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a b s t r a c t

Over the last decade, there have been a significant amount of researchworks on compound
renewal riskmodelswith dependence. These riskmodels assumeadependence relation be-
tween interclaim times and claim amounts. In this paper, we pursue their investigation.We
apply change of measure techniques within the compound renewal risk models with de-
pendence to obtain exact expressions for the Gerber–Shiu discounted penalty function.We
propose a more general approach than the usual one based on the randomwalk associated
to the risk process as it is presented in the literature. More refined, our method keeps the
embedded information in the sequence of claim amounts and interclaim times and enables
us to derive an exact expression for the Gerber–Shiu discounted penalty function. Simula-
tion is one of the advantages of change ofmeasure techniques sincewe can find a newprob-
ability measure under which ruin occurs almost surely. In this paper, we investigate the
importance sampling method based on change of measure techniques to compute several
ruin measures. Numerical illustrations are carried out for specific bivariate distributions of
the interclaim time and the claim amount to approximate interesting ruin measures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the last decade, there have been a significant amount of research works on compound renewal risk models with
dependence. These risk models assume a dependence relation between interclaim times and claim amounts. We begin here
with a brief description of the model (see e.g. [1–4] for details). For an insurance portfolio, the surplus process is defined by
U = {U (t) , t ≥ 0} where the surplus level at time t,U (t) is given by

U (t) = u + ct − S (t) ,

where U (0) = u is the initial surplus and c is the premium rate. The aggregate claim amount process, denoted by S =

{S (t) , t ≥ 0} with S (t) =
N(t)

j=1 Xj (
b

a equals 0 if b < a), is a compound renewal process. The claim number process N =
N (t) , t ∈ R+


is an ordinary renewal process where the interclaim times


Wj, j ∈ N+


form a sequence of independent

and strictly positive real-valued random variables (rvs). The time between the (j − 1)th and the jth claim (j = 2, . . .) is
defined by the r.v. Wj with W1 the time of the first claim. The rvs


Wj, j ∈ N+


, identically distributed as the canonical r.v.

W , have a probability density function (pdf) fW and a cumulative distribution function (cdf) FW . The time of arrival of the jth
claim is denoted Tj = W1+· · ·+Wj. The claim amount rvs


Xj, j ∈ N+


, where Xj corresponds to the amount of the jth claim,

are assumed to be a sequence of strictly positive, independent and identically distributed (i.i.d.) rvs with pdf fX and cdf FX .
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In compound renewal risk models with dependence,


Xj,Wj

, j ∈ N+


form a sequence of i.i.d. random vectors

distributed as the canonical random vector (X,W ), in which the components may be dependent. The joint pdf of (X,W ) is
denoted by fX,W and the joint cdf is denoted by FX,W . The associated moment generating function (mgf), denoted by

MX,W (r1, r2) = E

er1Xer2W


=


∞

0


∞

0
er1xer2t fX,W (x, t) dxdt,

is assumed to exist throughout the paper.
The time of ruin is defined by the rv τu = inf {t ≥ 0 : U(t) < 0} with τu = ∞ if U(t) ≥ 0 for all t ≥ 0. The infinite-time

ruin probability is ψ (u) = Pr (τu < ∞|U (0) = u). The classical Gerber–Shiu discounted penalty function is defined by

mδ (u) = E

e−δτuw


U

τ−

u


, |U (τu)|


1{τu<∞}|U(0) = u


, (1)

where w is the so-called penalty function that depends on the surplus immediately prior to ruin U

τ−
u


and the deficit at

ruin |U (τu)|. The scalar δ is the force of interest assumed to be nonnegative. The function 1{A} is the usual indicator function
where 1{A} = 1 if the event A occurs and 0 otherwise. Throughout the paper, we assume the positive security loading
condition E [cW − X] > 0 which ensures that ruin will not occur almost surely.

If δ = 0 andw(x, y) = 1 for all x, y ∈ R+, (1) corresponds to the infinite-time ruin probabilityψ (u). Also, for δ ≥ 0 and
w(x, y) = 1 for all x, y ∈ R+, (1) becomes Gδ (u) = E


e−δτu1{τu<∞}|U(0) = u


, using the notation of Cheung et al. [4]. Note

that Gδ (u) can be interpreted either as the present value of 1 paid at ruin or the Laplace transform of the time of ruin. If the
penalty is only function of the deficit at ruin (which corresponds to the overshoot of the randomwalk V over the surplus u),
we write w (x, y) = w2 (y) and hence (1) becomes mδ,2 (u) = E


e−δτuw2 (|U (τu)|) 1{τu<∞}|U(0) = u


, under the notation

of Cheung et al. [4].
Asmentioned in e.g. [1], it is possible to identify the randomwalk embedded in the risk process.We consider the sequence

of i.i.d. rvs L =

Lj, j ∈ N+


, where Lj = Xj − cWj is the net loss at the jth claim, with Lj ∼ L, for j ∈ N+. The premium rate c

is fixed such that E [L] = E [X − cW ] < 0 and we define η =
cE[W ]
E[X] − 1 > 0 as the relative security loading. Based on L, we

denote by V =

Vj, k ∈ N


the random walk with negative drift, where V0 = 0 and Vj =

j
l=1 Ll, j ∈ N+. The maximum

net cumulative loss process associated to V is defined by Z =

Zj, j ∈ N


, where Zj = maxl=0,1,2,...,j {Vl}. We introduce the

rv Z∞ = maxl∈N+ {Vl}. An alternative definition for the infinite-time ruin probability is then provided by

ψ (u) = E[1{τu<∞}] = Pr (Z∞ > u) = E[1{Z∞>u}] = 1 − FZ∞ (u) ,

where FZ∞ corresponds to the cumulative distribution function (cdf) of Z∞.
Let us now define the rv σu = infj∈N+


j, Zj > u


with σu = ∞ if Zj ≤ u for all j ≥ 1 (i.e. when ruin does not occur). The

rv σu corresponds to the claim number at which ruin occurs. If σu < ∞, we have τu = Tσu . Note that the deficit at ruin is also
given by |U (τu)| = Vσu − u and the surplus prior to ruin is given by U


τ−
u


= Xσu −Vσu + u. It implies that the Gerber–Shiu

discounted penalty function defined in (1) can also be expressed as

mδ (u) = E

e−δτuw


Xσu − Vσu + u, Vσu − u


1{τu<∞}|U(0) = u


.

In the following, we also use the general Lundberg equation which is fundamental in ruin theory. Within compound
renewal risk models with dependence, its expression is given by

hδ (r) = E

erL−δW


= E


er(X−cW )−δW 

= MX,W (r,−cr − δ) = 1. (2)

We denote by ρδ the strictly positive solution to (2), if it exists, called the (Lundberg) adjustment coefficient. This coefficient
is crucial in ruin theory (see e.g. [5–7]), and it can be seen as a measure of dangerousness of an insurance portfolio. Also, ρδ
is useful to obtain exponential inequalities, exact expressions and asymptotic expressions for ruin measures.

As previously mentioned, one can find a vast literature in regard to compound renewal risk models with dependence.
Albrecher and Teugels [1] consider an arbitrary dependence structure based on a copula for (X, Y ). Assuming the existence
of ρ0, they examine notably the exponential behavior ofψ (u) and obtain asymptotic expression forψ (u). Cheung et al. [4]
examine the structure and some properties formδ (u) and propose a generalization ofmδ (u). Boudreault et al. [8] examine
several properties of an extension of the classical compound Poisson riskmodel assuming a dependence structurewhere the
distribution of X is defined in terms ofW . Cossette et al. [2,3] investigate the family of riskmodels proposed by Albrecher and
Teugels [1]with a dependence structure for (X,W ) definedwith a (generalized) Farlie GumbelMorgenstern copula. Badescu
et al. [9] consider a bivariate phase-type distribution for (X,W ) and obtain explicit results forψ (u) and some special cases
of mδ (u). Ambagaspitiya [10] obtains, by means of Wiener Hopf factorization techniques, the expressions for ψ (u) in the
cases of two classes of bivariate distributions (X,W ). For Erlang(n) inter arrival times and a dependence structure based
on the Farlie Gumbel Morgenstern copula, Chadjiconstantinidis and Vrontos [11] derive notably the Laplace transform of
mδ (u) and explicit expressions for the discounted joint and marginal distribution functions of U


τ−
u


and |U (τu)|.

