
Journal of Computational and Applied Mathematics ( ) –

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Efficient time integration of the Maxwell–Klein–Gordon
equation in the non-relativistic limit regime
Patrick Krämer ∗, Katharina Schratz
Karlsruhe Institute of Technology, Faculty of Mathematics, Englerstr. 2, 76131 Karlsruhe, Germany

a r t i c l e i n f o

Article history:
Received 3 December 2015

Keywords:
Maxwell–Klein–Gordon
Time integration
Highly-oscillatory
Wave equation
Non-relativistic limit

a b s t r a c t

The Maxwell–Klein–Gordon equation describes the interaction of a charged particle with
an electromagnetic field. Solving this equation in the non-relativistic limit regime, i.e. the
speed of light c formally tending to infinity, is numerically very delicate as the solution
becomes highly-oscillatory in time. In order to resolve the oscillations, standard numerical
time integration schemes require severe time step restrictions depending on the large
parameter c2.

The idea to overcome this numerical challenge is to filter out the high frequencies
explicitly by asymptotically expanding the exact solution with respect to the small
parameter c−2. This allows us to reduce the highly-oscillatory problem to its corresponding
non-oscillatory Schrödinger–Poisson limit system. On the basis of this expansion we are
then able to construct efficient numerical time integration schemes, which do NOT suffer
from any c-dependent time step restriction.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Maxwell–Klein–Gordon (MKG) equation describes the motion of a charged particle in an electromagnetic field and
the interactions between the field and the particle. The MKG equation can be derived from the linear Klein–Gordon (KG)
equation

∂t

c

2

z − ∇
2z + c2z = 0 (1)

by coupling the scalar field z(t, x) ∈ C to the electromagnetic field via a so-calledminimal substitution (cf. [1–3]), i.e.

∂t

c
→

∂t

c
+ i

Φ

c
=: D0,

∇ → ∇ − i
A

c
=: Dα,

(2)

where the electromagnetic field is represented by the real Maxwell potentialsΦ(t, x) ∈ R and A(t, x) ∈ Rd.
We replace the operators ∂t

c and ∇ in the KG equation (1) by their minimal substitution (2) such that in the so-called
Coulomb gauge (cf. [4]), i.e. under the constraint divA ≡ 0, we obtain a KG equation coupled to the electromagnetic
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field as

∂t

c
+ i

Φ

c

2

z −


∇ − i

A

c

2

z + c2z = 0,

∂ttA − c21A = cP [J ] ,
−1Φ = ρ,

(3)

for some charge density ρ(t, x) ∈ R and some current density J(t, x) ∈ Rd, where we define

P [J ] := J − ∇∆−1 div J

the projection of J onto its divergence-free part, i.e. divP [J ] ≡ 0.
Setting

ρ = ρ[z] := − Re

i
z
c


∂t

c
− i

Φ

c


z

, J = J [z] := Re


iz


∇ + i
A

c


z

, (4)

where z solves (3), we find that ρ and J satisfy the continuity equation

∂tρ + div J = 0. (5)

For notational simplicity in the following we may also write ρ(t, x), J(t, x) instead of ρ[z(t, x)] and J [z(t, x)].
The definition of ρ and J in (4) together with the constraint divA(t, x) ≡ 0 yields the so-called Maxwell–Klein–Gordon

equation in the Coulomb gauge

∂ttz = −c2(−∆+ c2)z + Φ2z − 2iΦ∂tz − iz∂tΦ − 2icA · ∇z − |A|
2 z,

∂ttA = c21A + cP [J ] , J = Re

izDαz


,

−1Φ = ρ, ρ = −c−1 Re

izD0z


,

z(0, x) = ϕ(x), D0z(0, x) =


−∆+ c2ψ(x),

A(0, x) = A(x), ∂tA(0, x) = cA′(x),

(a)


Td
ρ(0, x)dx = 0,


Td
Φ(t, x)dx = 0. (b)

(6)

Note that for practical implementation issues we assume periodic boundary conditions (p.b.c.) in space in the above model,
i.e. x ∈ Td. For simplicity we also assume that the total charge Q (t) := (2π)−d


Td ρ(t, x)dx at time t = 0 is zero, i.e.

Q (0) = 0. Also due to the constraint divA(t, x) ≡ 0 we assume that the initial data A, A′ for A are divergence-free. Finally,
the following assumption guarantees strongly well-prepared initial data. However, approximation results also hold true
under weaker initial assumptions, see for instance [5].

Assumption 1. The initial data ϕ,ψ, A, A′ are independent of c.

Remark 1. Note that the continuity equation (5) together with the initial assumption Q (0) = 0 implies that for all t we
have


Td ρ(t, x)dx =


Td ρ(0, x)dx = 0. This yields the first condition in (6b).

Remark 2. Up to minor changes, all the results of this paper remain valid for Dirichlet boundary conditions instead of
periodic boundary conditions.

Remark 3. Note that the MKG system (6) is invariant under the gauge transform (z,Φ,A) → (z ′,Φ ′,A′), where for a
suitable choice of χ = χ(t, x)we set

Φ ′
:= Φ + ∂tχ, A′

:= A − c∇χ, z ′
:= z exp(−iχ),

i.e. if (z,Φ,A) solves the MKG system (6) then also does (z ′,Φ ′,A′) without modification of the system (cf. [4,2,3,6]).
Henceforth, the second condition in (6b) holds without loss of generality: If 0 ≠ (2π)−d


Td Φ(t, x)dx =: M(t) ∈ R, we

choose χ as χ(t, x) = χ(t) = −(M(0)+
 t
0 M(τ )dτ), such that (6b) is satisfied forΦ ′.

For more physical details on the derivation of the MKG equation, on Maxwell’s potentials, gauge theory formalisms and
many more related topics we refer to [4,7,1–3,6] and the references therein.

