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a b s t r a c t

The Ultra Weak Variational Formulation (UWVF) is a powerful numerical method for
the approximation of acoustic, elastic and electromagnetic waves in the time-harmonic
regime. The use of Trefftz-type basis functions incorporates the known wave-like
behaviour of the solution in the discrete space, allowing large reductions in the required
number of degrees of freedom for a given accuracy, when compared to standard finite
element methods. However, the UWVF is not well disposed to the accurate approximation
of singular sources in the interior of the computational domain.We propose an adjustment
to the UWVF for seismic imaging applications, which we call the Source Extraction UWVF.
Differing fields are solved for in subdomains around the source, and matched on the
inter-domain boundaries. Numerical results are presented for a domain of constant
wavenumber and for a domain of varying sound speed in amodel used for seismic imaging.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Ultra Weak Variational Formulation (UWVF), originally proposed by Cessenat and Després in [1,2], is a new-
generation finite elementmethod for the accurate simulation of time-harmonic acoustic, elastic, and electromagneticwaves.
The area of time-harmonic wave scattering is a subject of much research, with applications in seismology, medical imaging,
and radar imaging.

We consider acoustic wave propagation, modelled in two dimensions by the following Helmholtz boundary value
problem (BVP):

∇ ·


1
ρ

∇u


+
κ2

ρ
u = f in Ω, (1a)

1
ρ

∂u
∂n

− iσu


= Q


−
1
ρ

∂u
∂n

− iσu


+ g on Γ . (1b)

Here Ω ⊂ R2 is a bounded domain with Lipschitz boundary Γ ; the density ρ(x) and the wavenumber κ(x) are real positive
and may vary throughout the domain. The coupling parameter σ is real and positive, and f and g are the volume and
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boundary source terms respectively. The parameter Q ∈ C, |Q | ≤ 1, allows different types of boundary conditions: Q = 1,
−1 and 0 correspond to the Neumann, Dirichlet, and impedance boundary conditions, respectively.

The UWVF is a Trefftz-type method: the exact solution of a Helmholtz boundary value problem is approximated by a
linear combination of basis functions that, inside eachmesh element, are solutions of the homogeneous Helmholtz equation,
i.e. Eq. (1a) with right-hand side f = 0. By incorporating information on the oscillatory behaviour of Helmholtz solutions
into the approximation space, the UWVF can produce accurate results requiring significantly fewer degrees of freedom than
standard finite element methods, in some cases for mesh sizes encompassing several wavelengths λ.

The solution of the Helmholtz equation is often approximated using a plane wave basis [1–6]; however, it is also possible
to use other solutions of the homogeneous Helmholtz equation, such as a Fourier–Bessel functions as in [7].

As with standard finite element methods (FEM), the domain Ω is partitioned into a polygonal mesh; however the
solution variables are impedance traces 1

ρ
∂u
∂n − iσu on the skeleton of the mesh. These traces are approximated by the

corresponding traces of a Trefftz trial space and the approximation is automatically achieved also in the element interiors
if the discretised BVP is homogeneous (f = 0), see [4, Theorem 4.1], [8, Theorem 4.5]. In [4–6,9] the UWVF has been shown
to be a discontinuous Galerkin (DG) method with Trefftz basis functions, allowing a simpler and more general derivation of
the formulation (see e.g. [6, Section 3.2]) and a more straightforward error analysis.

In seismic imaging applications, point sources (monopoles or dipoles) are used in the interior of the domain, for example
to represent an explosive sound source. Modelling this situation requires solving the inhomogeneous Helmholtz equation
for a non-zero and singular source term f , for example a Dirac delta function. To date, the use of the UWVF to solve the
inhomogeneous form of the Helmholtz equation has not received a great deal of attention in the literature: typically, sources
in the exterior of the domain have been simulated by imposing non-zero boundary conditions in BVPs for the homogeneous
Helmholtz equation, in order to demonstrate superior approximation properties of Trefftz methods.

In [1,2,5,9] the UWVF with non-zero source term f has been investigated, and both a priori analysis and numerical
experiments have been presented. Loeser and Witzigmann [10] use UWVF to solve the Helmholtz equation (1a) with a
source term f = 1 in ΩS and f = 0 elsewhere, for an active region ΩS

⊂ Ω . The UWVF solution is found in the source-free
region Ω \ ΩS only, after which, in an additional post-processing step, a standard finite element method (FEM) is used in
the active region where f is non-zero. In practice, [10] suggests that the FEM mesh size in the active region should be no
larger than λ/30, where λ is the problem wavelength, leading to a potentially computationally expensive scheme.