In this paper, we pursue the investigation of compound renewal riskmodels with dependence.We aim to use the change
of measure techniques to derive an exact expression for mδ (u). Rolski et al. [6], Pham [12], Asmussen and Albrecher [7]
and Schmidli [13] discuss several advantages in regard to these techniques. To do so, we propose a more general approach
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than the usual approach (referred to as the ‘‘random walk approach’’), which relies on L. For an exposition of the random
walk approach, see e.g. [6,7,12,14] to obtain exact expression of ψ (u) within the classical compound Poisson risk model
and the classical compound renewal risk model. See also [15] for the application of the random approach to derive the
expressions for ψ (u) and m0,2 (u) in the context of the compound renewal risk model with dependence. Our approach,
more refined, keeps the embedded information in


Xj,Wj


, j ∈ N+


and enables us to derive the announced expression

formδ (u). Moreover, we explain that our approach can be extended to derive the exact expressions for extensions ofmδ (u)
as the ones proposed in e.g. [4]. What we propose differs from the so-called Markov additive approach which is applied by
Asmussen andAlbrecher [7] and Schmidli [13] to derive the exact expression ofmδ (u)within themore restrictive compound
Poisson risk model and compound renewal risk model, respectively. We believe that our approach is simpler.

Simulation is one of the advantages of change of measure techniques since we can find a new probability measure under
which ruin occurs almost surely. Glasserman [16], Pham [12], Sigman [14], and Asmussen and Albrecher [7] have explained
how to apply the importance sampling method based on change of measure techniques to compute ψ (u) in the context of
the classical compound Poisson risk model. Asmussen and Albrecher [7] have also applied it to evaluateψ (u) in the context
of the compound renewal risk model. In this paper, we investigate the importance sampling method based on change of
measure techniques to compute several ruin measures. The performance of this method is compared on a theoretical basis
and also through numerous examples. These examples are based on chosen bivariate distributions for (X,W ), which have
to be redefined under the new probability measure.

Our paper is organized as follows. In Section 2, we use change of measure techniques to obtain exact expressions for
mδ (u). Afterwards, in Section 3, we investigate importance sampling method to compute ruin measures and study its qual-
ity. Finally, in Section 4, we examine specific bivariate distributions for (X,W ), and we derive their corresponding bivariate
distributions resulting from the change of measure. Numerical illustrations are also provided in Section 4 to illustrate the
importance sampling method.

2. Change of measure

2.1. Preliminaries

Rolski et al. [6], Pham [12], Asmussen and Albrecher [7] and Schmidli [13] discuss several advantages in regards to the
use of change of measure techniques. In addition to getting exact expressions for ψ (u) and mδ (u), they provide a natural
way to find Lundberg exponential bounds and permit the use of ordinary renewal theory to derive asymptotic expressions
forψ (u) andmδ (u). Moreover, the computation of these expressions can be relatively simple using simulation as discussed
in Section 4. Indeed, it offers the possibility to compute different ruin measures for a variety of bivariate distributions of
(X,W )which may be difficult, even impossible, to find otherwise. For a review on change of measure techniques and their
application to simulation see e.g. [6,16,7,12,14]. See also [13] for an application of change ofmeasure techniques to the inves-
tigation of the Gerber–Shiu function in the context of the classical compound renewal risk model. Links to large deviations
results can be found in e.g. [12].

With a change of measure technique based on the randomwalk V and its increments L, Rolski et al. [6], Glasserman [16],
Asmussen and Albrecher [7], Pham [12], and Sigman [14] derive the expression for the ruin probabilityψ (u)within the clas-
sical compound risk model. Asmussen and Albrecher [7] also use this technique within the compound renewal risk model.
Cossette et al. [15] briefly recall this approach and show that it can be used within compound renewal risk models with
dependence as well. They use the change of measure technique based on the sequence L of net losses to obtain the exact
expressions forψ (u) andm0,2 (u). This approach is however not refined enough for the derivation ofmδ (u). For that reason,
we propose a second approach that broadens the scope of application to mδ(u)with no restriction on the choice of penalty
function w(x, y). Indeed, as mentioned in Example 4.6.3 of Glasserman [16], the specific form of Lk = Xk − cWk is dropped
under the random walk approach. Their components and dependence structure are also ignored. Inspired from the multi-
variate setting exposed in [16, in 4.6.1], we rely here on the sequence


(Xk,Wk) , k ∈ N+


of claim amounts and interclaim

times allowing to keep track of both the claim amounts and the interclaim times, and not only the increments of the random
walk L. This will make easier the derivation of the exact expression ofmδ (u) under the new probability measure P(ρδ).

Let us assume the rvs X1,W1, . . . , Xn,Wn to be continuous and the premium rate c to be equal to 1. Obviously, the joint
pdf of (X1,W1, . . . , Xn,Wn) is given by

fX1,W1,...,Xn,Wn (x1, t1, . . . , xn, tn) =

n
i=1

fXi,Wi (xi, ti) =

n
i=1

fX,W (xi, ti) .

Our objective is to evaluate E [φ (X1,W1, . . . , Xn,Wn)], given by
∞

0


∞

0
. . .


∞

0


∞

0
φ (x1, t1, . . . , xn, tn) fX1,W1,...,Xn,Wn (x1, t1, . . . , xn, tn) dx1dt1 . . . dxndtn, (3)

where φ is a function for which the expectation exists.
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We define under a new probability measure P(r) the joint pdf of (X1,W1, . . . , Xn,Wn) by

f (r)X1,W1,...,Xn,Wn
(x1, t1, . . . , xn, tn) = e

r
n

i=1
xi−r

n
i=1

ti−δ
n

i=1
ti−nΓ (r)

fX1,W1,...,Xn,Wn (x1, t1, . . . , xn, tn) , (4)

where Γ (r) = ln E

er(X−W )−δW


assuming Γ (r) < ∞ for values of r ≠ 0. Using (4), the expression in (3) becomes

∞

0


∞

0
. . .


∞

0


∞

0
φ (x1, t1, . . . , xn, tn) fX1,W1,...,Xn,Wn (x1, t1, . . . , xn, tn) dx1dt1 . . . dxndtn

=


∞

0


∞

0
. . .


∞

0


∞

0
φ (x1, t1, . . . , xn, tn)

f (r)X1,W1,...,Xn,Wn
(x1, t1, . . . , xn, tn)

e
r

n
i=1

xi−r
n

i=1
ti−δ

n
i=1

ti−nΓ (r)
dx1dt1 . . . dxndtn

= E(r)

φ (X1,W1, . . . , Xn,Wn) e
−r

n
i=1

Xi+r
n

i=1
Wi+δ

n
i=1

Wi+nΓ (r)


= E(r)


φ (X1,W1, . . . , Xn,Wn) e−rVn+δTn+nΓ (r) . (5)

With this new approach, the likelihood ratio corresponds to

R (X1,W1, . . . , Xn,Wn) =
f (r)X1,W1,...,Xn,Wn

(X1,W1, . . . , Xn,Wn)

fX1,W1,...,Xn,Wn (X1,W1, . . . , Xn,Wn)

= e
r

n
i=1

Xi−r
n

i=1
Wi−δ

n
i=1

Wi−nΓ (r)
.

Given that σu is a stopping time and (5), we have

E

φ

X1,W1, . . . , Xσu ,Wσu


1{σu<∞}


= E(r)


φ

X1,W1, . . . , Xσu ,Wσu


e−rVσu+δTσu+σuΓ (r)1{σu<∞}


. (6)

2.2. Main result

The following proposition provides the expression formδ (u) under P(ρδ).