Here we are interested in the so-called non-relativistic limit regime c ≫ 1 of the MKG system (6). In this regime the
numerical time integration becomes severely challenging due to the highly-oscillatory behaviour of the solution. In order
to resolve these high oscillations standard numerical schemes require severe time step restrictions depending on the large
parameter c2, which leads to a huge computational effort. This numerical challenge has lately been extensively studied for
the nonlinear Klein–Gordon (KG) equation, see [8–11]. In particular it was pointed out that a Gautschi-type exponential
integrator only allows convergence under the constraint that the time step size is of order O(c−2) (cf. [9]).
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In this paper we construct numerical schemes for (6) which do not suffer from any c-dependent time step restriction.
Our strategy is thereby similar to [11,8] where the Klein–Gordon equation is considered: In a first step we expand the exact
solution into a formal asymptotic expansion in terms of c−2 for z,Φ and in terms of c−1 forA. This allows us to filter out the
high oscillations in the solution explicitly. Thereforewe can break down the numerical task to only solving the corresponding
non-oscillatory Schrödinger–Poisson limit system. The latter can be carried out very efficiently without imposing any CFL
type condition on c nor the spatial grid size. This construction is based on theModulated Fourier Expansion (MFE) of the exact
solution in terms of the small parameter c−l, l ≥ 1, see for instance [12,11], [13, Chapter XIII] and the references therein.
However, as in [11] we control the expansion by computing the coefficients of the MFE directly and in particular exploit the
results in [5,14] on the asymptotic behaviour of the exact solution of the MKG equation (6). More precisely, formally the
following approximations hold

z(t, x) =
1
2


u0(t, x) exp(ic2t)+ v0(t, x) exp(−ic2t)


+ O


c−2 ,

A(t, x) = cos(ct
√

−1)A(x)+
√

−∆
−1

sin(ct
√

−1)A′(x)+ O

c−1 , (7)

where u0 and v0 solve the Schrödinger–Poisson (SP) system
i∂tu0 =

1
2
1u0 + Φ0u0, u0(0) = ϕ − iψ,

i∂tv0 =
1
2
1v0 − Φ0v0, v0(0) = ϕ − iψ,

−1Φ0 = −
1
4


|u0|

2
− |v0|

2, 
Td
Φ0(t, x)dx = 0.

(8)

Remark 4. The L2 conservation of u0, v0 together with the choice Q (0) = 0 yields that
Td

|u0(t, x)|2 − |v0(t, x)|2 dx =


Td

|u0(0, x)|2 − |v0(0, x)|2 dx = 0.

Here we point out that in the asymptotic expansion (7) the highly-oscillatory nature of the solution is only contained
in the high-frequency terms exp(±ic2t) and cos(c

√
−1t), sin(c

√
−1t), respectively. In particular the SP system (8) does

not depend on the large parameter c . Henceforth, the expansion (7) allows us to derive an efficient and fast numerical
approximation without any c-dependent time step restriction: We only need to solve the non-oscillatory SP system
numerically and multiply the numerical approximations to the SP solution with the highly-oscillatory phases.

After a full discretization using for instance the second-order Strang splitting scheme for the time discretization of the
SP system (8) (see [15]) with time step size τ and a Fourier pseudospectral (FP) method for the space discretization with
mesh size h, the resulting numerical schemes then approximate the exact solution of the MKG equation up to error terms
of order O(c−2

+ τ 2 + hs) for z,Φ and O(c−1
+ hs) for A respectively.

The main advantage here is that we can choose τ and h independently of the large parameter c. The value of s depends
on the smoothness of the solution. We will discuss the numerical scheme in more detail later on in Section 5.

Remark 5. Under additional smoothness assumptions on the initial data we can also carry out the asymptotic expansion
up to higher order terms in c−l. In particular, every term in this expansion can be easily computed numerically as the high
oscillations can be filtered out explicitly.

If we consider other boundary conditions, such as for example Dirichlet or Neumann boundary conditions it may be
favourable to use a finite element (FEM) space discretization or a sine pseudospectral discretization method instead of the
FP method. For details on the convergence of a FEM applied to the MKG equation in the so-called temporal gauge, see for
instance [16] and references therein.

For further results on the construction of efficientmethods on related Klein–Gordon type equations in the non-relativistic
limit regime we refer to [17,18,9,8,10].

2. A priori bounds

We follow the strategy presented in [11,5]: Firstly, we rewrite the MKG equation (6) as a first order system. Therefore,
for a given c we introduce the operator

⟨∇⟩c :=


−∆+ c2,

which in Fourier space can be written as a diagonal operator (⟨∇⟩c)kℓ = δkℓ


|k|2 + c2, k, ℓ ∈ Zd, where δkℓ denotes the
Kronecker symbol. By Taylor series expansion of

√
1 + x

−1
we can easily see that for all k ∈ Zd there holds |(c ⟨∇⟩

−1
c )kk| ≤ 1,
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i.e. c ⟨∇⟩
−1
c is uniformly bounded with respect to c. In particular, there holds

c ⟨∇⟩
−1
c u


s ≤ ∥u∥s, where ∥·∥s denotes the

standard Sobolev norm corresponding to the function space Hs
:= Hs(Td,C).

In order to rewrite the equation for z in (6) as a first order system we set

u = z − i ⟨∇⟩
−1
c D0z, v = z − i ⟨∇⟩

−1
c D0z, (9)

as proposed in [5]. By the definition of D0z = c−1(∂t + iΦ)z and since Φ is real we have that z =
1
2 (u + v). We define the

abbreviations

Nu[u, v,Φ,A] := −
i
2
(Φ + ⟨∇⟩

−1
c Φ ⟨∇⟩c)u −

i
2
(Φ − ⟨∇⟩

−1
c Φ ⟨∇⟩c)v

+ ic−1
⟨∇⟩

−1
c


|A|

2 1
2
(u + v)


− ⟨∇⟩

−1
c (A · ∇(u + v)) (10)

and Nv[u, v,Φ,A] := Nu[v, u,−Φ,−A]. Differentiating u and v in (9) with respect to t we obtain the system
i∂tu = −c ⟨∇⟩c u + iNu[u, v,Φ,A], u(0) = ϕ − iψ
i∂tv = −c ⟨∇⟩c v + iNv[u, v,Φ,A], v(0) = ϕ − iψ,

−1Φ = ρ[u, v],
∂ttA = c21A + cP [J [u, v,A]] , A(0) = A, ∂tA(0) = cA′

(11)

where the definition of u(0), v(0) follows from the ansatz (9) together with the initial data ϕ,ψ, A, A′ in (6). Furthermore
since z =

1
2 (u + v)we have by (6) that

ρ[u, v] = −
1
4
Re

(u + v)c−1

⟨∇⟩c (u − v)

,

J [u, v,A] =
1
4
Re

i(u + v)∇(u + v)−

A

c
|u + v|2


.

