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a b s t r a c t

The unique solvability in the sense of strong solution of initial problems for a class of
semilinear first order differential equations in Banach spaces with degenerate operator at
the derivative is studied. It allows to prove the existence of a solution for the optimal control
problem to systems, described by these initial problems. Abstract results are illustrated
by the examples of degenerate systems of partial differential equations not solvable with
respect to the time derivatives and of optimal control problems for them.
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1. Introduction

The article presents a study of control problems for distributed systems, described by degenerate semilinear evolution
equations that are not resolved with respect to the time derivative. Interest to nonlinear control problems based on their
practical importance (see recent papers [1,2] and others). In Hilbert spaces X, Y and U the statement of a problem for the
operator equation

Lẋ(t) = Mx(t) + N(t, x(t)) + Bu(t), (1.1)
x(t0) = x0, (1.2)
u ∈ U∂ , (1.3)

J(x, u) = ∥x − x̃∥2
W1

2 (t0,T ;X)
+ ∥u − ũ∥2

L2(t0,T ;U), (1.4)

where the set of admissible controls U∂ is a nonempty closed convex subset of controls space U, functions x̃, ũ are given,
operators B ∈ L(U; Y), L ∈ L(X; Y), i. e. are linear and continuous. The operator L has a nontrivial kernel ker L ≠ {0}. Also,
we assume that the operatorM is a linear, closed, densely defined inX (M ∈ Cl(X; Y)) and the operator ofN is a nonlinear,
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defined on an open set Y ⊂ R× X. Such problem is an abstract framework for studying of control problems for various real
systems, describing by the systems of partial differential equations not solved with respect to time derivatives [3–5].

Firstly the existence of a unique strong solution of problem (1.1), (1.2) was proved in the case X = Y, L = I with
Caratheodory mapping N . Then these results and methods of degenerate operator semigroups theory [5] were used for
investigation of problem (1.1), (1.2) solvabilitywith degenerate operator L. Similar resultswere obtained in [6] but in the case
of a smooth operator N . The research of initial problem (1.1), (1.2) allows to study the optimal control problem (1.1)–(1.4).
Examples in the last section illustrate general results.

This work is a continuation of optimal control problems research for degenerate distributed systems in [7–9], where
linear degenerate distributed control systems are considered.

2. The Cauchy problem for nondegenerate semilinear equation

Let Z be Banach space, A ∈ L(Z). Suppose that an operator B : (t0, T ) × Z → Z is Caratheodory mapping, i. e. for every
z ∈ Z it defines measurable mapping on (t0, T ) and for almost all t ∈ (t0, T ) it is continuous in z ∈ Z. Consider Cauchy
problem

z(t0) = z0, (2.1)

for the semilinear equation

ż(t) = Az(t) + B(t, z(t)). (2.2)

A strong solution of (2.1), (2.2) on (t0, T ) is a function z ∈ W 1
q (t0, T ; Z), q ∈ (1, ∞), for which condition (2.1) and almost

everywhere on (t0, T ) equality (2.2) hold.

Lemma 2.1. Let A ∈ L(Z), operator B : (t0, T ) × Z → Z be Caratheodory mapping, for all z ∈ Z and almost all t ∈ (t0, T )
the estimate

∥B(t, z)∥Z ≤ a(t) + c∥z∥Z (2.3)

be satisfied with some a ∈ Lq(t0, T ; R), c > 0. Then for every z0 ∈ Z the function z ∈ W 1
q (t0, T ; Z) is a strong solution of

problem (2.1), (2.2) if and only if z ∈ Lq(t0, T ; Z) and almost everywhere on (t0, T )

z(t) = e(t−t0)Az0 +

 t

t0
e(t−s)AB(s, z(s))ds. (2.4)

Proof. Let z be a strong solution of problem (2.1), (2.2), then by condition (2.3) operator B is bounded from Lq(t0, T ; Z) to
Lq(t0, T ; Z). Integrating equality (2.2) on the interval (t0, t), we obtain (2.4).

Let z ∈ Lq(t0, T ; Z) almost everywhere on (t0, T ) satisfy (2.4), then the function B(·, z(·)) ∈ Lq(t0, T ; Z) and it can be
checked directly that z is a strong solution of (2.1), (2.2). •

Call a mapping B : (t0, T )×Z → Z uniformly Lipschitz continuous in z, if there exists such l > 0, that for all (t, y), (t, z)
from (t0, T ) × Z the inequality ∥B(t, y) − B(t, z)∥Z ≤ l∥y − z∥Z holds. Put N0 = {0} ∪ N.