Proposition 1. Assume that ρδ exists for δ ≥ 0. Then, we have

mδ (u) = E(ρδ)

w

Xσu − Vσu + u, Vσu − u


e−ρδVσu


= e−ρδuE(ρδ)


w

Xσu − Vσu + u, Vσu − u


e−ρδ(Vσu−u)


= e−ρδuE(ρδ)


w

U

τ−

u


, |U (τu)|


eρδU(τu)


. (7)

Proof. In (6), we let

φ

x1, t1, . . . , xσu , tσu


= e

−δ
σu
j=1

tj
w


xσu −

σu
j=1


xj − tj


+ u,

σu
j=1


xj − tj


− u


so that the Gerber–Shiu function becomes

mδ (u) = E

e−δτuw


U

τ−

u


, |U (τu)|


1{τu<∞}


= E

e
−δ

σu
j=1

Wj
w


Xσu −

σu
j=1


Xj − Wj


+ u,

σu
j=1


Xj − Wj


− u


1{σu<∞}


= E


e−δTσuw


Xσu − Vσu + u, Vσu − u


1{σu<∞}


= E(ρδ)


e−δTσuw


Xσu − Vσu + u, Vσu − u


1{σu<∞}e−ρδVσu+δTσu+σuΓ (ρδ)


. (8)

The random walk V has a positive drift under the new probability measure P(ρδ), and hence σu < ∞ or equivalently
1{σu<∞} = 1{τu<∞} = 1. Then, since Γ (ρδ) = 0, (8) becomes

mδ (u) = E

e−δτuw


U

τ−

u


, |U (τu)|


1{τu<∞}


= E(ρδ)


w

Xσu − Vσu + u, Vσu − u


e−ρδVσu


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= e−ρδuE(ρδ)

w

Xσu − Vσu + u, Vσu − u


e−ρδ(Vσu−u)


= e−ρδuE(ρδ)


w

U

τ−

u


, |U (τu)|


eρδU(τu)


. �

2.3. Lundberg exponential bounds for ψ(u), Gδ(u), and mδ(u)

Proposition 1 provides a natural way to derive Lundberg exponential bounds for ψ (u) ,Gδ (u), and mδ (u).

Corollary 2. In the context of Proposition 1, we have the following bounds for ψ (u) and Gδ (u):

ψ (u) ≤ e−ρ0u (9)

and

Gδ (u) ≤ e−ρδu. (10)

In addition, if w (x, y) is bounded, we also get a bound for mδ (u),

mδ (u) ≤ sup
x,y≥0

{w (x, y)} e−ρδu. (11)

Proof. The inequalities in (9), (10), and (11) follow from (7) and U (τu) < 0. �

2.4. Asymptotic expression for mδ(u)

Proposition 3. Let (X,W ) be a pair of continuous rvs. Assume that ρδ exists and that the penalty function w is continuous and
bounded. Then, there is some constant Cδ > 0 such that

lim
u→∞

mδ (u) = Cδe−ρδu.

Proof. The proof is inspired from the one of Proposition XII.2.10 in [7], which is based on ordinary renewal theory. Let us
define m∗

δ (u) by

m∗

δ (u) = mδ (u) eρδu = E(ρδ)

w

U

τ−

u


, |U (τu)|


eρδU(τu)


.

In the following, we denote the joint pdf of

U

τ−

0


, |U (τ0)|


under P(ρδ) by f (ρδ)

U

τ−

0


,|U(τ0)|

. Then, we have

m∗

δ (u) =

 u

0


∞

0
m∗

δ (u − y) f (ρδ)
U

τ−

0


,|U(τ0)|

(x, y) dxdy

+


∞

u


∞

0
w (x + u, y − u) e−ρδ(y−u)f (ρδ)

U

τ−

0


,|U(τ0)|

(x, y) dxdy. (12)

Let us now define the proper pdf and cdf of |U (τ0)| under P(ρδ) by

f (ρδ)
|U(τ0)|

(x) =


∞

0
f (ρδ)
U

τ−

0


,|U(τ0)|

(x, y) dx (13)

and F (ρδ)
|U(τ0)|

. Combining (12) and (13) leads to

m∗

δ (u) =

 u

0
m∗

δ (u − y) f (ρδ)
|U(τ0)|

(y) dy +


∞

u


∞

0
w (x + u, y − u) e−ρδ(y−u)f (ρδ)

U

τ−

0


,|U(τ0)|

(x, y) dxdy, (14)

which is a proper renewal equation of the form

m∗

δ (u) = m∗

δ ∗ f (ρδ)
|U(τ0)|

(u)+ a(ρd) (u) ,

with

a(ρd) (u) =


∞

u


∞

0
w (x + u, y − u) e−ρδ(y−u)f (ρδ)

U

τ−

0


,|U(τ0)|

(x, y) dxdy.
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Then,we apply the key renewal theorem (see e.g. Theorem6.1.10 of Rolski et al. [6]) for the solution to the proper renewal
Eq. (14), which yields

lim
u→∞

m∗

δ (u) =


∞

0 a(ρd) (u) du
∞

0


1 − F (ρδ)

|U(τ0)|
(y)

dy

= Cδ. (15)

For this result to hold, a(ρd) must be directly Riemann integrable. We recall that a function ϕ : R+
→ R is directly Riemann

integrable if

lim
h→0

h ×


∞
k=1

sup
(k−1)h≤t≤kh

ϕ (t)


= lim

h→0
h ×


∞
k=1

inf
(k−1)h≤t≤kh

ϕ (t)


,

i.e. if the limits of the upper and lower bounds exist and coincide. The integral is then equal to this limit (see e.g. Chapter 6
of Rolski et al. [6] for details). In order to show that a(ρd) is directly Riemann integrable, it suffices to show that there exists
an upper bound to a(ρd) that is Riemann integrable. Since the penalty functionw is continuous and since 0 ≤ e−ρδ(y−u) ≤ 1,

there exists a constant c such that a(ρd) (u) ≤ c ×


1 − F (ρδ)

U

τ−

0


,|U(τ0)|

(∞, u)

, for u ≥ 0. Now, as the adjustment coefficient

ρδ exists, the mgf of the claim amounts, as well as the mgf’s of U

τ−

0


and |U (τ0)| exist. Consequently, all their moments

also exist which enable us to conclude that

1 − F (ρδ)

U

τ−

0


,|U(τ0)|

(∞, u)


is directly Riemann integrable and that a(ρd) is also

directly Riemann integrable. Note that the denominator in (15) is finite since all moments of |U (τ0)| exist. �

Note that the derivation of analytical expressions for Cδ is rather difficult. In Section 3, an application of the above
asymptotic expression is given.

2.5. Application of change of measure to extensions of mδ(u)

Cheung et al. [4] propose two additional ruin-related quantities, as extensions tomδ (u), and study their properties. First,
they introduce theminimal surplus prior to ruin which is defined by the rv A1,σu = min


u,U (T1) , . . . ,U


Tσu−1


if σu > 1

and A1,σu = u, if σu = 1. The introduction of A1,σu allows notably the analysis of the last ladder height with A1,σu + |U (τu)|.
As a first extension ofmδ (u), Cheung et al. [4] define

χδ,123 (u) = E

e−δτuw123


U

τ−

u


, |U (τu)| , A1,σu


1{τu<∞}|U(0) = u


, (16)

(see (4) in [4]).
Secondly, Cheung et al. [4] propose to study the rv A2,σu = U


Tσu−1


ifσu > 1 and A2,σu = u, ifσu = 1,which corresponds

to the surplus immediately after the second last claim before ruin occurs (if ruin occurs at or after the second claim) or to u
(if ruin occurs on the first claim). As a second extension ofmδ (u), Cheung et al. [4] define

χδ,1234 (u) = E

e−δτuw1234


U

τ−

u


, |U (τu)| , A1,σu , A2,σu


1{τu<∞}|U(0) = u


, (17)

(see (2) in [4]). The introduction of A2,σu permits the analysis of the last interclaim time before ruin with


U

τ−
u


−A2,σu


c .