Here, we investigate the applicability of the UWVF to seismic imaging by considering the typical situation of an interior
point source. We first consider a domain of constant wave speed, and then extend our investigations to the simulation of
wave propagation through a layered velocity profile. We present a simple yet accurate method to augment the UWVF in
the case of a localised non-zero source term f , which we call the Source Extraction UWVF. In this approach, the domain
Ω is split into two regions: an inner source region containing the source, and an outer region comprising the remainder
of the domain. In the inner region, a particular radiating solution of the inhomogeneous Helmholtz equation with source f
is subtracted from the field, so that the remainder of the wavefield is amenable to a Trefftz approximation in the interior
(this remainder is the wavefield which is back-scattered from the outer region into the inner region). In the outer region we
solve for the total field. The solutions in the two regions are matched by prescribing the jumps of the impedance and the
conjugate-impedance traces across element boundaries. If we consider a point source (a Dirac delta), then we subtract the
fundamental solution in the source region. However the method can be easily generalised to other forms of sources, such as
for a dipole source. A related approach based on splitting of outgoing and back-scattered fields is used in [11,12] for finite dif-
ference methods in time domain. A similar approach for the UWVF has been derived separately by Gabard in [9, Section 5.1]
for a system of linear hyperbolic equations, applied with accurate results to the linearised Euler equations.

Details of the UWVF are given in Section 2, with explanation given as to why solving the inhomogeneous form of the
Helmholtz equation poses challenges for the numerical method. In Section 3 we present the new adjustment of the UWVF
for the representation of an interior point source. Accurate results for a domain with constant wavenumber are presented
in Section 4, followed by results for a domain with a varying sound speed profile. The sound speed profile for the latter case
is taken from a synthetic 2D acoustic model often used as a test case in seismic inversion, the Marmousi model (see [13,14]
for example).

2. The ultra weak variational formulation of the inhomogeneous Helmholtz problem

We introduce in this section the classic UWVF for the inhomogeneous Helmholtz BVP (1), which is slightly more general
than that considered in [1] in the fact that varying coefficients are allowed (compare also with [3]). We mainly follow the
notation of [3].

We partition Ω into a mesh T = {Ωk}
K
k=1 composed of triangular elements Ωk. We denote the boundary of an element

by ∂Ωk, the inter-element boundaries by Σk,j := ∂Ωk ∩∂Ωj, and the edges on the outer boundary by Γk := ∂Ωk ∩Γ , where
Γ := ∂Ω . The outward pointing unit normal vector on ∂Ωk is denoted nk. The wavenumber and density are assumed to
be constant on each element, so piecewise constant in Ω , with κk := κ|Ωk and ρk := ρ|Ωk . As in [3], on the inter-element
boundaries, the parameter σ is defined as

σ :=
1
2


κk

ρk
+

κj

ρj


on Σk,j;
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on exterior edges we assume

σ :=
κk

ρk
on Γk.

We introduce the Trefftz space H :=
K

k=1 Hk, with

Hk :=


vk ∈ H1(Ωk), −∇ ·


1
ρk

∇vk


−

κ2

ρ k
vk = 0 in Ωk,

∂vk

∂nk
∈ L2(∂Ωk)


,

and we represent any v ∈ H as a vector {vk}
K
k=1 with vk := v|Ωk . To avoid technical difficulties with the regularity of f and

the solution u of the BVP (1), as in [2, Section I.5.1], we start by assuming that u belongs to

H :=

K
k=1

Hk withHk :=


vk ∈ H1(Ωk),

∂vk

∂nk
∈ L2(∂Ωk)


.

If ρ is constant and f ∈ L2(Ω), this is always guaranteed, otherwise f |Ωk ∉ H−1(Ω) implies uk ∉ H1(Ωk) (for example, if f
is a Dirac delta), and a discontinuous ρ may prevent uk from belonging to H3/2+ϵ(Ωk) for any ϵ > 0 and its impedance trace
from belonging to L2(∂Ωk).