Theorem 2.1. Let A ∈ L(Z), an operator B : (t0, T ) × Z → Z be Caratheodory mapping, uniformly Lipschitz continuous in z,
and B(·, v) ∈ Lq(t0, T ; Z) for some v ∈ Z. Then for every z0 ∈ Z problem (2.1), (2.2) has a unique strong solution on (t0, T ).

Proof. It follows from the uniform Lipschitz continuity that ∥B(t, z)∥Z ≤ ∥B(t, v)∥Z + l∥v∥Z + l∥z∥Z for all z ∈ Z, a. e. on
(t0, T ), therefore, condition (2.3) is performed with a(t) = ∥B(t, v)∥Z + l∥v∥Z, c = l. By Lemma 2.1 it is enough to show
that Eq. (2.2) has a unique solution z ∈ Lq(t0, T ; Z).

In the Banach space Lq(t0, T ; Z) we define an operator G by the equality

G(z)(t) = e(t−t0)Az0 +

 t

t0
e(t−s)AB(s, z(s))ds.

By condition (2.3) G : Lq(t0, T ; Z) → Lq(t0, T ; Z). As the Gr we denote the rth power of the operator G, r ∈ N. If T − t0 < 1
in the subsequent discussion we will replace T − t0 by the unit. For almost all t ∈ (t0, T ), r ∈ N, y, z ∈ Lq(t0, T ; Z) we will
prove by the induction the inequality

∥Gr(y)(t) − Gr(z)(t)∥Z ≤
K r(t − t0)r−1/q

(r − 1)!
∥y − z∥Lq(t0,T ;Z), (2.5)

where K = le(T−t0)∥A∥L(Z) . While r = 1 with help of a Hölder’s inequality we have almost everywhere on (t0, T )

∥G(y)(t) − G(z)(t)∥Z ≤ le(T−t0)∥A∥L(Z)(t − t0)1−1/q
∥y − z∥Lq(t0,T ;Z).
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Assuming that for r − 1 inequality (2.5) runs, we get

∥Gr(y)(t) − Gr(z)(t)∥Z ≤ K
 t

t0
∥Gr−1(y)(s) − Gr−1(z)(s)∥Zds

≤ K r
 t

t0

(s − t0)r−1−1/q

(r − 2)!
∥y − z∥Lq(t0,T ;Z)ds ≤

K r(t − t0)r−1/q

(r − 1)!
∥y − z∥Lq(t0,T ;Z).

From (2.5) it follows that for r ∈ N

∥Gr(y) − Gr(z)∥Lq(t0,T ;Z) ≤
K r(T − t0)r

(r − 1)!(rq)1/q
∥y − z∥Lq(t0,T ;Z).

Therefore, if r is sufficiently large, then Gr is a strict contraction in Lq(t0, T ; Z), so it has a unique fixed point. Fixed point of
G is a fixed point for mapping Gr also. It is a unique solution of Eq. (2.4) in the space Lq(t0, T ; Z), hence it is a unique strong
solution of problem (2.1), (2.2) on the interval (t0, T ). •

Further we will consider the equation

ż(t) = Az(t) + B(t, z(t)) + f (t) (2.6)

with a nonlinear mapping B which is smooth in both variables and with a function f , such that its smoothness will be the
minimum necessary.

Theorem 2.2. Let A ∈ L(Z), n ∈ N0, B ∈ Cn([t0, T ] × Z; Z) be uniformly Lipschitz continuous in z, f ∈ W n
q (t0, T ; Z). Then

for any z0 ∈ Z there exists a unique strong solution z ∈ W n+1
q (t0, T ; Z) of problem (2.1), (2.6).