Inspired by the proof of Proposition 1, we apply (6) to derive the next corollary which allows us to derive the expressions
of χδ,123 (u) and χδ,1234 (u) under P(ρρ).

Corollary 4. Let us define the function

χδ (u) = E

φ

X1,W1, . . . , Xσu ,Wσu


1{τu<∞}|U(0) = u


,

assuming that the expectation exists. Then, we have

χδ (u) = e−ρδuE(ρδ)

φ

X1,W1, . . . , Xσu ,Wσu


e−ρδ(Vσu−u)eδτu


.

In Examples 5 and 6, we derive the expressions of χδ,123 (u) and χδ,1234 (u) under P(ρρ).

Example 5. The rv A1,σu can be rewritten as

A1,σu =


u, σu = 1

min


u, u − (X1 − W1) , . . . , u −

σu−1
j=1


Xj − Wj


, σu > 1.

(18)
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With Corollary 4 and

φ

X1,W1, . . . , Xσu ,Wσu


= e

−δ
σu
j=1

Wj
w123


Xσu −

σu
j=1


Xj − Wj


+ u,

σu
j=1


Xj − Wj


− u, A1,σu


,

(16) becomes

χδ,123 (u) = e−ρδuE(ρδ)

w123


U

τ−

u


, |U (τu)| , A1,σu


e−ρδ(Vσu−u)


. �

Example 6. The rv A2,σu can be rewritten as

A1,σu =


u, σu = 1

u −

σu−1
j=1


Xj − Wj


, σu > 1.

(19)

Using Corollary 4 and

φ

X1,W1, . . . , Xσu ,Wσu


= e

−δ
σu
j=1

Wj
w1234


Xσu −

σu
j=1


Xj − Wj


+ u,

σu
j=1


Xj − Wj


− u, A1,σu , A2,σu


,

(16) becomes

χδ,1234 (u) = e−ρδuE(ρδ)

w1234


U

τ−

u


, |U (τu)| , A1,σu , A2,σu


e−ρδ(Vσu−u)


. �

Corollary 4 can also be used to study other ruin-related quantities defined in function of

X1,W1, . . . , Xσu ,Wσu


. For

instance, we could consider the rv A3,σu = max

X1, . . . , Xσu


which corresponds to the maximal claim amount up to ruin

or the rv A4,σu =
σu

j=1 Xj which corresponds to the sum of claims up to ruin. Then, we have

χ0,5 (u) = E

w5

A3,σu


1{τu<∞}|U(0) = u


= e−ρ0uE(ρ0)


w5

max


X1, . . . , Xσu


e−ρ0(Vσu−u)


or

χ0,6 (u) = E

w6

A4,σu


1{τu<∞}|U(0) = u


= e−ρ0uE(ρ0)


w6


σu
j=1

Xj


e−ρ0(Vσu−u)


.

As for mδ (u), the expressions of χδ,123 (u) , χδ,1234 (u) , χ0,5 (u), and χ0,6 (u) under P(ρδ) enable the use of importance
sampling to compute them.

3. Importance sampling via change of measure

As already mentioned, an important advantage of the expressions derived in Proposition 1 is that they can be easily
simulated. Given that the drift of the surplus process is negative under P(ρδ), and hence Pr(τu < ∞) = 1, we can simulate
a sample path of the process until ruin occurs which is not the case for a crude Monte Carlo simulation method (see details
in [15]). Interestingly, we show that the important samplingmethod provides unbiased approximations for the Gerber–Shiu
function and bounded relative errors.

Algorithm 7. The following steps are repeatedm times, i.e. for j = 1, . . . ,m.

1. Generate


X (j)k ,W
(j)
k


, k ∈ N+


under P(ρδ) and


U (j)


T (j)k


, k ∈ N+


, where T (j)k = W (j)

1 +· · ·+W (j)
k , until ruin occurs.

2. Denote by σ (j)u the claim number at which ruin occurs, by τ (j)u = T
σ
(j)
u

the time of ruin, and by U (j)

τ
(j)
u


= u − V

σ
(j)
u

the
deficit at ruin.

The approximation ofmδ (u), defined by

mIS
δ (u) =

1
m

m
j=1

e−ρδuw


X (j)
σ
(j)
u

− V (j)
σ
(j)
u

+ u, V (j)
σ
(j)
u

− u

e
−ρδ


V (j)
σ
(j)
u

−u


,



302 H. Cossette et al. / Journal of Computational and Applied Mathematics 285 (2015) 295–311

is unbiased. Moreover, the relative error under P(ρδ), defined by

Var

mIS
δ (u)


E

mIS
δ (u)

2 , (20)

is bounded, as shown in the following proposition.

Proposition 8. We consider two cases for w (x, y).

1. Let w (x, y) = 1. Then, mIS
δ (u) computed under P(ρδ) has a bounded relative error.

2. Assumew (x, y) is bounded. Then, mIS
δ (u) computed under P(ρδ) has a bounded relative error.

Proof. 1. As suggested in [7, Theorem XV.3.1], we just need to prove that E


mIS
δ (u)

2 is bounded. Indeed, we have

E


mIS
δ (u)

2
≤ e−2ρδu. By Proposition 3, the result follows from

E
mIS

δ (u)
2

≤ e−2ρδu ∼
mδ (u)2

C2
δ

.

2. Similarly, we have

E
mIS

δ (u)
2

≤


sup
x,y≥0

(w (x, y))
2

e−2ρδu ∼


sup
x,y≥0

(w (x, y))
2 mδ (u)2

C2
δ

. �

4. Bivariate distributions for (X,W )

In this section, we consider specific bivariate distributions for (X,W ) and derive their corresponding distributions under
P(ρδ). We provide without proof the following lemma which will be helpful to find the joint distribution of (X,W ) under
P(ρδ).

Lemma 9. Under P(ρδ), the joint mgf of (X,W ) is given by

M(ρδ)

X,W (r1, r2) = MX,W (r1 + ρδ, r2 − (ρδ + δ)) .

In the numerical examples that follow, we illustrate the importance sampling method by computing various ruin quan-
tities and, in some cases, we also compare the obtained results by importance sampling to the exact values in the aim
to validate the quality of the approximation. We mention that, except for the Moran–Downton bivariate exponential dis-
tribution, numerical optimization needs to be used to find the adjustment coefficient ρδ . Importance sampling is always
performed with 10000 simulations.

4.1. Bivariate mixed distributions

Let us consider bivariate mixed distributions whose joint pdf and mgf are respectively of the form

fX,W (x, t) =

m
i=1

m
j=1

pi,jfi (x) gj (t) ,

MX,W (r1, r2) =

m
i=1

m
j=1

pi,jfi (r1)gj (r2) ,
with pi,j ≥ 0 and

m
i=1
m

j=1 pi,j = 1. Also,fi andgj are the mgf associated to the pdf fi and gj, respectively. Since pi,j ≥ 0 andm
i=1
m

j=1 pi,j = 1 and since fi (x) and gj (t) are pdfs for i = 1, 2, . . . ,m and j = 1, 2, . . . ,m, then it ensures that fX,W (x, t)
is a proper bivariate pdf. Similarly, the existence of the joint MX,W (r1, r2) is also guaranteed. For details on such bivariate
distributions, see e.g. [17].

Lemma 10. For bivariate mixed distributions, the pdf of (X,W ) under P(ρδ) is given by

f (ρδ)X,W (x, t) =

m
i=1

m
j=1

p(ρδ)i,j f (ρδ)i (x) g(ρδ)j (t) ,

where p(ρδ)i,j = pi,jfi (ρδ)gj (−ρδ − δ) , f (ρδ)i (x) =
eρδxfi(ρδ) fi (x), and g(ρδ)j (t) =

e−ρδ t−δtgj(−ρδ−δ)gi (t) for i = 1, 2, . . . ,m and
j = 1, 2, . . . ,m.
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Table 1
Values of parameters of the bivariate mixed
gamma distribution for Cases 1, 2, and 3.