We define the sesquilinear forms d, c : H ×H → C as

d(v, w) :=

K
k=1


∂Ωk

1
σ


−

1
ρk

∂

∂nk
− iσ


vk


−

1
ρk

∂

∂nk
− iσ


wk dS,

c(v, w) :=

K
k,j=1
k≠j


Σk,j

1
σ


−

1
ρj

∂

∂nj
− iσ


vj


1
ρk

∂

∂nk
− iσ


wk dS

+

K
k=1


Γk

Q
σ


−

1
ρk

∂

∂nk
− iσ


vk


1
ρk

∂

∂nk
− iσ


wk dS.

(2)

In [1, Theorem 1.3] it is proved that, if |Q | < 1 (to ensure well-posedness), ρ and κ are constant, f ∈ L2(Ω) and g ∈ L2(Γ ),
then the solution u of the BVP (1) satisfies the variational problem

d(u, v) − c(u, v) = −2i
K

k=1


Ωk

f vk dV +

K
k=1


Γk

g
σ


1
ρk

∂vk

∂nk
− iσvk


dS (3)

for all v ∈ H . The same proof (see also [3, Eq. (10)]) holds true also for discontinuous coefficients (recall that we assumed
u ∈ H).

We recall that the formulation (3) and the sesquilinear forms (2) were derived in [1, Theorem 1.3] for the case of constant
coefficients by summing over Ωk ∈ T the identity

∂Ωk

1
σ


−

1
ρk

∂

∂nk
− iσ


uk


−

1
ρk

∂

∂nk
− iσ


vk dS −


∂Ωk

1
σ


1
ρk

∂

∂nk
− iσ


uk  

=:Ak


1
ρk

∂

∂nk
− iσ


vk dS

= 2i


∂Ωk

1
ρk


uk

∂vk

∂nk
−

∂uk

∂nk
vk


dS = −2i


Ωk

f vk dV , (4)

which holds for all v ∈ H and for u ∈ H solution of (1a), and substituting the term denoted by Ak with the corresponding
trace from the neighbouring element or from the boundary condition. Note that complex wavenumbers κ (i.e. absorbing
media) can be considered as in [4, Section 5].

The usual UWVF discretisation consists in restricting the variational problem (3) to the discrete space Hh =
K

k=1 span
{φk,l}

pk
l=1 ⊂ H defined by the basis functions φk,l ∈ Hk, 1 ≤ k ≤ K , 1 ≤ l ≤ pk, where pk is the number of degrees of freedom

located in Ωk and may vary in different elements.
When solving the homogeneous Helmholtz equation, all of the integrals in (3) are defined on the element boundaries

(as f ≡ 0 the only volume integral in (3) vanishes). On the other hand, in the general case the right-hand side of (3) includes
an integral over all the elements where the source term f is non zero (or point evaluations if f is a linear combination of
point sources).

A standard choice of the Trefftz basis functions φk,l, i.e. equispaced plane waves or circular waves (Fourier–Bessel func-
tions), allows high orders of approximation in the elements where f = 0; see [15]. On the contrary, when f ≠ 0 inside
Ωk, Trefftz functions lose their approximation properties. The use of plane waves in the inhomogeneous case can provide
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Fig. 1. Subdivision of the domain and the mesh. Γ S is in red. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

the same approximation of u as piecewise-linear polynomials only; this is supported by numerical experiments that found
moderately high orders of convergence for the approximation of u on the skeleton of the mesh but only linear order in the
meshsize h for the volume error measured in the L2(Ω)-norm, see [1, Tables 3.3 and 3.4] and [5, Section 5].

These two reasons, the integration on the mesh skeleton only and the higher orders of approximation, motivated the
investigation of the UWVF in the homogeneous case, and not much effort has been devoted to the source case. If the
UWVF is to be used in more general problems that may practically arise in seismic imaging, this situation needs to be
tackled. In the next section we propose a modified formulation to extend the advantages of the UWVF to the special case of
point sources.

3. The Source Extraction UWVF

We wish to solve the inhomogeneous Helmholtz BVP (1) in the domain Ω , when the source term f is a point source:

f (x) = −δ(x − x0), x ∈ Ω, (5)

where δ is the Dirac delta function and x0 ∈ Ω . In this case, the right-hand side of the UWVF formulation (3) becomes
Ωk

f vk dV = −vk(x0); f ∉ L2(Ω) and u ∉ H1(Ω). As it might be expected, numerical tests using the formulation (3) proved
extremely inaccurate at representing the source, with high errors in the element containing x0; numerical experiments for
this case are provided in Section 4.1.