Proof. It is obvious that the conditions of Theorem2.2 are satisfied. Then there exists a solution z ∈ W 1
q (t0, T ; Z) of problem

(2.1), (2.6). Because of B ∈ C1([t0, T ] × Z; Z) in the case n ≥ 1, the function t → B(t, z(t)) has a derivative a. e. on (t0, T ),
hence z̈(t) = Aż(t)+DtB(t, z(t))+ ḟ (t).HereDtB is the total derivative in t . Therefore z ∈ W 2

q (t0, T ; Z) ⊂ C1([t0, T ]; Z) by
the Sobolev embedding theorem. As Dr

t for r ∈ Nwe will denote the rth total derivative. Continuing the process, we obtain

z(r)(t) = Arz(t) +

r−1
k=0

Ak

D(r−1−k)
t B(t, z(t)) + f (r−1−k)(t)


.

Whenever the order of z derivative on the left-hand side one more than the order of the highest derivative of z on the
right-hand side. It allows you to continue a chain of reasoning, differentiating the right-hand side of the last equation. The
expressions from the right will contain continuous derivatives of B, the continuous derivatives of z by embedding theorem,
and a first power of one derivative of order, one less than on the left-hand side. By the previous step of the proof it is already
in Lq(t0, T ; Z). The chain of reasoning breaks off when the derivative of B on the right-hand side will be of the order n. On
the left-hand side we will obtain the derivative of the function z of the order n + 1. •

3. Degenerate semilinear equation

Let X, Y be Banach spaces, L ∈ L(X; Y),M ∈ Cl(X; Y). Let us denote ρL(M) = {µ ∈ C : (µL − M)−1
∈ L(Y; X)},

RL
µ(M) = (µL − M)−1L, LLµ(M) = L(µL − M)−1. An operatorM is called (L, σ )-bounded if

∃a > 0 ∀µ ∈ C (|µ| > a) ⇒ (µ ∈ ρL(M)).

In a case of (L, σ )-bounded operatorM and contour γ = {µ ∈ C : |µ| = r > a}, the operators

P =
1

2π i


γ

RL
µ(M) dµ ∈ L(X), Q =

1
2π i


γ

LLµ(M) dµ ∈ L(Y)

are projections. Put X0
= ker P, Y0

= kerQ ; X1
= imP, Y1

= imQ . Denote by Lk (Mk) the restriction of L (M) to
Xk (DMk = DM ∩ Xk), k = 0, 1.

Theorem 3.1 ([5]). Let an operator M be (L, σ )-bounded. Then

(i) X = X0
⊕ X1, Y = Y0

⊕ Y1
;

(ii) M1 ∈ L

X1

; Y1

,M0 ∈ Cl


X0

; Y0

, Lk ∈ L


Xk

; Yk

, k = 0, 1;

(iii) there exist operators M−1
0 ∈ L


Y0

; X0

, L−1

1 ∈ L

Y1

; X1

.

Put H = M−1
0 L0. For p ∈ N0 an operator M is called (L, p)-bounded if it is (L, σ )-bounded, Hp

≠ 0,Hp+1
= 0.
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Consider a semilinear evolution equation

d
dt

Lx(t) = Mx(t) + N(t, x(t)) + f (t) (3.1)

with operators L ∈ L(X; Y), ker L ≠ {0},M ∈ Cl(X; Y), nonlinear operator N : (t0, T ) × X → Y and function
f : (t0, T ) → Y. A function x ∈ Lq(t0, T ; X), q ∈ (1, ∞), is called a strong solution of Eq. (3.1) on (t0, T ), if Lx ∈ W 1

q (t0, T ; Y),
almost everywhere on (t0, T )x(t) ∈ DM and equality (3.1) holds. A strong solution of the generalized Showalter–Sidorov
problem (see [8–10])

Px(t0) = x0 (3.2)

to Eq. (3.1) on (t0, T ) is a strong solution x ∈ W 1
q (t0, T ; X) of the equation that satisfies condition (3.2).

Theorem 3.2. Let p ∈ N0, an operator M be (L, p)-bounded, a mapping N : [t0, T ] × X → Y such that QN ∈ Cmax{0,p−1}

([t0, T ] × X; Y) be uniformly Lipschitz continuous in x,HkM−1
0 (I − Q )N ∈ Ck([t0, T ] × X; X) while k = 0, 1, . . . , p, for all

(t, x) ∈ [t0, T ] × X the equality

N(t, x) = N(t, Px) (3.3)

be valid, Qf ∈ Wmax{0,p−1}
q (t0, T ; Y),HkM−1

0 (I − Q )f ∈ W k
q (t0, T ; X) for k = 0, 1, . . . , p. Then for every x0 ∈ X1

problem (3.1), (3.2) has a unique strong solution on (t0, T ).