(12)

Setting Tc(t) = exp(ic ⟨∇⟩c t)we can formulate the mild solutions of (11) as

u(t) = Tc(t)u(0)+

 t

0
Tc(t − τ)Nu[u, v,Φ,A](τ )dτ ,

v(t) = Tc(t)v(0)+

 t

0
Tc(t − τ)Nv[u, v,Φ,A](τ )dτ ,

A(t) = cos(c ⟨∇⟩0 t)A(0)+ (c ⟨∇⟩0)
−1 sin(c ⟨∇⟩0 t)∂tA(0)

+ ⟨∇⟩
−1
0

 t

0
sin(c ⟨∇⟩0 (t − τ))P [J [u, v,A](τ )] dτ ,

(13)

where we define exp(ic ⟨∇⟩c t)w, cos(c ⟨∇⟩0 t)w and c−1 ⟨∇⟩
−1
0 sin(c ⟨∇⟩0 t)w for w ∈ Hs in Fourier space as follows: Let

ŵk = (Fw)k denote the kth Fourier coefficient ofw. Then we have for all k ∈ Zd

(F [exp(ic ⟨∇⟩c t)w])k = exp

ict


|k|2 + c2

ŵk,

(F [cos(c ⟨∇⟩0 t)w])k = cos (c |k| t) ŵk,

(F [(c ⟨∇⟩0)
−1 sin(c ⟨∇⟩0 t)w])k = t sinc (c |k| t) ŵk.

Since the Fourier transform is an isometry in Hs it follows easily, that the operators cos(c ⟨∇⟩0 t) and sin(c ⟨∇⟩0 t) are
uniformly bounded with respect to c and that exp(ic ⟨∇⟩c t) is an isometry in Hs, i.e. for allw ∈ Hs and for all t ∈ R we have

∥exp(ic ⟨∇⟩c t)w∥s = ∥w∥s , ∥cos(c ⟨∇⟩0 t)w∥s ≤ ∥w∥s ,

 sin(c ⟨∇⟩0 t)
c ⟨∇⟩0

w


s
≤ t ∥w∥s . (14)

As the nonlinearities Nu and Nv in the system (11) involve products of u, v,Φ,A we will exploit the standard bilinear
estimates in Hs: For s > d/2 we have

∥uv∥s ≤ Cs ∥u∥s ∥v∥s (15)

for some constant Cs depending only on s and d.
In the following we assume that s > d/2. By representation in Fourier space we see that forw ∈ Hs′ , s′ = max{s, s+m},

m ∈ Z there holds⟨∇⟩
m
1 w


s ≤ Cs,m ∥w∥s+m . (16)
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Thus, (15) and (16) yield forw ∈ Hs,Φ ∈ Hs+2⟨∇⟩
−1
c (Φ ⟨∇⟩c w)


s ≤ C1

⟨∇⟩
−1
c (Φ ⟨∇⟩0w)


s + C2

c ⟨∇⟩
−1
c (Φw)


s

≤ C ∥Φ∥s+2 ∥w∥s , (17)

since (16) implies that for all w̃ ∈ Hs and c ≥ 1 we find a constant C such that⟨∇⟩
−1
c w̃


s ≤

⟨∇⟩
−1
1 w̃


s ≤ C ∥w̃∥s−1 .

After a short calculation we find that for uj, vj,Aj ∈ Hs,Φj ∈ Hs+2, j = 1, 2 there holds, with N = Nu and N = Nv

respectively, that

∥N [u1, v1,Φ1,A1] − N [u2, v2,Φ2,A2]∥s ≤ KN (∥u1 − u2∥s + ∥v1 − v2∥s + ∥Φ1 − Φ2∥s+2 + ∥A1 − A2∥s)

and ⟨∇⟩
−1
0 (J [u1, v1,A1] − J [u2, v2,A2])


s ≤ KJ (∥u1 − u2∥s + ∥v1 − v2∥s + ∥A1 − A2∥s),

where the constants KN and KJ only depend on
uj

s ,
vjs , Φj


s+2 ,

Aj

s, j = 1, 2.

Together with (14) a standard fix point argument now implies immediately local well-posedness in Hs, s > d/2 (see for
instance [19, Theorem III.7]), i.e. for initial data u(0), v(0),A(0) ∈ Hs, ∂tA(0) ∈ Hs−1 there exist Ts > 0 and a constant
Bs > 0 such that

∥u(t)∥s + ∥v(t)∥s + ∥Φ(t)∥s+2 + ∥A(t)∥s ≤ Bs, ∀ t ∈ [0, Ts]. (18)

For local and global well-posedness results on the MKG equation in other gauges, e.g. in Lorentz gauge, and low regularity
spaces we refer to [5,20,21] and references therein.

3. Formal asymptotic expansion

In this section we formally derive the Schrödinger–Poisson system (8) as the non-relativistic limit of the MKG equation
(6), i.e. we formally motivate the expansion (7). For a detailed rigorous analysis in low regularity spaces we refer to [5,14]
and references therein; results on asymptotics of related systems such as the Maxwell–Dirac system can be found in [5,22].