In order to introduce amodified formulation, we now fix some notation.We split the domain in two open regionsΩS and
ΩE , Ω = ΩS

∪ΩE
∪Γ S where Γ S

= ∂ΩS (as illustrated in Fig. 1) such that the two regions correspond to a partition of the
mesh: T = T S

∪ T E with Ωk ∈ T S if Ωk ⊂ ΩS and Ωk′ ∈ T E if Ωk′ ⊂ ΩE . On Γ S , we denote by nS the unit normal vector
outward pointing from ΩS , and set nE = −nS . Moreover, we require: x0 ∈ Ωk for some Ωk ∈ T S (thus the source is located
in ΩS and it does not lie on the mesh skeleton); the physical parameters are assumed to be constant in ΩS , i.e. ρk(x) = ρS

and κ(x) = κS for all x ∈ ΩS ; and ΩS to lie in the interior of Ω , i.e. Γ S
∩ Γ = ∅.

In ΩS , we write the field u as the sum of the known field uI generated by the point source in free space (i.e. with constant
parameters ρS and κS in the whole plane and without any boundary conditions) and the unknown remainder uS , i.e.

u = uI
+ uS in ΩS, where uI(x) := ρS i

4
H1

0 (κ
S
|x − x0|),

where H1
0 is the Hankel function of the first kind and order zero. Then uI is the fundamental solution of the Helmholtz

equation (with constant parameter). By separating out the total field u into the sum of the unknown field and the known
local particular solution of the inhomogeneous Helmholtz equation, we can remove the known part, and so are left with the
homogeneous form of the equation. We can then use the UWVF to approximate uS

∈ H1(ΩS) alone, and add in the known
uI in a post-processing step. In the remainder of the domain ΩE we approximate the total field u, which we now denote
uE

∈ H1(ΩE) for clarity.
Since uI is solution of

∇ ·


1
ρ

∇uI


+
κ2

ρ
uI

= f in ΩS,
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and the traces of (uS
+ uI) and uE should agree on Γ S , we are left with two homogeneous Helmholtz equations for uS and

uE , posed in ΩS and ΩE respectively, coupled via the impedance traces of uI :

∇ ·


1
ρ

∇uS


+
κ2

ρ
uS

= 0 in ΩS,

∇ ·


1
ρ

∇uE


+
κ2

ρ
uE

= 0 in ΩE,

(1 + Q )
1
ρ

∂u
∂n

− (1 − Q )iσu = g on Γ ,
1
ρS

∂

∂nS
− iσ


uS

=


−

1
ρE

∂

∂nE
− iσ


uE

−


1
ρS

∂

∂nS
− iσ


uI on Γ S,

1
ρE

∂

∂nE
− iσ


uE

=


−

1
ρS

∂

∂nS
− iσ


uS

+


−

1
ρS

∂

∂nS
− iσ


uI on Γ S . (6)

Here, ρE is the trace of ρ on Γ S taken from ΩE , which does not need to be constant along Γ S , unlike ρS . Recall that on Γ S

we defined nE = −nS , thus the last two conditions in (6) correspond to the continuity of u and ρ−1
∇u across Γ S .

The benefit of using the UWVF to approximate uS
∈ H1(ΩS) alone is threefold: (i) the fields to be approximated aremuch

smoother than the solution of the original problem; (ii) they are the solution of the homogeneous Helmholtz equation, thus
the approximation by Trefftz functions can deliver great accuracy; and (iii) all the terms that will appear at the right-hand
side of the UWVF are integrals on some part of the mesh skeleton (see Eq. (8)).

In the case of a domain of constantwavenumber it would be possible to approximate uS only on thewhole domain (i.e., to
choose ΩS

= Ω , ΩE
= ∅, and solve a BVP whose trace source g is modified by subtracting a trace of uI ). However, if the

wavenumber is varying in the domain, it is unlikely that a special solution uI would be known in the whole of Ω .
As in Section 2, if we follow the proof of [1, Theorem 1.3] and insert the last two conditions of (6) in (4), we obtain the

ultra weak variational formulation of the BVP (6) as

seek u∗
∈ H s.t. d(u∗, w) − c(u∗, w) = β(w) ∀w ∈ H, (7)

where u∗ stands for uS and uE in ΩS and ΩE respectively. The sesquilinear forms d(·, ·) and c(·, ·) were defined in (2) and
the antilinear functional β : H → C is defined as