Case 1 2 (Independence) 3

p1,1 0.6 0.64 0.8
p1,2 0.2 0.16 0
p2,1 0.2 0.16 0
p2,2 0 0.04 0.2

Table 2
Values of ruin probabilities obtained by importance
sampling for Cases 1, 2, and 3 assuming the bivariate
mixed gamma distribution.

Case 1 2 3

ρP (X,W ) −0.124981 0 0.499924
ρ0 0.004910 0.005515 0.010799
ψ (0) 0.919547 0.912392 0.857763
ψ (50) 0.703977 0.674885 0.457544
ψ (100) 0.549941 0.510741 0.265902
ψ (200) 0.337440 0.294404 0.090493
ψ (500) 0.077243 0.056383 0.003537
ψ (1000) 0.006635 0.003571 0.000016

Proof. The result follows directly from the application of (4). �

As an example, we assume here that (X,W ) follows a bivariate mixed gamma distribution with joint pdf given by

fX,W (x, t) =

m
i=1

m
j=1

pi,j
β
αi
i

Γ (αi)
xαi−1e−βix

λ
γj
j

Γ (γj)
tγj−1e−λjt .

This bivariate distribution is a generalization of a slightly simpler one that is suggested and applied by Jones et al. [18]. A
special case of this distribution, the bivariate mixed exponential distribution is used in [19] in the context of a compound
renewal risk model with dependence and diffusion. In [20, Theorem 1.1.2], it is shown that a joint distribution with
a completely monotone pdf, such as the bivariate Pareto distribution and the bivariate Weibull distribution, can be
approximated by a finitemixture of bivariate exponential distributions.With Lemma10, the joint pdf of (X,W )underP(ρδ) is

f (ρδ)X,W (x, t) =

m
i=1

m
j=1

p(ρδ)i,j
(βi − ρδ)

αi

Γ (αi)
xαi−1e−(βi−ρδ)x


λj + ρδ + δ

γj
Γ (γj)

tγj−1e−(λj+ρδ+δ)t , for x, t ≥ 0,

where p(ρδ)i,j = pi,j


βi
βi−ρδ

αi  λj
λj+ρδ+δ

γj
, for i, j ∈ {1, 2, . . . ,m}.Weobserve that, underP(ρδ), the joint distribution of (X,W )

remains a bivariate mixed gamma distribution with both modified probabilities and scale parameters. The shape parame-
ters remain unchanged. In the following example, we illustrate the interest of using importance sampling for non-integer
valued parameters αi.

Example 11. Assume that (X,W ) follows a bivariate mixed gamma distribution with m = 2, α1 = 0.5, β1 = 1, γ1 = 0.8,
λ1 = 0.8, α2 = 1.2, β2 =

1.2
23 , γ2 = 1.5, and λ2 =

1.5
26 . In Table 1, we indicate the three cases for the pi,j’s which are fixed

such that the marginal distributions for X andW are identical in all three cases.
Values obtained for ψ (u) by importance sampling are provided in Table 2, where ρP (X,W ) is the Pearson correlation

coefficient. Notice that Case 1 corresponds to negatively correlated X and W and Case 3 to positively correlated X andW .
As expected, we observe that ψ (u) decreases as ρP increases whatever the initial capital u considered. The dependence

acts as an hedging mechanism between premium incomes and claim amounts. �

In [15] other examples of bivariate mixed distributions are considered.

4.2. Bivariate gamma Cheriyan–Ramabhadran–Mathai–Moschopoulos (CRMM) distribution

We now consider the gamma CRMM bivariate distribution, which is constructed as follows. Let Y0, Y1 and Y2 be three
independent rvs where Y0 ∼ Gamma (γ0, β0) , Y1 ∼ Gamma (α1 − γ0, β) and Y2 ∼ Gamma (α2 − γ0, λ), with 0 ≤ γ0 ≤

min (α1;α2) , α1, α2 ∈ R+. We define the rvs X andW by X =
β0
β
Y0 + Y1 andW =

β0
λ
Y0 + Y2. Such a couple (X,W ) is said

to follow a gamma CRMM bivariate distribution with X ∼ Gamma (α1, β) ,W ∼ Gamma (α2, λ), and Pearson’s correlation
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coefficient ρP (X,W ) =
γ0√
α1α2

, with 0 ≤ ρP (X,W ) ≤
min(α1;α2)√

α1α2
. The parameter γ0 corresponds to the dependence

parameter. The expression of the mgf of (X,W ) is given by
MX,W (r1, r2) = E


er1Xer2W


= E


er1Y1


E

er2Y2


E

e

β0
β

r1+
β0
λ

r2

Y0


=


1 −

r1
β

−(α1−γ0) 
1 −

r2
λ

−(α2−γ0)

×


1 −

r1
β

−
r2
λ

−γ0

. (21)

The gamma CRMM distribution has been proposed independently by Cheriyan [21], Ramabhadran [22], and Mathai and
Moschopoulos [23]. See also e.g. [24] for a review on this bivariate distribution. Ambagaspitiya [10] has found the explicit
expression forψ (u), whenα1, α2 ∈ N+. It is worthmentioning that importance sampling allows us to compute numerically
mδ (u) in addition to ψ (u) for α1, α2 ∈ R+ and δ ≥ 0.

Lemma 12. Under P(ρδ), the rvs X and W can be written as follows

X = C1 +
C0

β − ρδ +
β

λ
(ρδ + δ)

,

W = C2 +
C0

λ−
λ
β
ρδ + (ρδ + δ)

,

where C0, C1, and C2 are independent rvs with C0 ∼ Gamma (γ0, 1) , C1 ∼ Gamma (α1 − γ0, β − ρδ) and C2 ∼

Gamma (α2 − γ0, λ+ ρδ + δ).
Proof. Given Lemma 9, we have

M(ρδ)

X,W (r1, r2) =


1 −

r1 + ρδ

β

−(α1−γ0)

1 −

r2 − ρδ − δ

λ

−(α2−γ0)

1 −

r1 + ρδ

β
−

r2 − ρδ − δ

λ

−γ0

=


β

β − ρδ

α1−γ0  β − ρδ

β − r1 − ρδ

α1−γ0  λ

λ+ ρδ + δ

α2−γ0  λ+ ρδ + δ

λ+ ρδ + δ − r2

α2−γ0
×


βλ

βλ− λρδ + β (ρδ + δ)

γ0  βλ− λρδ + β (ρδ + δ)

βλ− λρδ + β (ρδ + δ)− λr1 − βr2

γ0
.

Since 
β

β − ρδ

α1−γ0  λ

λ+ ρδ + δ

α2−γ0  βλ

βλ− λρδ + β (ρδ + δ)

γ0
= 1,

then

M(ρδ)

X,W (r1, r2) =


1

1 −
r1

β−ρδ

α1−γ0 
1

1 −
r2

λ+ρδ+δ

α2−γ0  1
1 −

r1
β−ρδ+

β
λ (ρδ+δ)

−
r2

λ− λ
β
ρδ+(ρδ+δ)

γ0

,

which completes the proof. �

Note from Lemma 12 that under P(ρδ), the marginal distributions of the rvs X and W are no longer gamma but rather a
sum of independent gamma rvs with different scale parameters (see [25] for details on sums of independent gamma rvs).

In the following example, we compare the results obtained by importance sampling to exact values.

Example 13. Let us consider Example 4 of Ambagaspitiya [10], in which the parameters are α1 = 2, α2 = 2, γ0 = 1, β = 2,
and λ =

2
1.1 . In such a case, with δ = 0, he obtains

ψ (u) = 0.8198e−0.3604u. (22)

In Table 3, we provide the exact values (computed with (22)) and those computed by importance sampling for ψ (u) with
ρ0 = 0.3604196. We also provide in Table 3 the values computed by importance sampling form0,2 (u).