On the c-independent finite time interval [0, T ] we now look, at first formally, for a solution (u, v,Φ,A) of (6) in the
form of a Modulated Fourier expansion (cf. [13, Chapter XIII]), i.e. we make the ansatz

u(t, x) = U(t, θ, x) =

∞
n=0

c−2nUn(t, θ, x), v(t, x) = V (t, θ, x) =

∞
n=0

c−2nVn(t, θ, x),

Φ(t, x) = Φ̃(t, θ, x) =

∞
n=0

c−2nΦn(t, θ, x), A(t, x) = A(t, σ , x) =

∞
n=0

c−nAn(t, σ , x),

(19)

where σ = ct, θ = c2t are fast time scales which are used to separate the high oscillations from the slow time dependency
of the solution. Next we apply the so-called method of multiple scales to U , V , Φ̃ and A, where the idea is to treat the
time scales t , σ and θ as independent variables. This allows us to derive a sequence of equations for the MFE coefficients
Un, Vn,Φn,An, n ≥ 0 and henceforth to determine the asymptotic expansion (19). For more details on the method of
multiple scales and perturbation theory we refer to [23–25].

We start off by plugging the ansatz (19) into (11) and obtain forW = (U, V )T the equation

∂tW + c2∂θW = ic ⟨∇⟩c W +


Nu(U, V , Φ̃,A)
Nv(U, V , Φ̃,A)


(20)

with initial condition

U(0, 0, x) = ϕ(x)− iψ(x), V (0, 0, x) = ϕ(x)− iψ(x) (21)

and an equation for A in terms of t and σ , i.e.

∂ttA + 2c∂σ ∂tA + c2∂σσA = c21A + cP [J [U, V ,A]] (22)

with initial condition

(A(0, 0, x), (∂t + c∂σ )A(0, 0, x)) = (A(0, x), ∂tA(0, x)).

For the potential Φ̃ we find the equation

−1Φ̃ = −
1
4
Re

(U + V )c−1

⟨∇⟩c (U − V )

. (23)
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In the next step we expand the operators ⟨∇⟩c and ⟨∇⟩
−1
c into their Taylor series expansion. For w sufficiently smooth

we have

c ⟨∇⟩c w =


c2 −

1
2
∆− c−2 1

8
∆2

+


n≥2

αn+1c−2n(−∆)n+1


w. (24)

Similarly, we find

c ⟨∇⟩
−1
c w =


1 + c−2 1

2
∆+


n≥2

βnc−2n(−∆)n


w. (25)

Now (24) and (25) yield for Ψ , w ∈ Hs+2

⟨∇⟩
−1
c Ψ ⟨∇⟩c w = Ψw + O


c−2

[∆,Ψ ]w


(26)

in the sense of the Hs norm and where [A, B] := AB − BA denotes the commutator of the operators A and B, i.e. [∆,Ψ ]w =

∆(Ψw)− Ψ (1w).
Since ϕ and ψ are independent of c , the ansatz (19) yields by (21) that

U0(0, 0, x) = ϕ(x)− iψ(x), Un(0, 0, x) = 0, n ≥ 1,
V0(0, 0, x) = ϕ(x)− iψ(x), Vn(0, 0, x) = 0, n ≥ 1. (27)

Now the idea is to compare the coefficients of the left- and right-hand sides of (20) with respect to equal powers of c by
plugging the ansatz (19) and the expansions (24)–(26) into the equation. This finally yields a sequence of partial differential
equations at each order of c.

At order c2 we obtain
(∂θ − i)U0(t, θ, x) = 0,
(∂θ − i)V0(t, θ, x) = 0,

which allows solutions of the form

U0(t, θ, x) = exp(iθ)u0(t, x), V0(t, θ, x) = exp(iθ)v0(t, x) (28)

where u0, v0 will be determined in the next step.
Plugging (28) into (23) we obtain the first termΦ0 in the expansion (19) of Φ̃ as the solution of the Poisson equation

−1Φ0(t, θ, x) = −1Φ0(t, x) = −
1
4


|u0(t, x)|2 − |v0(t, x)|2


. (29)

At order c0 we use (28) and obtain the equations
(∂θ − i)U1(t, θ, x) = exp(iθ)


−∂tu0(t, x)−

i
2
1u0(t, x)− iΦ0(t, x)u0(t, x)


(∂θ − i)V1(t, θ, x) = exp(iθ)


−∂tv0(t, x)−

i
2
1v0(t, x)+ iΦ0(t, x)v0(t, x)


.

(30)

Since exp(iθ) lies in the kernel of the operator (∂θ − i) and since u0, v0,Φ0 are independent of θ , we demand u0 and v0 to
satisfy

i∂tu0(t, x) =
1
2
1u0(t, x)+ Φ0(t, x)u0(t, x),

i∂tv0(t, x) =
1
2
1v0(t, x)− Φ0(t, x)v0(t, x),

(31)

with initial data u0(0, x) = ϕ(x)− iψ(x), and v0(0, x) = ϕ(x)− iψ(x).
As u0, v0 satisfy (31), we can proceed as above: (30) allows solutions of the form

U1(t, θ, x) = exp(iθ)u1(t, x), V1(t, θ, x) = exp(iθ)v1(t, x),

where we can determine u1 and v1 by considering the equation arising at order c−2. In the same way the coefficients
Un, Vn, n ≥ 2 can be obtained.

In this paper we will only treat the expansion (19) up to its first term at order c0. Therefore, in the following we set

z0(t, x) =
1
2


exp(ic2t)u0(t, x)+ exp(−ic2t)v0(t, x)


. (32)
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Then, by the above procedure we know that at least formally the approximation

∥z(t, x)− z0(t, x)∥s ≤ Kc−2

holds for sufficiently smooth data. In Section 4 we will state the precise regularity assumptions and give the ideas of the
convergence proof. For a rigorous analysis we refer to [5,14] and references therein.