β(w) :=

K
k=1


Γk

g
σ


1
ρk

∂

∂nk
− iσ


wk dS −


Ωk∈T S


∂Ωk∩Γ S

1
σ


1
ρS

∂

∂nS
− iσ


uI


1
ρS

∂

∂nS
− iσ


wk dS

+


Ωk∈T E


∂Ωk∩Γ S

1
σ


−

1
ρS

∂

∂nS
− iσ


uI


1
ρE

∂

∂nE
− iσ


wk dS ∀w ∈ H. (8)

The discrete version of the UWVF reads as follows: given a finite dimensional subspace Hh ⊂ H ,

seek u∗

h ∈ Hh s.t. d(u∗

h, wh) − c(u∗

h, wh) = β(wh) ∀wh ∈ Hh. (9)

The corresponding linear system of equations has the same matrix as the system obtained from the standard UWVF (3),
while the right-hand side vector is different. The system reads (D − C)X = b, where X is the coefficient vector of u∗

h in a
given basis of Hh. The matrix D is Hermitian and block diagonal (with blocks Dk of size pk, for k = 1, . . . , K ), with each entry
given by an integral over the boundary of an element; each entry of the sparse matrix C contains two integrals over edges;
see [3, Section 3] for more details.

The implementation of the Source Extraction UWVF depends on the choice of the source region ΩS . Its maximal size
is dictated by the parameters κ and ρ, since these must be constant in ΩS . Once ΩS has been fixed, mesh refinement can
be performed independently in ΩS and ΩE , thus making this choice mesh-independent. Numerical experiments show that
reducing the size of ΩS when the mesh is refined may reduce the accuracy of the numerical solution.

3.1. Well-posedness of the Source Extraction UWVF

We define the trace space X :=


k∈K L2(∂Ωk), equipped with the norm

∥X∥
2
X :=

K
k=1


∂Ωk

1
σ

|Xk|
2 dS ∀X = (X1, . . . XK ) ∈ X .

In the space X we define the impedance and the ‘‘adjoint impedance’’ trace operators

I : H → X, F : I(H) → X
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as

I(v) :=

I1(v), . . . , IK (v)


, Ik(v) := −

1
ρk

∂vk

∂n
− iσvk and

F

I(v)


:=


F1

I1(v)


, . . . , FK


IK (v)


, Fk


Ik(v)


:=

1
ρk

∂vk

∂n
− iσvk.

Then the UWVF sesquilinear form (3) may immediately be rewritten as

d(u, v) − c(u, v) =

K
k=1


∂Ωk

1
σ

Ik(u)Ik(v) dS −

K
j=1
j≠k


Σj,k

1
σ

Ij(u)Fk

Ik(v)


dS −


Γk

Q
σ

Ik(u)Fk

Ik(v)


dS

.

Buffa and Monk defined in [4, (2.16)] the sesquilinear form a : X × X → C

a(X, Y) :=
1
2


d(u, v) − c(u, v)


for u, v ∈ H s.t. I(u) = X, I(v) = Y

in the case Q = 0. The form a(·, ·) is well-defined, as there exists a unique u ∈ H satisfying I(u) = X ∈ X by the
well-posedness of the corresponding Helmholtz impedance BVPs posed in the mesh elements. In other words I : H → X
is invertible. Note that in [4] κ is taken constant, ρ = 1, η is used in place of σ and the relationship between X and u (and
similarly between Y and v) follows a different sign convention.

Lemma 3.4 of [4] provides the coercivity of a(·, ·) when Q = 0. The applicability of this result to the present setting can
be verified by defining v := (−iρ)−1

∇u, Xk := (−iσuk + ivk · nk) ∈ L2(∂Ωk) and repeating exactly the same proofs of [4]
with a different sign convention; the discontinuous coefficients do not affect this result. From this, both the continuous and
the discrete problems (7) and (9) are well-posed. We have the following error bound for the discretisation of the UWVF
which was proved in [4, Theorem 3.5]:

K
j,k=1


Σj,k


σ

2

[[u∗
− u∗

h]]
2 +

1
2σ

  1
ρ

∇u∗
− ∇u∗

h


· n
2


dS

+


k


Γk

1
2σ

FkIk(u∗)

− Fk


Ik(u∗

h)
2 +

Ik(u∗) − Ik(u∗

h)