Proof. Alternately wemultiply (3.1) from the left by the continuous operators L−1
1 Q andM−1

0 (I−Q ). With help of condition
(3.3) we obtain the problem

v̇(t) = S1v(t) + L−1
1 Q [N(t, v(t)) + f (t)] ,

v(t0) = x0,
(3.4)

d
dt

Hw(t) = w(t) + M−1
0 (I − Q ) [N(t, v(t)) + f (t)] (3.5)

for the pair of functions v(t) = Px(t), w(t) = (I − P)x(t). Here, as above, we use the notation S1 = L−1
1 M1,H = M−1

0 L0.
By Theorem 2.2 with the power n = max{0, p − 1} problem (3.4) has a unique strong solution v ∈ Wmax{1,p}

q (t0, T ; X1),
because of the operator S1 is bounded by Theorem 3.1.

Knowing the v and using a nilpotency of the operator H , find the solution

w(t) = −

p
k=0

dk

dtk
HkM−1

0 (I − Q ) [N(t, v(t)) + f (t)] (3.6)

of (3.5), as in [5], where dk

dtk
HkM−1

0 (I−Q )N(t, v(t)) is a total derivative in t of the order k. As in the proof of Theorem 2.2 here
we use the continuity of the operators HkM−1

0 (I −Q )N derivatives, the Sobolev embedding theorem for all derivatives of v,
except the oldest, which in this case presents only in the first power. It is worth noting that L dp

dtp H
pM−1

0 (I −Q )[N(t, v(t))+

f (t)] = M0H dp
dtp H

pM−1
0 (I − Q )[N(t, v(t)) + f (t)] ≡ 0, hence Lx ∈ W 1

q (t0, T ; X). •

A strong solution of Cauchy problem

x(t0) = x0 (3.7)

for degenerate Eq. (3.1) on the interval (t0, T ) is defined analogously to the previous problem. In contrast to the generalized
Showalter–Sidorov problem, the Cauchy problem for degenerate equations requires concordance condition between the
initial data and the right-hand side of the equation.

Theorem 3.3. Let p ∈ N0, an operator M be (L, p)-bounded, a mapping N : [t0, T ] × X → Y such that QN ∈ Cmax{0,p−1}

([t0, T ] × X; Y) be uniformly Lipschitz continuous in x,HkM−1
0 (I − Q )N ∈ Ck([t0, T ] × X; X) while k = 0, 1, . . . , p, for all

(t, x) ∈ [t0, T ] × X the equality N(t, x) = N(t, Px) holds, Qf ∈ Wmax{0,p−1}
q (t0, T ; Y),HkM−1

0 (I − Q )f ∈ W k
q (t0, T ; X) while

k = 0, 1, . . . , p, for x0 ∈ X the equality

(I − P)x0 = −

p
k=0

dk

dtk


t=t0

HkM−1
0 (I − Q ) [N(t, v(t)) + f (t)] (3.8)

be valid, where v ∈ W p
q (t0, T ; X1) is a solution of problem (3.4). Then problem (3.1), (3.7) has a unique solution on (t0, T ).

Proof. We note only that concordance condition (3.8) means satisfying of condition (3.7) for solution (3.6) of Eq. (3.5). •
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Theorem 3.4. Let p ∈ N0, an operator M be (L, p)-bounded, an operator N : (t0, T ) × X → Y be Caratheodory mapping,
uniformly Lipschitz continuous in x, for some z ∈ X N(·, z) ∈ Lq(t0, T ; Y), imN ⊂ Y1,Qf ∈ Lq(t0, T ; Y),HkM−1

0 (I − Q )f ∈

W k
q (t0, T ; X) while k = 0, 1, . . . , p. Then, for any x0 ∈ X1 problem (3.1), (3.2) has a unique strong solution on (t0, T ).