As anticipated, we observe that the importance sampling results for ψ (u) are very close to the exact values. �

Let us consider below a second example in which the parameters α1 and α2 are no longer integers, and hence cannot be
treated by Ambagaspitiya [10].

Example 14. Let α1 = 0.6, α2 = 1.2, β = 0.5, λ = 0.8, and δ = 0.02. In Table 4, we provide the values computed by
importance sampling for G0.02 (u) andm0.02,2 (u) for Case 1 (γ0 = 0.1) and Case 2 (γ0 = 0.4):

For a fixed initial surplus u, the values G0.02 (u) and m0.02,2 (u) decrease as the dependence parameter α0 increases. �
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Table 3
Exact values and values obtained by importance sampling of
ruinmeasures assuming bivariate gamma CRMMdistribution.

u ψ (u) (exact) ψ (u) (IS) m0,2 (u) (IS)

0 0.8198 0.8202 0.4095
2 0.3987 0.3987 0.1995
5 0.1352 0.1359 0.0665

10 0.0223 0.0229 0.0101

Table 4
Values computed by importance sampling of ruin measures assuming
bivariate gamma CRMM distribution.

u Case 1—γ0 = 0.1 Case 1—γ0 = 0.4
ρP (X,W ) = 0.117851 ρP (X,W ) = 0.471405
ρ0.02 = 0.197693 ρ0.02 = 0.294809
G0.02 (u) (IS) m0.02,2 (u) (IS) G0.02 (u) (IS) m0.02,2 (u) (IS)

0 0.711491 0.989035 0.697644 0.629724
10 0.087144 0.163357 0.024404 0.043776
20 0.011845 0.022842 0.001209 0.002313

4.3. Raftery bivariate exponential distribution

The Raftery bivariate exponential distribution is constructed as follows. Let Y0, Y1, and Y2 be independent exponentially
distributed rvs with mean 1 and (I1, I2) be a couple of rvs with bivariate Bernoulli distribution with pi1i2 =

Pr (I1 = i1, I2 = i2), for i1, i2 ∈ {0, 1}. Then, we define (X,W ) in terms of the rvs Y0, Y1, and Y2 as

X =
(1 − p10 − p11) Y1 + I1Y0

β
,

W =
(1 − p01 − p11) Y2 + I2Y0

λ
.

It can be shown that the marginal distributions of X and W are exponentials with means 1
β
and 1

λ
respectively. Also, the

Pearson correlation coefficient is given by

ρP (X,W ) = 2p11 − (p10 + p11) (p01 + p11) ,

where ρP (X,W ) ∈ [−0.25, 1]. When p01 = p11 = 0 or p10 = p11 = 0, it corresponds to the independence case while
p00 = p01 = p10 = 0, p11 = 1 corresponds to the comonotonicity case.

By conditioning on (I1, I2), the mgf of (X,W ) is

MX,W (r1, r2) = p00


β

1−p10−p11
β

1−p10−p11
− r1


λ

1−p01−p11
λ

1−p01−p11
− r2


+ p10


β

1−p10−p11
β

1−p10−p11
− r1


β

β − r1

 λ
1−p01−p11
λ

1−p01−p11
− r2



+ p01


β

1−p10−p11
β

1−p10−p11
− r1


λ

1−p01−p11
λ

1−p01−p11
− r2


λ

λ− r2



+ p11


β

1−p10−p11
β

1−p10−p11
− r1


λ

1−p01−p11
λ

1−p01−p11
− r2

 1

1 −


r1
β

+
r2
λ


 . (23)

Details on the Raftery bivariate exponential distribution can be found in e.g. [26] or [24].

Lemma 15. Under P(ρδ), the couple (X,W ) is constructed as follows:

X =
1

β

1−p10−p11
− ρδ

C1 +


J1 (1 − J2)
β − ρδ

+
J1J2

β − ρδ +
β

λ
ρδ +

β

λ
δ


C0,

W =
1

λ
1−p01−p11

+ ρδ + δ
C2 +


(1 − J1) J2
λ+ ρδ + δ

+
J1J2

λ−
λ
β
ρδ + ρδ + δ


C0,

where the rvs C0, C1 and C2 are independent with C0 ∼ Exp (1) , C1 ∼ Exp (1) and C2 ∼ Exp (1). They are also independent of
(J1, J2), whose joint probability mass function is denoted by

Pr (J1 = j1, J2 = j2) = p(ρδ)j1j2
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Table 5
Values of ruin probabilities obtained by importance sampling assuming
Raftery bivariate exponential distribution (Cases 1 and 2).

Case 1 2

ρ0 0.0400952 0.0929024
ρP (X,W ) −0.25 0.51
ψ (0) 0.8313375 0.6851976
ψ (10) 0.5667875 0.2525691
ψ (20) 0.3798958 0.1008767
ψ (50) 0.1134398 0.0061751
ψ (100) 0.0153967 0.0000588
ψ (500) 0.0002776 0

for j1, j2 ∈ {0, 1}, where

p(ρδ)00 = p00


β

1−p10−p11
β

1−p10−p11
− ρδ


λ

1−p01−p11
λ

1−p01−p11
+ ρδ + δ


, (24)

p(ρδ)10 = p10


β

1−p10−p11
β

1−p10−p11
− ρδ


β

β − ρδ

 λ
1−p01−p11
λ

1−p01−p11
+ ρδ + δ


, (25)

p(ρδ)01 = p01


β

1−p10−p11
β

1−p10−p11
− ρδ


λ

1−p01−p11
λ

1−p01−p11
+ ρδ + δ


λ

λ+ ρδ + δ


, (26)

p(ρδ)11 = p11


β

1−p10−p11
β

1−p10−p11
− ρδ


λ

1−p01−p11
λ

1−p01−p11
+ ρδ + δ


βλ

βλ− λρδ − β (−ρδ − δ)


. (27)

Proof. From (23), we find

M(ρδ)

X,W (r1, r2) = p(ρδ)00


β

1−p01−p11
− ρδ

β

1−p01−p11
− ρδ − r1


λ

1−p10−p11
+ ρδ + δ

λ
1−p10−p11

+ ρδ + δ − r2



+ p(ρδ)10


β

1−p01−p11
− ρδ

β

1−p01−p11
− ρδ − r1


β − ρδ

β − ρδ − r1

 λ
1−p10−p11

+ ρδ + δ

λ
1−p10−p11

+ ρδ + δ − r2



+ p(ρδ)01


β

1−p01−p11
− ρδ

β

1−p01−p11
− ρδ − r1


λ

1−p10−p11
+ ρδ + δ

λ
1−p10−p11

+ ρδ + δ − r2


λ+ ρδ + δ

λ+ ρδ + δ − r2



+ p(ρδ)11


β

1−p01−p11
− ρδ

β

1−p01−p11
− ρδ − r1


λ

1−p10−p11
+ ρδ + δ

λ
1−p10−p11

+ ρδ + δ − r2

 1
1 −

r1
β−ρδ+

β
λ
ρδ+

β
λ
δ

−
r2

λ− λ
β
ρδ+ρδ+δ

 , (28)

with p(ρδ)00 , p
(ρδ)

10 , p
(ρδ)

01 and p(ρδ)11 given by (24)–(27) respectively.
Now, we define the couple of Bernoulli rvs (J1, J2)whose joint probability mass function is given by

Pr (J1 = j1, J2 = j2) = p(ρδ)j1j2
,

for j1, j2 ∈ {0, 1}. Also, based on (28), we notice that, if J1 = 1 and J2 = 0 (resp. J1 = 1 and J2 = 1), the scale parameter
within themgf associated to the second component in the definition of the rv X is β−ρδ (resp. β−ρδ+

β

λ
ρδ+

β

λ
δ). Similarly,

if J2 = 1 and J1 = 0 (resp. J2 = 1 and J1 = 1), the scale parameter within the mgf associated to the second component in
the definition of the rvW is λ+ ρδ + δ (resp. λ−

λ
β
ρδ + ρδ + δ). The desired result is then obtained from this observation

and by inverting (28). �

Note from Lemma 15 that, under P(ρδ), the marginals of (X,W ) are no longer exponentials but rather a mixture of an
exponential distribution and two generalized Erlang distributions. In the following example, we compute several ruin-
related measures.

