xg) p(x0)
|1 — x| < (p(xo) / (p(xo) — u) L(u)du +/ M(u)du) [%0 — x*|| = qo %0 —x*] . (25)
0 0
where
1 p(x0) p(x0) 1 r r
Qo = / (p(x0) — u) L(u)du —I—/ M(u)du < f/‘ (r —u) L(u)du +/ Mu)du < 1.
p(Xo0) Jo 0 rJo 0

According to (25)

i =% = a0 [Jxo —x7]|.
Thus, the iteration (24) can be continued infinitely, and
, k=1,2,....

Therefore, limy_, o X, = X*. But if H(xg) = 0, then from (24) x, = Xo. So from this follows xy = x*.

% = x| = ag [ x0 —x°]

Let us denote that having set in (4) G(x) = 0, from Theorem 1 we obtain Theorem 1 from [14], and from Theorem 2—
Theorem 4.1 with [11] for Newton method, and having set in (4) F(x) = 0, we obtain from Theorem 1 a corresponding
Theorem 1 from [13] for method (3), but with more precise and obvious estimations. With Lipschitz constants we obtain
the corresponding theorems from the works [6,10,18].

Remark. In our papers [18,19] we have described the results of numerical experiments for the methods of solving the
nonlinear equation systems that contain differentiable and nondifferentiable parts. In particular, in [19] there have been
presented results for the one-step methods, and in [18] there have been investigated a two-step method (6) and a
comparison of it with the one-step methods (5). The obtained numerical results show that the combined methods (5) and
(6) are more efficient than the difference methods. Methods that use only the value of the derivative of the differentiable
part are not efficient, especially in the case of nonlinearity of the nondifferentiable operator part. The combined method (6)
has a greater advantage over the combined one-step methods (5) in the case of finding a solution with high accuracy and
for the worse initial approximation.

5. Conclusions

In this work it is investigated the local convergence of the combined method (6) for solving nonlinear operator equations
under the generalized Lipschitz conditions for derivatives of the first and second order and divided differences of the first
order, in which instead of Lipschitz constants some positive integrable functions are being used. The uniqueness ball of
solution is established. In partial cases the received results of local convergence contain the results obtained in the works of
other authors.
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