Proof. If imN ⊂ Y1, then (I − Q )N ≡ 0. Eq. (3.1) after multiplying by the operator M−1
0 (I − Q ) has a form d

dtHw(t) =

w(t) + M−1
0 (I − Q )f . By virtue of the nilpotency of the operator H this equation has a unique solution w(t) = −

p
k=0

dk

dtk
HkM−1

0 (I − Q )f (t).
It remains to use Theorem 2.1 to show the unique solvability of the problem v(t0) = Px0 to the equation v̇(t) =

S1v(t) + L−1
1 Qf (t) + L−1

1 N(t, v(t) + w(t)), that is obtained from the problem (3.1), (3.2) with help of the action of the
operator L−1

1 Q . Indeed, the nonlinear operator B(t, v(t)) = L−1
1 N(t, v(t)+w(t))+ L−1

1 Qf (t)with already knownw satisfies
the conditions of Theorem 2.1. •

Theorem 3.5. Let p ∈ N0, an operator M be (L, p)-bounded, a mapping N : (t0, T ) × X → Y be Caratheodory, uniformly
Lipschitz continuous in x, for some z ∈ XN(·, z) ∈ Lq(t0, T ; Y), imN ⊂ Y1,Qf ∈ Lq(t0, T ; Y),HkM−1

0 (I−Q )f ∈ W k
q (t0, T ; X)

for k = 0, 1, . . . , p, x0 ∈ X satisfy the equality

(I − P)x0 = −

p
k=0

dk

dtk


t=t0

HkM−1
0 (I − Q )f (t).

Then (3.1), (3.2) have a unique strong solution on (t0, T ).

Remark 3.1. Instead of Eq. (3.1) consider the equation

L
d
dt

x(t) = Mx(t) + N(t, x(t)) + f (t), (3.9)

when operators L and d/dt are written in the reverse order. A strong solution of (3.9) is corresponding function x from
W 1

q (t0, T ; X). What is the difference between properties of Eqs. (3.1) and (3.9)? As it follows from the considerations above,
for the proof of the strong solvability of Eq. (3.9) by the proposed methods we need a slightly more strong conditions on
the smoothness of the problem data. Namely, in Theorems 3.2, 3.3 they have the form QN ∈ Cp([t0, T ] × X; Y),Qf ∈

W p
q (t0, T ; Y),HkM−1

0 (I − Q )N ∈ Ck+1([t0, T ] × X; X),HkM−1
0 (I − Q )f ∈ W k+1

q (t0, T ; X) for k = 0, 1, . . . , p. In
Theorems 3.4, 3.5 we need HkM−1

0 (I − Q )f ∈ W k+1
q (t0, T ; X) for k = 0, 1, . . . , p.

4. Distributed control for semilinear degenerate equation

Now let X, Y, U be Hilbert spaces, L ∈ L(X; Y), ker L ≠ {0}, B ∈ L(U; Y),M ∈ Cl(X; Y),N : [t0, T ] × X → Y.
Consider control problem

L
d
dt

x(t) = Mx(t) + N(t, x(t)) + Bu(t), (4.1)

x(t0) = x0, (4.2)
u ∈ U∂ , (4.3)

J(x, u) =
1
2
∥x − x̃∥2

W1
2 (t0,T ;X)

+
C
2

∥u − ũ∥2
L2(t0,T ;U) → inf, (4.4)

where x̃ ∈ W 1
2 (t0, T ; X), ũ ∈ L2(t0, T ; U) are given functions, C > 0, a set of admissible controls U∂ is a nonempty closed

convex subset of the space L2(t0, T ; U).
In the study of the optimal control problem (4.1)–(4.4) we will use the concept of a strong solution of Cauchy problem

(4.1), (4.2). Taking into account the form of Eq. (4.1), its strong solutions we will seek in a Hilbert space
Z = {z ∈ W 1

2 (t0, T ; X) : z(t) ∈ domM a. e. on (t0, T ), Lż − Mz ∈ L2(t0, T ; Y)}

with the norm ∥z∥Z = ∥z∥W1
2 (t0,T ;X) + ∥Lż − Mz∥L2(t0,T ;Y). Its completeness is proved, for example, in [8].

Introduce the operator γ0 : W 1
2 (t0, T ; X) → X, γ0x = x(t0). By Sobolev embedding theorem it is continuous operator.

Set of pairs (x, u) will be called as admissible pairs set W of problem (4.1)–(4.4) if u ∈ U∂ , x ∈ W 1
2 (t0, T ; X) is a strong

solution of (4.1), (4.2). Problem (4.1)–(4.4) is a problem of finding pairs (x̂, û) ∈ W , which minimizes the cost functional
J(x, u):

J(x̂, û) = inf
(x,u)∈W

J(x, u).