2 dS
≤ 4 inf

vh∈Hh

I(u∗) − I(vh)
2
X , (10)

where [[·]] denotes the jumps across the mesh faces Σjk.
This bound allows us to control the traces of the error on the mesh skeleton only. Theorem 4.1 of [4] then gives an

error estimate in the L2(Ω)-norm, but holds for BVPs with H2(Ω)-regularity only: since here we consider discontinuous
coefficients, it is not directly applicable in the present case. In order to obtain estimates in L2(Ω), a new duality result
similar to Lemma 4.4 of [8] (which improves on [4, Theorem 4.1] in requiring weaker regularity than H2(Ω)) is required.

Given a particular discrete Trefftz space, in order to obtain orders of convergence from the quasi-optimality bound (10),
only best-approximation estimates are needed. In the case of plane wave or Fourier–Bessel (i.e. circular waves) basis, these
approximation bounds are proved and discussed in [15].

4. Numerical examples

Wepresent twonumerical examples of the Source ExtractionUWVFdescribed in Section 3 for solving the inhomogeneous
Helmholtz equation (1a). In the first we consider the approximation of the wave generated by a point source in a domain of
constant wave speed, and compare the accuracy with that of the original formulation. In the second example we consider
the suitability of the Source Extraction UWVF for seismic imaging applications, testing on a wave speed profile given by a
synthetic seismic model.

We solve the inhomogeneous Helmholtz problem (1) with a point source as in (5). In both examples we use a constant
density ρ = 1 over the domain, while we take the wavenumber κ to be constant in the first example and discontinuous in
the second one. We fix Q = 0 in the impedance boundary condition (1b). The source region ΩS is defined to comprise four
triangular elements: that containing the point source and its three neighbours (see Fig. 1).

The Trefftz basis functions φk,l ∈ Hk used are Hankel functions, defined as

φk,l(x) =


H1

0 (κk|x − yk,l|) in Ωk,
0 elsewhere, (11)

for l = 1, . . . , pk, k = 1, . . . , K . Their centres yk,l are equispaced and located externally to the respective elements:

yk,l =


xCk + R cos


2π l
pk


, yCk + R sin


2π l
pk


, l = 1, . . . , pk.



C.J. Howarth et al. / Journal of Computational and Applied Mathematics 271 (2014) 295–306 301

Fig. 2. The real part of the inhomogeneous Helmholtz problem with constant coefficients for κ = 10, approximated using the Source Extraction UWVF
on K = 116 elements by p = 15 basis functions per element. The computational mesh is superimposed.

Here R > dmax > 0 is a positive constant greater than themaximumdistance dmax = maxs(|xCk −xVk,s|) between the centroid
of the element xCk = (xCk , y

C
k ) and each vertex xVk,s of Ωk, s = 1, 2, 3. The Hankel basis permits flexibility in the choice of the

propagation direction and the curvature of wavefronts. These basis functions approximate the conventional plane waves
if the points yk,l lie in the far field (i.e. for large values of R), whereas by taking yk,l closer to Ωk the wavefront curvature
is increased. The UWVF integrals in (2) and (8) cannot be evaluated in closed form, so a numerical integration method is
required. We use a Gauss–Legendre quadrature rule, with forty points per wavelength for high accuracy, allowing us to
focus on the effects of the Source Extraction UWVF.

In each simulation, an initial maximum number p of basis functions per element is set, then pk is reduced if the condition
number of the submatrix Dk is above a set tolerance level of 1010: this schemewas first introduced in [3]. More details about
the effect of the number of basis functions and the element size on the conditioning of Dk can be found in [3,1,16].

4.1. Interior point source in a domain with constant parameters

For the first examplewe consider a square domainΩ = (0, 3)×(0, 3) in which thewavenumber is constant throughout.
In order to focus just on the accuracy of the Source Extraction UWVF, the boundary condition (1b) (with Q = 0) was set to
impose as exact solution of the BVP the fundamental solution of the Helmholtz equation,

u(x) =
i
4
H1

0 (κ|x − x0|), (12)

with x0 = (1.40, 1.60) ∈ Ω . We approximate this solution using both the classical UWVF (3) and the Source Extraction
UWVF described in Section 3. An example solution of the Source Extraction UWVF is shown in Fig. 2 for κ = 10, along with
the computational mesh of K = 116 elements; this approximation was achieved using p = 15 basis functions on each
element. Table 1 shows the relative error, measured in the L2(Ω)-norm, for the two methods, together with the average
number Nλ of degrees of freedom per wavelength in each direction, computed as