Next we repeat the same procedure with Eq. (22) for the MFE coefficients of A. As A is a real vector field we look for real
coefficients An, n ≥ 0. At order c2 we find the homogeneous equation

(∂σσ −∆)A0(t, σ , x) = 0, (33)

which allows solutions of the form

A0(t, σ , x) = cos(σ
√

−∆)a0(t, x)+
√

−∆
−1

sin(σ
√

−∆)b0(t, x) (34)

with some a0, b0 that will be determined in the next step.
The equation arising from the comparison of the terms at order c1 reads

(∂σσ −∆)A1 = −2∂σ ∂tA0 +
1
4

P

Re

i(U0 + V0)∇(U0 + V0)


.

As the term

∂σ ∂tA0(t, σ , x) = − sin(σ
√

−∆)
√

−∆∂ta0(t, x)+ cos(σ
√

−∆)∂tb0(t, x)

lies in the kernel of the operator (∂σσ −∆)we demand by the same argumentation as before that ∂σ ∂tA0(t, σ , x) = 0. This
in particular implies that ∂ta0(t, x) = 0 and ∂tb0(t, x) = 0. Hence ∂tA0(t, σ , x) ≡ 0 and we find

A0(t, σ , x) = A0(σ , x) and a0(t, x) = a0(x), b0(t, x) = b0(x).

At σ = 0 we find a0(x) = A0(0, x) and by differentiation of A0 with respect to σ we obtain b0(x) = ∂σA(0, x). The data
A0(0, x) and ∂σA(0, x) are again determined via comparison of coefficients: the initial data of A in (6) are given as

A(0, x) = A(x), ∂tA(0, x) = cA′(x),

where A, A′ do not depend on c. Hence, the formal asymptotic expansion

A(t = 0, x) = A0(σ = 0, x)+


n≥1

c−nAn(t = 0, σ = 0, x)

yields that

a0(x) = A0(0, x) = A(x). (35)

Since

cA′(x) = ∂tA(0, x) ≃ (∂t + c∂σ )A(0, 0, x) = c∂σA0(0, x)+


n≥1

c−n(∂t + c∂σ )An(0, 0, x)

we choose

b0(x) = ∂σA0(0, x) = A′(x). (36)

Finally by (34)–(36) we obtain the first term of the expansion as

A0(t, x) = cos(ct
√

−∆)A(x)+ (c
√

−∆)−1 sin(ct
√

−∆)cA′(t, x). (37)

We remark that at this point we can explicitly evaluate the first term A0(t, x) of the MFE of A for all t ∈ [0, T ].
Collecting the results in (29), (31) and (37) yields the non-relativistic limit Schrödinger–Poisson system as in [5], i.e.

i∂t


u0
v0


=

1
2
∆


u0
v0


+ Φ0


u0

−v0


,


u0(0)
v0(0)


=


ϕ − iψ
ϕ − iψ


,

−1Φ0 = −
1
4


|u0|

2
− |v0|

2, 
Td
Φ0(t, x)dx = 0.

A0(t, x) = cos(ct
√

−∆)A(x)+ (c
√

−∆)−1 sin(ct
√

−∆)cA′(x).

(38)

Thenumerical advantage of the above approximation lies in the fact that compared to the challenginghighly-oscillatoryMKG
system (6), the SP system (38) can be solved very efficiently (for example by applying a Strang splitting method, see [15]),
without imposing any CFL type condition on c nor the spatial discretization parameter h. Details will be given in Section 5.
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4. Error bounds

In the following, let (u, v,A,Φ) denote the solution of the first order MKG system (11) and let (u0, v0,Φ0,A0) denote
the solution of the corresponding limit system (8) with initial data ϕ,ψ, A, A′, where the limit vector potential A0 is given
by (37).

The following theorem states rigorous error bounds on the asymptotic approximations z0,Φ0 and A0 towards z,Φ and
A, where z0 is defined in (32). For a detailed analysis and bounds in low regularity spaces we refer to [5,14]. Here, we will
only outline the ideas of the proof.

Theorem 1 (Cf. [5,14]). Let s > d/2 and let ϕ,ψ ∈ Hs+4, A ∈ Hs+1, A′
∈ Hs. Then there exists a T > 0 such that for all

t ∈ [0, T ] and c ≥ 1 there holds

∥z(t)− z0(t)∥s + ∥∆(Φ(t)− Φ0(t))∥s ≤ c−2(1 + K T
Φ)b(T ) exp(λ(T ))

∥A(t)− A0(t)∥s ≤ c−1(K T
A.1 + TK T

A.2),

where

b(t) = MT
0 + tMT

1 + t2MT
2 , λ(t) = MT

3 + tMT
4

with constants K T
Φ , K

T
A.1, K

T
A.2,M

T
0 , . . . ,M

T
4 only depending on ∥ϕ∥s+4, ∥ψ∥s+4, ∥A∥s+1,

A′

s as well as on

K = sup
τ∈[0,T ]


∥A(τ )∥s + ∥u(τ )∥s+2 + ∥v(τ)∥s+2 + ∥u0(τ )∥s+4 + ∥v0(τ )∥s+4


.

We outline the ideas in the proof in several steps. Note that since

z(t) =
1
2
(u(t)+ v(t)) and z0(t) =

1
2
(exp(ic2t)u0(t)+ exp(−ic2t)v0(t))

the triangle inequality allows us to break down the problem as follows:

∥z(t)− z0(t)∥s ≤
u(t)− exp(ic2t)u0(t)


s +

v(t)− exp(ic2t)v0(t)

s =: R(t). (39)

We start with the following proposition.

Proposition 1 (Cf. [5]). Under the assumptions of Theorem 1 for all t ∈ [0, T ] there holds that

∥∆(Φ(t)− Φ0(t))∥s ≤ c−2K T
Φ.1 + K T

Φ.2R(t),

where K T
Φ.1, K

T
Φ.2 depend on supτ∈[0,T ]


∥u(τ )∥s+2 + ∥v(τ)∥s+2 + ∥u0(τ )∥s + ∥v0(τ )∥s


.