Theorem 4.1. Let p ∈ N0, an operator M be (L, p)-bounded, an operator N : [t0, T ] × X → Y be Caratheodory mapping,
uniformly Lipschitz continuous in x, for some z ∈ X N(·, z) ∈ L2(t0, T ; Y), imN ⊂ Y1, B[U∂ ] ∩ Y1

≠ ∅, U∂ be a nonempty
closed convex subset of the space L2(t0, T ; U), x0 ∈ X1. Then there exists a solution (x̂, û) ∈ Z × U∂ of problem (4.1)–(4.4).
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Proof. In the context of this section, the spaceX is a Hilbert space, and thus the reflexive Banach. For a fixed u ∈ L2(t0, T ; U)
we introduce the operator Nu : (t0, T ) × X → Y defined by the equality Nu(t, x) = N(t, x) + Bu(t). It is obvious that the
operator Nu is uniformly Lipschitz continuous in x, Caratheodory mapping and

∥N(t, x(t)) + Bu(t)∥Y ≤ a(t) + c∥x∥X + ∥B∥L(U;Y)∥u∥L2(t0,T ;U) = ã(t) + c∥x∥X.

In addition, by the condition of the theorem, there exists u ∈ U∂ , such that Bu ∈ Y1. It corresponds to the operator Nu such
that imNu ⊂ Y1. Hence, Theorem 3.5 and Remark 3.1 imply the existence of a strong solution of Cauchy problem (4.1), (4.2)
for the pair (x0, u) ∈


domM ∩ X1


× U∂ with the corresponding u. So, the set of admissible pairs W is nonempty.

Further we will use Theorem 1.2.4 [11]. Put Y = W 1
2 (t0, T ; X), Y1 = Z,U = L2(t0, T ; U), V = L2(t0, T ; Y) ×

X, F (x(·)) = (−N(·, x(·)), x0), L(x, u) = (Lẋ − Mx − Bu, γ0x). The continuity of the linear operator L : Y1 × U → V
follows from the inequalities

∥(Lẋ − Mx − Bu, γ0x)∥2
L2(t0,T ;Y)×X ≤ C1


∥Lẋ − Mx∥2

L2(t0,T ;Y) + ∥x∥2
W1

2 (t0,T ;X)
+ ∥u∥2

L2(t0,T ;U)


= C1∥(x, u)∥2

Z×U.

From the uniform Lipschitz continuity in x of the operator N for an arbitrary t ∈ [t0, T ], x ∈ X obtain ∥N(t, x)∥Y ≤

l∥x∥X + l∥z∥X +∥N(t, z)∥Y = a(t)+ l∥x∥X, where a(·) = ∥z∥X +∥N(·, z)∥Y ∈ L2(t0, T ; R). Therefore, the operator N acts
to the space L2(t0, T ; Y).

Let us verify the coercivity of J . We have the inequalities

∥x∥2
Z + ∥u∥2

L2(t0,T ;U) = ∥x∥2
W1

2 (t0,T ;X)
+ ∥N(·, x(·)) + Bu∥2

L2(t0,T ;Y) + ∥u∥2
L2(t0,T ;U)

≤ (1 + 4l2)∥x∥2
W1

2 (t0,T ;X)
+ 4∥a(·)∥2

L2(t0,T ;R) + (2∥B∥2
L(U;Y) + 1)∥u∥2

L2(t0,T ;U)

≤ K1J(x, u) + K2.

From the relation ∥xn − x∥Z → 0 for n → ∞ it follows that

∥N(·, xn(·)) − N(·, x(·))∥2
L2(t0,T ;Y) =

 T

t0
∥N(t, xn(t)) − N(t, x(t))∥2

Y dt ≤ l2∥xn − x∥2
L2(t0,T ;X) → 0,

thus we proved the continuity of the operator F .
After choosing Y−1 = L2(t0, T ; X), check the remaining conditions of Theorem 1.2.4 [11]. Condition (1) of the

compactness follows from Rellich–Kondrashov Theorem. To check condition (2) as S ⊂ L2(t0, T ; Y) we choose a dense
lineal C([t0, T ]; Y). Then for v ∈ C([t0, T ]; Y) the uniform Lipschitz continuity of the operator N implies the inequality

⟨N(t, xn(t)) − N(t, x(t)), v(t)⟩L2(t0,T ;Y) ≤ l∥v∥L2(t0,T ;Y)∥xn − x∥L2(t0,T ;X).