Nλ = λ

 K
k=1

pk

|Ω|
,

where |Ω| is the area of the domain. The Source Extraction UWVF provides a much higher accuracy than the classical
formulation for the same approximation parameters K and p: in the example in Table 1, the relative L2(Ω)-error of the
classical UWVF stagnates at about 46%, while the error of the Source Extraction UWVF seems to decrease exponentially, and
at p = 16 is four orders of magnitude smaller than the original version. In all cases it was not necessary to reduce pk to
maintain the condition number bound, so pk = p for k = 1, . . . , K .

The accuracy obtained by the Source Extraction UWVF for this BVP is comparable to that achieved by the classical
formulation of the UWVF when solving the homogeneous Helmholtz equation (f = 0) for a BVP whose exact solution
is a fundamental solution centred outside the domain Ω (i.e. u as in (12) with x0 ∉ Ω); see Table 2 for the UWVF error in
this setting.
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Table 1
Errors of the classical and the Source Extraction UWVF measured in L2(Ω)-norm for a point source in the interior of a
homogeneous domain. Approximation by p equally spaced point sources per element, K = 116, κ = 10,Ω = (0, 3)×(0, 3).

p L2(Ω) relative error, classical UWVF L2(Ω) relative error, Source Extraction UWVF Nλ

9 4.6148 × 10−1 9.8941 × 10−3 6.7672
10 4.6138 × 10−1 5.2901 × 10−3 7.1332
11 4.6087 × 10−1 1.5578 × 10−3 7.4814
12 4.6159 × 10−1 8.2696 × 10−4 7.8140
13 4.6154 × 10−1 3.3895 × 10−4 8.1331
14 4.6151 × 10−1 2.2961 × 10−4 8.4401
15 4.6145 × 10−1 8.5399 × 10−5 8.7364
16 4.6145 × 10−1 6.5757 × 10−5 9.0229

Table 2
Errors of the classical formulation measured in L2(Ω)-norm for the homogeneous Helmholtz equation: the exact solution
is a fundamental solution centred at (−0.5, 1.5) in the exterior of the domain. Approximation by p equally spaced point
sources per element, K = 116, κ = 10, Ω = (0, 3) × (0, 3).

p L2(Ω) relative error, classical UWVF Nλ

10 5.6961 × 10−3 7.1332
11 1.1964 × 10−3 7.4814
12 8.6834 × 10−4 7.8140
13 1.7065 × 10−4 8.1331
14 9.6792 × 10−5 8.4401
15 1.8955 × 10−5 8.7364

Fig. 3. Relative L2(Ω) errors against total number of degrees of freedom for the inhomogeneous Helmholtz problem with constant coefficients,
approximated using the Source Extraction UWVF on K = 116 elements in Ω = (0, 3) × (0, 3). For κ = 5 we consider p = 9, . . . , 13, for
κ = 10 p = 10, . . . , 15, and for κ = 20 p = 13, . . . , 19.

The plot in Fig. 3 shows that accurate results can be achieved for variouswavenumbers using the Source Extraction UWVF
for approximating an interior point source problem. As expected, computations with the fundamental solution centred at x0
used as one of the basis functions gave results accurate tomachine precision, evenwhen using elements severalwavelengths
in width.

4.2. Interior point source in a section of a smoothed Marmousi model

We now progress to testing the method on a domain more relevant to seismic imaging, where the sound speed is
non-constant. The synthetic Marmousi model is a 2D representation of typical geophysical structures in the subsurface
of the Earth, widely used as a test problem in seismic imaging [14]. The domain Ω is taken as a section of a smoothed
Marmousi sound speed profile, that of x ∈ (3.5131, 7.0022) km, z ∈ (0, 2.0565) km, as shown in the upper plot of Fig. 4.
As we use a constant density ρ = 1 throughout, the only discontinuous parameter in the discretisation of the domain is the
wavenumber κ .
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Fig. 4. Upper plot: wave speed (km/s) in a section of the smoothed Marmousi model. Centre and lower plots: wavenumber κk in each element of the
discretisation of the above velocity profile for the frequency 5 Hz, using K = 485 elements (centre plot) and K = 771 elements (lower plot). (Recall that
κ = 2π ·frequency/wave speed.) The point source location is marked by a red dot.