Proof. The idea of the proof is to write down the representation of1Φ and1Φ0 given in (11) and (38). Using the expansion
(25) and adding ‘‘zeros’’ in terms of exp(ic2t)u0(t) and exp(ic2t)v0(t) yields the result. �

Proposition 2 (Cf. [5]). Under the assumptions of Theorem 1 for all t ∈ [0, T ] there holds that

∥A(t)− A0(t)∥s ≤ c−1(K T
A.1 + tK T

A.2)+ MT
 t

0
R(τ )dτ ,

where MT depends on supτ∈[0,T ]


∥u(τ )∥s + ∥v(τ)∥s + ∥u0(τ )∥s+1 + ∥v0(τ )∥s+1


and where the dependency of K T

A.1, K
T
A.2 on

the solutions is stated in Theorem 1.

Proof. The idea of the proof is to replace A(t) by its mild formulation given in (13). The difference A − A0 then only
involves an integral term over the current density P [J [u, v,A]]. We introduce the limit current density as J0[u0, v0](t) =

Re (iz0∇z0). Now adding ‘‘zeros’’ in terms of J0[u0, v0] gives an integral term involving the difference

∥J [u, v,A](τ )− J0[u0, v0](τ )∥s = O

c−1

+ KR(τ )

for some constant K not depending on c , and another integral term involving

⟨∇⟩
−1
0 sin(c ⟨∇⟩0 (t − τ))P [J0[z0](τ )] .

Integration by parts then yields the assertion. �

The above propositions allow us to prove Theorem 1 as follows:

Proof of Theorem 1. Note that both terms in R(t) (see (39)) can be estimated in exactly the same way. Thus, we only
establish a bound on

u(t)− exp(ic2t)u0(t)

s. The main tool thereby is to exploit that the operators Tc(t) = exp(ic ⟨∇⟩c t)
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and T0(t) = exp(−i 121t) are isometries in Hs. Expanding exp(i(−c ⟨∇⟩c + c2 −
1
2∆)t) into its Taylor series yields with the

aid of (24) thatTc(t)w − T0(t) exp(ic2t)w̃

s ≤ ∥w − w̃∥s + O


c−2t ∥w̃∥s+4


. (40)

Note that the mild solutions of (38) read

u0(t) = T0(t)u0(0)− i
 t

0
T0(t − τ)Φ0(τ )u0(τ )dτ ,

v0(t) = T0(t)v0(0)+ i
 t

0
T0(t − τ)Φ0(τ )v0(τ )dτ .

(41)

As u(0) = u0(0), the mild formulation of u and u0 given in (13) and (41) together with (40) thus implies thatu(t)− exp(ic2t)u0(t)

s ≤ c−2tK ∥u0(0)∥s+4 +

 t

0
Tc(t − τ)Nu[u, v,Φ,A](τ )

+ i exp(ic2t)T0(t − τ)Φ0(τ )u0(τ )dτ

s
, (42)

where Nu[u, v,Φ,A] is defined in (10).
Our aim is now to express the integral term in (42) as a term of type

O

c−2

+

 t

0
R(τ )dτ ,

which will allow us to conclude the assertion by Gronwall’s lemma. Therefore we consider each term in Nu[u, v,Φ,A]

separately.
By (25) and (26) we find after a short calculation that

∥Nu[u, v,Φ,A] + iΦu + ⟨∇⟩
−1
c (A · ∇(u + v)) ∥s ≤ Kc−2,

where K = K(∥Φ∥s+2 , ∥u∥s+2 , ∥v∥s+2 , ∥A∥s). Thus, using (40) we can bound the integral term in (42) as follows: t

0
Tc(t − τ)Nu[u, v,Φ,A](τ )+ i exp(ic2t)T0(t − τ)Φ0(τ )u0(τ )dτ


s

≤ Kc−2t sup
τ∈[0,t]

∥Φ0(τ )u0(τ )∥s+4 +

 t

0

Φ(τ )u(τ )− Φ0(τ ) exp(ic2τ)u0(τ )

s dτ

+

 t

0
Tc(t − τ) ⟨∇⟩

−1
c


A(τ ) · ∇(u(τ )+ v(τ))


dτ

s
. (43)

The latter term can be bounded up to a term of order O

c−2


+
 t
0 R(τ )dτ by inserting ‘‘zeros’’ in terms of A0(τ ),

exp(ic2τ)u0(τ ) and exp(ic2τ)v0(τ ) and then applying integration by parts with respect to τ and applying Proposition 2.
Furthermore we can estimate

Φ(τ )u(τ )− Φ0(τ ) exp(ic2τ)u0(τ )

s asΦu − Φ0 exp(ic2τ)u0


s ≤ C


∥Φ − Φ0∥s ∥u∥s + ∥Φ0∥s

u − exp(ic2τ)u0

s


such that by Proposition 1 we find thatΦu − Φ0 exp(ic2τ)u0


s ≤ c−2C1 + C2R(τ ),

where the constants C1 and C2 depend on the same data as the constants in the assertion of Proposition 1.
Plugging the above bounds into (42) yields that

R(t) ≤ c−2(MT
0 + MT

1 t + MT
2 t

2)+ (MT
3 + tMT

4 )

 t

0
R(τ )dτ

which by Gronwall’s lemma implies the desired bound

R(t) ≤ c−2b(T ) exp(λ(T )), ∀ t ∈ [0, T ]. (44)

The results onΦ0(t) and A0(t) follow the line of argumentation by using (44) in the results of Propositions 1 and 2. �
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5. Construction of numerical schemes

In this section we construct an efficient and robust numerical scheme for the highly-oscillatory MKG equation (6) in the
non-relativistic limit regime, i.e. for c ≫ 1. In order to overcome any c-dependent time step restriction we exploit the limit
approximation (38) derived in Section 3.