It gives the continuous extension of the functional f (·) = ⟨F (·), v⟩ from Z to L2(t0, T ; X). •

AsH∂(x0) denote the set of functions u ∈ L2(t0, T ; U) such thatQBu ∈ W p
2 (t0, T ; Y),HkM−1

0 (I−Q )Bu ∈ W k+1
2 (t0, T ; X),

k = 0, 1, . . . , p, and for the given x0 ∈ X

(I − P)x0 +

p
k=0

dk

dtk
HkM−1

0 (I − Q )N(t, v(t))|t=t0 = −

p
k=0

dk

dtk
HkM−1

0 (I − Q )Bu(t)|t=t0 ,

if there exists a solution of problem (3.4) with f = Bu.

Theorem 4.2. Suppose that an operator M is (L, p)-bounded, p ∈ N0,N : [t0, T ] × X → Y, the mapping QN ∈ Cp([t0, T ] ×

X; Y) is uniformly Lipschitz continuous in x, while k = 0, 1, . . . , p,HkM−1
0 (I − Q )N ∈ Ck+1([t0, T ] × X; X), for all (t, x) ∈

[t0, T ] × X the equality N(t, x) = N(t, Px) holds, U∂ is a nonempty closed convex subset of the space L2(t0, T ; U), x0 ∈ X,
U∂ ∩ H∂(x0) ≠ ∅. Then there exists a solution (x̂, û) ∈ Z × U∂ of problem (4.1)–(4.4).

Proof. As in the proof of Theorem 4.1, the operator Nu : (t0, T ) × X → Y will be used. The condition U∂ ∩ H∂(x0) ≠ ∅

implies (3.8) satisfying for at least one control from the set U∂ . Thus, nonemptiness of the set W follows from Theorem 3.3
and Remark 3.1. Remaining arguments were made in the proof of Theorem 4.1. •

For problem (4.1), (4.3), (4.4) with the condition

Px(t0) = x0 (4.5)

by virtue of Theorems 3.2, 3.4 and Remark 3.1 obtains the following results.

Theorem 4.3. Let p ∈ N0, an operator M be (L, p)-bounded, amapping N : [t0, T ]×X → Y such that QN ∈ Cp([t0, T ]×X; Y)

be uniformly Lipschitz continuous in x,HkM−1
0 (I−Q )N ∈ Ck+1([t0, T ]×X; X)while k = 0, 1, . . . , p, for all (t, x) ∈ [t0, T ]×X

the equality N(t, x) = N(t, Px) holds, U∂ be a nonempty closed convex subset of the space L2(t0, T ; U), x0 ∈ X1, U∂ ∩

W p+1
2 (t0, T ; U) ≠ ∅. Then there exists a solution (x̂, û) ∈ Z × U∂ of problem (4.1), (4.3)–(4.5).
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Theorem 4.4. Let p ∈ N0, an operator M be (L, p)-bounded, an operator N : (t0, T ) × X → Y be Caratheodory mapping and
uniformly Lipschitz continuous in x, for some z ∈ X N(·, z) ∈ L2(t0, T ; Y), imN ⊂ Y1, U∂ be a nonempty closed convex subset
of the space L2(t0, T ; U), B[U∂ ] ∩ Y1

≠ ∅, x0 ∈ X1. Then there exists a solution (x̂, û) ∈ Z × U∂ of problem (4.1), (4.3)–(4.5).

5. Example

Let Ω ⊂ Rn be a bounded domain with a smooth boundary ∂Ω . Consider the initial–boundary value problem
x1(s, t0) = x10(s), s ∈ Ω, (5.1)
xi(s, t) = 0, (s, t) ∈ ∂Ω × (t0, T ), i = 1, 2, 3, (5.2)
∂

∂t
△x1 = x1 + g1 (s, t, x1, x2, x3) , (s, t) ∈ Ω × (t0, T ),

∂

∂t
△x3 = x2 + g2 (s, t, x1, x2, x3) , (s, t) ∈ Ω × (t0, T ),

0 = △x3 + g3 (s, t, x1, x2, x3) , (s, t) ∈ Ω × (t0, T ).