For the Source Extraction UWVF approximation, two levels of mesh refinements are used, resulting in K = 485 and
K = 771 triangular elements. The point source is located in x0 = (6.018, 0.5768) and lies in the interior of an element,
thus we avoid the case of the solution singularity coinciding with element edges or vertices. In order to explore just the
accuracy associated with source extraction, a simple homogeneous impedance condition is imposed on the boundary ((1b)
with Q = 0 and g = 0).

To obtain a piecewise-constant wavenumber, for eachΩk ∈ T E , κ|Ωk = κk is taken to be the average of the wavenumber
of the smoothed Marmousi model at the three vertices of the element. In ΩS the wavenumber is constant, taken as the
average of values interpolated at the centre of each Ωk ∈ ΩS . The centre and lower plots of Fig. 4 show the two meshes
used, the discretised (piecewise constant) wavenumber for a frequency of 5 Hz and the position of the point source. The
same discretisations are used for the frequency 10 Hz, resulting in the wavenumber in each element being doubled.

The angularly equispaced basis (11) is used, with R = 100 to replicate the conventional plane wave basis. An initial
maximumnumber p = 15 of basis functions per element is set, and then pk reduced if the condition number of the submatrix
Dk is above the tolerance level of 1010. The range of values taken by pk across the mesh and the total number of degrees of
freedom obtained for the frequencies 5 and 10 Hz and for the two meshes are summarised in Table 3.

The upper and centre plots of Fig. 5 show the real part of the Source Extraction UWVF solution for the frequency 5 Hz and
for the discretisations with K = 485 and K = 771 elements, respectively. The lower plot shows the real part of a reference
solution computed with a finite difference scheme for comparison. (This was obtained on a regular structured grid with 180
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Table 3
The range of the values taken by the local number of degrees of freedom pk and the total number
of degrees of freedom

K
k=1 pk obtained with the adaptive procedure for the frequencies 5 and

10 Hz and for the two meshes with 485 and 771 triangles shown in Fig. 4.

Frequency (Hz) K Range of pK Total number of degrees of freedom

5 485 [8,. . .,15] 5,162
5 771 [8,. . .,13] 6,636

10 485 [11,. . .,15] 7,417
10 771 [10,. . .,15] 9,749

Fig. 5. Real part of the total field approximation in the smoothedMarmousi section with frequency 5 Hz: UWVF solution with K = 485 andmaxk pk = 15
(upper plot), UWVF solution with K = 771 and maxk pk = 13 (centre plot), finite difference solution (lower plot).

points per wavelength and using the method described in [17].) Fig. 6 shows results in the same setup for the frequency
10 Hz. In both cases, the general pattern and areas of heightened or dampened amplitudes do coincide.

5. Conclusions

Wehave considered the use of the UWVF for solving the inhomogeneousHelmholtz equation in the special case of a point
source. The UWVF typically has problems when the Trefftz basis functions do not well represent the inhomogeneity of the
equation. To avoid the use of alternative numericalmethods in the region of inhomogeneity, we propose an augmentation of
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Fig. 6. Real part of the total field approximation in the smoothedMarmousi sectionwith frequency 10 Hz: UWVF solutionwith K = 485 andmaxk pk = 15
(upper plot), UWVF solution with K = 771 and maxk pk = 15 (centre plot), finite difference solution (lower plot).

the UWVF equations called the Source Extraction UWVF. This technique requires only a homogeneous equation to be solved,
with inhomogeneity introduced in a post-processing step, thus it better exploits the Trefftz property of the discrete space.
For a point source, we approximate the unknown back-scattered field in a region surrounding the source, and match this to
the total field approximated in the remainder of the domain. In the considered examples we use a Dirac delta point source;
however, the augmentation of the method can be easily generalised to other forms of source function, such as dipoles and
multipoles. Following on from work in [4], we show that the Source Extraction UWVF is well-posed and satisfies the error
bound (10) on themesh skeleton in the case of impedance boundary conditions and sufficiently smooth solution. Numerical
simulation has shown that the relative error of the Source Extraction UWVF can be several orders of magnitude smaller than
that of the classical UWVF for the approximation of interior point sources. The method is also used to provide simulation of
wave scattering in a sound speed profile typical of seismic imaging applications. Results presented concur with those of a
finite difference method.
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