5.1. The numerical scheme and its error

We consider the MKG equation (6) in the Coulomb gauge in the non-relativistic limit regime c ≫ 1

∂ttz = −c2 ⟨∇⟩
2
c z + Φ2z − 2iΦ∂tz − iz∂tΦ − 2icA∇z − |A|

2 z,
∂ttA = c21A + cP [J ] , J = Re


izDαz


,

−1Φ = ρ, ρ = −c−1 Re

izD0z


,

z(0, x) = ϕ(x), D0z(0, x) =


−∆+ c2ψ(x),

A(0, x) = A(x), ∂tA(0, x) = cA′(x),

(a)


Td
ρ(0, x)dx = 0,


Td
Φ(t, x)dx = 0 (b)

(45)

equippedwith periodic boundary conditions, i.e. x ∈ Td
= [−π, π]

d. In the previous sections we derived the corresponding
SP limit system (cf. (38))

i∂t


u0
v0


=

1
2
∆


u0
v0


+ Φ0


u0

−v0


,


u0(0)
v0(0)


=


ϕ − iψ
ϕ − iψ


,

−1Φ0 = −
1
4


|u0|

2
− |v0|

2, 
Td
Φ0(t, x)dx = 0,

A0(t, x) = cos(ct
√

−∆)A(x)+ (c
√

−∆)−1 sin(ct
√

−∆)cA′(x)

(46)

whichwill now allow us to derive an efficient numerical time integration scheme: Since the SP system (46) does not depend
on the large parameter c we can solve it very efficiently; in particular without any c-depending time step restriction.
Multiplying the numerical approximations of the non-oscillatory functions u0 and v0 with the high frequency terms
exp(±ic2t) then gives a good approximation to the exact solution, see Theorem 2 for the detailed description. In particular
this approach allows us to overcome any c-dependent time step restriction.

Time discretization: We carry out the numerical time integration of the Schrödinger–Poisson system
i∂t


u0
v0


=

1
2
∆


u0
v0


+ Φ0


u0

−v0


,


u0(0)
v0(0)


=


ϕ − iψ
ϕ − iψ


,

−1Φ0 = −
1
4


|u0|

2
− |v0|

2, 
Td
Φ0(t, x)dx = 0

(47)

with an exponential Strang splitting method (cf. [15]), where we naturally split the system into the kinetic part

i∂t


u0
v0


=

1
2
∆


u0
v0


(T)

with the exact flow ϕt
T (u0(0), v0(0)) and the potential part

i∂t


u0
v0


= Φ0


u0

−v0


,

−1Φ0 = −
1
4


|u0|

2
− |v0|

2, 
Td
Φ0(t, x)dx = 0,

(P)

with the exact flow ϕt
P(u0(0), v0(0)). The Strang splitting approximation to the exact flow ϕt(u0(0), v0(0)) = ϕt

T+P(u0(0),
v0(0)) of the SP system (47) at time tn = nτ , n = 0, 1, 2, . . .with time step size τ is then given by

ϕtn(u0(0), v0(0)) ≈


ϕ
τ/2
T ◦ ϕτP ◦ ϕ

τ/2
T

n
(u0(0), v0(0)). (48)

We can solve the kinetic subproblem (T) in Fourier space exactly in time. In subproblem (P) we can show that the modulus
of u0 and v0 is constant in time, i.e. |u0(t)|2 = |u0(0)|2 and |v0(t)|2 = |v0(0)|2, and thence also Φ0 is constant in time, i.e.
Φ0(t) = Φ0(0). Thus, we can also solve the potential subproblem (P) exactly in time.

Space discretization: For the space discretization we choose a Fourier pseudospectral method with N grid points (or
frequencies respectively), i.e. we choose a mesh size h = 2π/N and grid points xj = −π + jh, j = 0, . . . ,N − 1. We then
denote the discretized spatial operators by∆h and ∇h respectively.
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Full discretization: The fully discrete numerical scheme can then be implemented efficiently using the Fast Fourier
transform (FFT).

This ansatz allows us to state the following convergence result on the approximation of the MKG system (45) in the
non-relativistic limit regime:

Theorem 2. Consider the MKG (45) on the torus Td. Fix s′1, s
′

2, s > d/2 and let ϕ,ψ ∈ Hs+r1(Td), A ∈ Hs+r2(Td), A′
∈ Hs+s′2

with r1 = max{4, s′1}, r2 = max{1, s′2}. Then there exist T , C, h0, τ0 > 0 such that the following holds: Let us define the
numerical approximation of the first-order approximation term z0(t) at time tn = nτ through

zn,h0 :=
1
2


un,h
0 exp(ic2tn)+ v0

n,h exp(−ic2tn)

,

where un,h
0 , v

n,h
0 denote the numerical approximation to the solutions u0(tn), v0(tn) of the limit system (46) obtained by the Fourier

Pseudospectral Strang splitting scheme (48) with mesh size h ≤ h0 and time step τ ≤ τ0. Furthermore let Φn,h
0 denote the

numerical approximation toΦ0(tn) given through the discrete Poisson equation

−∆hΦ
n,h
0 := −

1
4

un,h
0

2 −

vn,h0

2 . (49)

Also let

An,h
0 = cos


ctn

√
−∆h


Ah +


c
√

−∆h
−1

sin

ctn

√
−∆h


cA′

h

denote the numerical approximation to A0(tn), where Ah, A′

h are the evaluations of A and A′ on the grid points.
Then, the following convergence towards the exact solution of the MKG equation (45) holds for all tn ∈ [0, T ] and c ≥ 1:z(tn)− zn,h0


s
+

1Φ(tn)−∆hΦ
n,h
0


s
≤ C


τ 2 + hs′1 + c−2


,A(tn)− An,h

0


s
≤ C


hs′2 + c−1


.