(5.3)

Let A be Laplace operator with domain W 2
2,0(Ω) = {z ∈ W 2

2 (Ω) : z(s) = 0, s ∈ ∂Ω} ⊂ L2(Ω), {ϕk} be the orthonormal
in L2(Ω) system of its eigenfunctions corresponding to the system {λk} of operator A eigenvalues, indexed in nonincreasing
order taking into account their multiplicities.

For reducing problem (5.1)–(5.3) to problem (3.1), (3.2) choose spaces X = W 2
2,0(Ω)× L2(Ω)×W 2

2,0(Ω), Y = (L2(Ω))3

and operators

L =


△ 0 0
0 0 △

0 0 0


∈ L(X; Y), M =

1 0 0
0 1 0
0 0 △


∈ L(X; Y).

It is easy to verify that (µL − M)−1
∈ L(Y; X) where |µ| > |λ1|

−1 and projections have a form

P = Q =

1 0 0
0 0 0
0 0 0


,

that iswhyX1
= W 2

2,0(Ω)×{0}×{0}, X0
= {0}×L2(Ω)×W 2

2,0(Ω), Y1
= L2(Ω)×{0}×{0}, Y0

= {0}×L2(Ω)×L2(Ω),H =
0 ∆

0 0


.Therefore H2

= 0 and the operatorM is (L, 1)-bounded.
It is clear that initial condition (5.1) in this case is the generalized Showalter–Sidorov condition (3.2). Theorem 3.2 in this

case can be used when considering the problem (5.1), (5.2) for the system of equations
∂

∂t
△x1 = x1 + g1 (s, t, x1) , (s, t) ∈ Ω × (t0, T ),

∂

∂t
△x3 = x2 + g2 (s, t, x1) , (s, t) ∈ Ω × (t0, T ),

0 = △x3 + g3 (s, t, x1) , (s, t) ∈ Ω × (t0, T ),

where gi depends only on x1. Theorem 3.4 concerns to the system
∂

∂t
△x1 = x1 + g1 (s, t, x1, x2, x3) , (s, t) ∈ Ω × (t0, T ),

∂

∂t
△x3 = x2 + f2 (s, t) , (s, t) ∈ Ω × (t0, T ),

0 = △x3 + f3 (s, t) , (s, t) ∈ Ω × (t0, T ),

with a nonlinear part only in the first equation.
For the last system consider the control problem with following statement

∂

∂t
△x1 = x1 + g1 (s, t, x1, x2, x3) + u1(s, t), (s, t) ∈ Ω × (t0, T ),

∂

∂t
△x3 = x2 + f2 (s, t) + u2(s, t), (s, t) ∈ Ω × (t0, T ),

0 = △x3 + f3 (s, t) + u3(s, t), (s, t) ∈ Ω × (t0, T ),

(5.4)

∥u1∥
2
L2(t0,T ;L2(Ω)) + ∥u2∥

2
L2(t0,T ;L2(Ω)) + ∥u3∥

2
L2(t0,T ;L2(Ω)) ≤ R2, (5.5)

J(x1, x2, x3) =
1
2


k=1,3

∥xi − x̃i∥2
W1

2 (t0,T ;W2
2 (Ω))

+
1
2
∥x2 − x̃2∥2

W1
2 (t0,T ;L2(Ω))

+
C
2

3
k=1

∥ui∥
2
L2(t0,T ;L2(Ω)) → inf, (5.6)

where x̃i ∈ W 1
2 (t0, T ;W 2

2 (Ω)) for k = 1, 3 and x̃2 ∈ W 1
2 (t0, T ; L2(Ω)) are given. Here Z = W 1

2 (t0, T ; X), U = L2(t0, T ; Y).
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Theorem 5.1. Suppose that g1 is Caratheodory function, that uniformly Lipschitz continuous in x1, x2, x3 and for some
(z1, z2, z3) ∈ X g1(·, z1, z2, z3) ∈ L2(t0, T ; L2(Ω)), a function x10 ∈ W 2

2,0(Ω). Then the problem (5.4)–(5.6) has a solution
(x̂1, x̂2, x̂3, û1, û2, û3) in W 1

2 (t0, T ; X) × U∂ .
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