Example 16. Let β =
1
4 , λ =

1
5 and c = 1 (η = 25%). We consider two cases, namely p00 = p11 = 0, p01 = p10 = 0.5 (Case

1) and p00 = 0.1, p01 = 0.2, p10 = 0.2, p11 = 0.5 (Case 2). Table 5 shows the values obtained for ψ (u) by importance
sampling with the values for ρ0 and for ρP (X,W ).
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Table 6
Information obtained by importance sampling about the conditional distribution of the claim causing the ruin assuming
Raftery bivariate exponential distribution (Cases 1 and 2).

Case 1 1 1 2 2 2

u 0 100 500 0 100 500
E

Xσu |τu < ∞


8.32635 12.81813 12.63947 6.50317 13.13048 12.96192

Var

Xσu |τu < ∞


29.94235 52.88868 50.68590 25.58575 69.53349 67.16921

F−1
Xσu |τu<∞

(0.001) 0.48883 1.00315 1.04906 0.16034 0.80821 0.67447
F−1
Xσu |τu<∞

(0.01) 1.04898 2.24367 2.19802 0.51526 1.73110 1.61518
F−1
Xσu |τu<∞

(0.1) 2.71304 5.04596 4.89487 1.63129 4.32240 4.17643
F−1
Xσu |τu<∞

(0.5) 7.05495 11.37632 11.35924 5.11525 11.34054 11.21650
F−1
Xσu |τu<∞

(0.9) 15.53064 22.67247 22.12477 13.21539 24.46190 24.28467
F−1
Xσu |τu<∞

(0.99) 26.56121 35.38690 35.03689 24.39351 39.73495 38.14429
F−1
Xσu |τu<∞

(0.999) 37.96562 48.86099 47.06605 34.67310 56.85226 50.52593

Table 7
Values obtained by importance sampling about the conditional distribution
of the minimal surplus prior to ruin assuming Raftery bivariate exponential
distribution (Cases 1 and 2).

Case 1 2

E

A1,σ100 |τu < ∞


5.00378 5.99546

Var

A1,σ100 |τu < ∞


21.69617 40.83723

F−1
A1,σ100 |τu<∞

(0.001) 0.00641 0.00950

F−1
A1,σ100 |τu<∞

(0.01) 0.06134 0.05743

F−1
A1,σ100 |τu<∞

(0.1) 0.59971 0.55455

F−1
A1,σ100 |τu<∞

(0.5) 3.65406 3.89515

F−1
A1,σ100 |τu<∞

(0.9) 11.20908 14.15393

F−1
A1,σ100 |τu<∞

(0.99) 21.09926 30.11496

F−1
A1,σ100 |τu<∞

(0.999) 30.04665 45.43755

Table 8
Values obtained by importance sampling about the sum of claims up to ruin assuming Raftery bivariate
exponential distribution (Cases 1 and 2).

Case 1 1 2 2

u 0 100 0 100
E

A4,σu |τu < ∞


27.48469 521.68111 19.25464 454.99306

Var

A4,σu |τu < ∞


5284.33807 101513.59675 1607.94599 38247.49805

F−1
A4,σu |τu<∞

(0.001) 0.32502 134.99361 0.18132 137.87116
F−1
A4,σu |τu<∞

(0.01) 0.95398 158.87008 0.49555 168.15236
F−1
A4,σu |τu<∞

(0.1) 2.75328 228.66904 1.76256 248.42026
F−1
A4,σu |τu<∞

(0.5) 8.97310 437.38795 7.59184 416.66486
F−1
A4,σu |τu<∞

(0.9) 52.42119 918.86292 43.89826 715.69402
F−1
A4,σu |τu<∞

(0.99) 360.63096 1675.50733 189.35263 1090.68607
F−1
A4,σu |τu<∞

(0.999) 934.53610 2606.48323 514.34348 1485.32623

Again,we observe thatψ (u) decreaseswithρP . In Table 6,we also provide information about the conditional distribution
of Xσu for u = 0, 100, 500 in both cases.

From Table 6, we can reasonably expect that the conditional distribution of Xσu converges when u gets larger. This
statement is confirmed by graphs of the conditional cdf’s of Xσu which we do not provide here to lighten the presentation.
Then, in Table 7, we give information about the conditional distribution of theminimal surplus prior to ruin A1,σu for u = 100
in both cases.

The variance observed in Case 1 is twice smaller than in Case 2. This might be explained by a smaller ψ (u) in Case 2
leading to a larger average time for ruin to occur. Finally, in Table 8, we also provide information about the conditional
distribution of A4,σu for u = 0, 100 in both cases.

Obviously, in both cases, a larger u leads to a larger F−1
A4,σu |τu<∞

. Also, for a given u, we notice that Case 1 yields larger
figures, which is line with the intuition as ψ (u) is larger in Case 1. �
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4.4. Bivariate distribution with FGM copula and exponential marginals

The FGM copula, given by

Cθ (u1, u2) = u1u2 + θu1u2 (1 − u1) (1 − u2) , (29)

(see e.g. [27]), has been used notably by Cossette et al. [3] within a compound Poisson risk model with dependence and
Chadjiconstantinidis and Vrontos [11] in the context of a compound renewal risk model with dependence. Here, we assume
that FX,W (x, t) = Cθ (FX (x) , FW (t)), with (29) and with exponential marginals (X ∼ Exp (β) and W ∼ Exp (λ)). It implies
that the expression for the joint pdf of (X,W ) is given by

fX,W (x1, x2) = βe−βx1λe−λx2 + θ

2
i=1

2
j=1

(−1)i+j
× iβe−iβx1 × jλe−jλx2 .

The Pearson correlation coefficient is given by ρP (X,W ) =
θ
4 , where ρP (X,W ) ∈


−

1
4 ,

1
4


.

We note that the bivariate distribution defined with the FGM copula and exponential marginals can be seen as a
combination of bivariate exponential distributions. Combinations of univariate exponential distributions are a subsetwithin
the family of matrix exponential distributions (see e.g. [28,29] for details). Similarly, combinations of bivariate exponential
distributions are a subset within the family of bivariate matrix exponential distributions (see [30]).

Lemma 17. The joint pdf of (X,W ) under P(ρδ) is

f (ρδ)X,W (x, t) = c(ρδ)1,1 e−(β−ρδ)x (λ+ ρδ + δ) e−(λ+ρδ+δ)t

+ θ

2
i=1

2
j=1

(−1)i+j
× c(ρδ)i,j (iβ − ρδ) e−(iβ−ρδ)x (jλ+ ρδ + δ) e−(jλ+ρδ+δ)t ,

where c(ρδ)i,j =
iβ

iβ−ρδ
×

jλ
jλ+ρδ+δ

, for i, j ∈ {1, 2}.

Proof. The proof follows from an adaptation of Lemma 10 in the case of combinations of bivariate exponentials. �

According to Lemma 17, the joint pdf of (X,W ) under P(ρδ) cannot be defined by an FGM copula and exponential
marginals. The marginals are now combinations of exponential distributions, i.e.

f (ρδ)X (x) = c(ρδ)1,1 (β − ρδ) e−(β−ρδ)x + θ

2
i=1

2
j=1

(−1)i+j
× c(ρδ)i,j (iβ − ρδ) e−(iβ−ρδ)x

and

f (ρδ)W (t) = c(ρδ)1,1 (λ+ ρδ + δ) e−(λ+ρδ+δ)t + θ

2
i=1

2
j=1

(−1)i+j
× c(ρδ)i,j (jλ+ ρδ + δ) e−(jλ+ρδ+δ)t .