Proof. The proof follows the same ideas as the proof of [11, Theorem 3]. The triangle inequality yieldsz(tn)− zn,h0


s

≤ ∥z(tn)− z0(tn)∥s +

z0(tn)− zn,h0


s
,1Φ(tn)−∆hΦ

n,h
0


s

≤ ∥∆(Φ(tn)− Φ0(tn))∥s +

1Φ0(tn)−∆hΦ
n,h
0


s
,A(tn)− An,h

0


s

≤ ∥A(tn)− A0(tn)∥s +

A0(tn)− An,h
0


s
.

(50)

Theorem 1 allows us to bound the first term in each of the inequalities above in order c−2 and c−1, respectively. Henceforth,
we only need to derive bounds on the numerical errors of the Fourier Pseudospectral Strang splitting scheme approximating
the SP system.

Error in zn,h0 : Note thatz0(tn)− zn,h0


s
≤

exp(ic2t)(u0(tn)− un,h
0 )


s
+
exp(−ic2t)(v0(tn)− v0

n,h)

s

≤

u0(tn)− un,h
0


s
+

v0(tn)− v
n,h
0


s

≤ C(τ 2 + hs′1).

The latter follows for sufficiently smooth solutions (i.e. if u0, v0 ∈ Hr , r = s + s′1) by the convergence bound on the Strang
splitting applied to the Schrödinger–Poisson system derived in [15].

Error inΦn,h
0 : By (46) and (49) we obtain that1Φ0(tn)−∆hΦ

n,h
0


s
≤ M

u0(tn)− un,h
0


s
+

v0(tn)− v
n,h
0


s


≤ C(τ 2 + hs′1).

Error inAn,h
0 : AsA0 is explicitly given in timewe do not have any time discretization error. Only the error by the Fourier

pseudospectral method comes into play which yields thatA0(tn)− An,h
0


s
≤ Chs′2 ,

if the exact solution is smooth enough, i.e. if A0 ∈ H r̃ , r̃ = s + s′2.
Collecting the results yields the assertion. �
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Fig. 1. Left: H2 error of the numerical limit approximation (zn,h0 ,Φ
n,h
0 ,An,h

0 ) to the exact solution. Right: L2 error of the numerical approximations
En,h
0 , Bn,h

0 to the electromagnetic field. The reference solution (z,Φ,A) was computed with a Gautschi-type exponential integrator with time step size
τ = 2−22

≈ 10−7 . The black dashed line with slope −1 and the black solid line with slope −2 represent the order O

c−1


and O


c−2


respectively.

5.2. Numerical results

In this section we numerically underline the sharpness of the theoretical results derived in the previous sections.
For the MKG equation (45) on the two-dimensional torus, i.e. d = 2, (x, y)T ∈ T2

= [−π, π]
2, we choose the initial data

ϕ,ψ, A, A′ as
ϕ̃(x, y) = sin(y)+ cos(x)+ i(cos(2x)+ sin(y)), ϕ = ϕ̃/ ∥ϕ̃∥L2 ,

ψ̃(x, y) = cos(x)+ sin(2y)+ i cos(2x) sin(y), ψ = ψ̃/ ∥ϕ̃∥L2 ,

Ã(x, y) =

∂yV1(x, y),−∂xV1(x, y)

T
, A = Ã/

Ã
L2
,

Ã′(x, y) = c

∂yV2(x, y),−∂xV2(x, y)

T
, A′

= Ã′/

Ã
L2
,

where

V1(x, y) = sin(x) cos(y)+ sin(2y)+ cos(x), V2(x, y) = sin(y)+ cos(2x).

It is easy to check that div A = 0 and div A′
= 0. Furthermore the initial data satisfy Remark 1, i.e.


Td ρ(0, x)dx = 0,

where ρ(0) = − Re

iϕ ⟨∇⟩c ψ


. We simulate the limit solution on the time interval t ∈ [0, T = 1] with a time step size

τ = 2−10
≈ 10−3, and a spatial grid with N = 128 grid points in both dimensions and measure the maximal error of the

limit approximation (z0,Φ0,A0) on the time interval [0, T ] in the H2 norm. A reference solution of the MKG equation (45)
is obtained with an adapted Gautschi-type exponential integrator, as proposed in [26] for highly-oscillatory ODEs or in [9]
for the nonlinear Klein–Gordon equation. Thereby a very small time step size τref satisfying the CFL condition τref ≤ c−2h
is necessary. Fig. 1 verifies the theoretical convergence bounds stated in Theorem 2. We furthermore observe numerically
that also the electric field En,h

0 := −c−1∂tA
n,h
0 − ∇hΦ

n,h
0 and the magnetic field Bn,h

0 := ∇h × An,h
0 show a c−1 convergence

towards E = −c−1∂tA − ∇Φ and B = ∇ × A in L2, respectively.

6. Conclusion

In order to derive an efficient and accurate numerical method for solving the MKG equation in the non-relativistic limit
regime c ≫ 1 we followed the idea of a formal asymptotic expansion of the exact solution (z,Φ,A) in terms of c−2 and
c−1, respectively. This allowed us to reduce the numerical effort of solving the highly-oscillatory MKG system under severe
time step restrictions τ = O(c−2) to solving the corresponding non-oscillatory Schrödinger–Poisson (SP) limit system. The
latter can be carried out very efficiently and in particular independently of the large parameter c. We obtained a numerical
approximation (un,h

0 , v
n,h
0 ,Φ

n,h
0 ) to the solution (u0, v0,Φ0) of the SP system at time tn = nτ by solving the SP system via

an exponential Strang splitting method with time step τ in time together with a Fourier pseudospectral method for the
space discretization on a grid with mesh size h. In particular τ and h do not depend on the large parameter c. The numerical
approximations zn,h0 ,Φ

n,h
0 ,An,h

0 then satisfy error bounds of order O(c−2
+ τ 2 + hs′) and O(c−1

+ hs′) respectively. We
underlined the sharpness of the error bound with numerical experiments. For practical implementation issues we assumed
periodic boundary conditions. Up tominor changes all the results of this paper remain valid forDirichlet boundary conditions
and different spatial discretization schemes.
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