However, the bivariate distribution remains a combination of bivariate exponential distributions whose marginals are
combinations of exponential distributions (which can be seen as extensions of the exponential distribution).

In the following example, we compare the values obtained by simulation with the exact values given in [3].

Example 18. Let β = 1, λ =
1
1.5 , θ = 0.5 and δ =

0.05
1.5 , which are equivalent to parameters used in Example 8.1 of Cossette,

et al. [3]. Numerical optimization leads to ρ0 = 0.378826 and ρδ = 0.432150. In Table 9, we provide the results for ψ (u)
and mδ,2 (u)withw2 (y) = y.

Even with ten times less simulations, the IS method is the closest to the exact values for both ψ (u) and mδ,2 (u).
An interesting ruin measure inspired from the ruin probability and the expected deficit at ruin has been investigated by
Mitric and Trufin [31]. This measure is computed in two steps. First, for some specified probability level κ , we denote by
uκ the smallest amount of initial capital needed such that the infinite-time ruin probability is at most equal to κ , that is
uκ = inf {υ ≥ 0|ψ(υ) ≤ κ}. In the second step, we compute

ξκ,δ = uκ + E

e−δτuκ

U(τuκ ) τuκ < ∞,U(0) = uκ

,

i.e. τuκ is the time of ruin assuming that the initial capital is uκ (i.e. the surplus processU = {uκ + ct − S(t), t ≥ 0}). In other
words, ξκ,δ represents the smallest amount of capital needed to ensure that the infinite-time ruin probability is smaller than
κ and to cope in expectation with the first occurrence of a ruin event. In the context on this example, the values of the ruin
measure ξκ,δ (with uκ ) are provided in Table 10. �

Let us mention that we could also consider the bivariate distribution defined with the FGM copula and mixed Erlang
distributions as marginals (see [32]). It could be also of interest to consider the bivariate distribution defined with the
Ali–Mikhail–Haq copula and exponential marginals but since, its treatment is similar to the one for the bivariate distribution
defined with the FGM copula and exponential marginals, we refer the reader to Cossette et al. [15] for the details.
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Table 9
Exact values, values obtained by crude Monte Carlo, and values obtained by importance sampling of ruin probabilities of the conditional
distribution of the deficit at ruin assuming bivariate FGM exponential distribution.

u ψ (u) (exact) ψ (u) (CMC) ψ (u) (IS) mδ,2 (u) (exact) mδ,2 (u) (CMC) mδ,2 (u) (IS)

0 0.64512 0.64454 0.64569 0.54568 0.54659 0.54523
5 0.09495 0.09548 0.09482 0.06443 0.06499 0.06445

10 0.01429 0.01358 0.01428 0.00743 0.00715 0.00742
20 0.00032 0.00030 0.00032 0.00010 0.00008 0.00010

Table 10
Exact values and values obtained by importance sampling for the ruin
measure proposed by Mitric and Trufin [31] assuming the bivariate FGM
exponential distribution.

κ uκ (exact) uκ (IS) ξκ,δ (exact) ξκ,δ (IS)

0.95 6.69297 6.67682 6.72397 6.70821
0.995 12.77120 12.76674 12.77344 12.76898

4.5. Moran–Downton’s bivariate exponential distribution

We assume that (X,W ) has a Moran–Downton bivariate exponential distribution with joint pdf given by

fX,W (x, t) =

∞
k=0

(1 − γ ) γ kh

x; k + 1,

β

1 − γ


h

t; k + 1,

λ

1 − γ


,

for x, w ≥ 0 and γ ∈ [0, 1). The Pearson correlation coefficient is ρP (X,W ) = γ . Hence, γ = 0 corresponds to the indepen-
dence case while γ → 1 corresponds to the comonotonicity case. For further information on theMoran–Downton bivariate
exponential distribution, see e.g. [33,24], or [34]. In their Example 5.5, Albrecher and Teugels [1] find the expression of the ad-
justment coefficientρ0. Also, Ambagaspitiya and Thompson [35] proposed an extension to thismodel in a ruin theory context
for which marginals are not restricted to exponential distributions. The interest of the Moran–Downton bivariate exponen-
tial distribution notably lies in itsmathematical tractability. Also, it constitutes a special case of Kibble andMoran’s bivariate
gamma distribution, for which Ambagaspitiya [10] obtains an analytical expression for ψ (u). The joint mgf of (X,W ) is

MX,W (r1, r2) =

∞
k=0

(1 − γ ) γ k

1 −

1 − γ

β
r1

−(k+1) 
1 −

1 − γ

λ
r2

−(k+1)

=
(1 − γ )

1 −
1−γ
β

r1
 

1 −
1−γ
λ

r2


− γ
.

We obtain below a nice analytical expression for ρδ .

Lemma 19. The analytical expression for ρδ is

ρδ =


η − γ δ

λ


+


γ δ
λ

− η
2

+ 4γ (1 + η) δ
λ

2γ (1 + η)
β,

where γ = 1 − γ .

Remark 20. Note that ρ0 =
1

1−γ
η

(1+η)β , which can be found also in Example 5.5 of Albrecher and Teugels [1]. Also, ρ0 does
not depend on the parameter λ of the distribution of the interclaim time rv W . Moreover, as the dependence parameter γ
increases (i.e. as the positive dependence relation between the components of (X,W ) increases), we observe that ρ0 also
increases, which implies that the riskiness of the risk process decreases. Moreover, when γ = 0, we obtain the expression
of the adjustment coefficient within the classical compound Poisson risk model with exponentially distributed claims.

Applying Lemma 9, we obtain the expression for f (ρδ)X,W .

Lemma 21. The joint pdf of (X,W ) under P(ρδ) is

f (ρδ)X,W (x, t) =

∞
k=0

p(ρδ)k h

x; k + 1,

β

1 − γ
− ρδ


h

t; k + 1,

λ

1 − γ
+ ρδ + δ


,

where

p(ρδ)k = (1 − γ ) γ k


β

β − (1 − γ ) ρδ

k+1 
λ

λ+ (1 − γ ) (ρδ + δ)

k+1

, k ∈ N.
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Table 11
Exact values and values obtained by importance sampling for ruin probabili-
ties assuming Moran–Downton’s bivariate exponential distribution.

u ψ (u) (exact) ψ (u) (IS)

0 0.7034648 0.7034776
5 0.0577439 0.0576902

10 0.0047399 0.0047324
20 0.0000319 0.0000321

Table 12
Exact values and values obtained by importance sampling for Laplace
transform of the time of ruin assuming Moran–Downton’s bivariate
exponential distribution.

u G0.03 (u) (IS)
γ = 0.6 γ = 0.2

0 0.6683739 0.7224677
5 0.0339860 0.1377348

10 0.0017340 0.0259881
20 0.0000044 0.0009380

Note that the joint distribution of (X,W ) under P(ρδ) is no longer a Moran–Downton bivariate exponential distribution
but rather a bivariate mixed Erlang distribution. Its marginals are mixed Erlang distributions with

f (ρδ)X (x) =

∞
k=0

p(ρδ)k h

x; k + 1,

β

1 − γ
− ρδ


,

f (ρδ)W (t) =

∞
k=0

p(ρδ)k h

t; k + 1,

λ

1 − γ
+ ρδ + δ


.

Example 22. Let β = 1, λ =
1

1.25 , and γ = 0.6. When δ = 0, we find ρ0 = 0.5 using Lemma 19. The expression of
ψ (u) (only) is obtained in [10, Example 1] from which we have computed the exact values for different initial capitals u. In
Table 11, we provide the results for the ruin probability ψ (u).

Again, as for Example 18, the IS method performs very well. For δ = 3%, we obtain ρ0.03 = 0.595867 with Lemma 19.
The values of G0.03 (u), given in Table 12, are obtained by importance sampling and computed for γ = 0.6 and γ = 0.2.

We note that G0.03 (u) decreases with γ which is in line with our intuition as larger dependence leads to a lower ruin
probability and hence to a larger average ruin time. �
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