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Pietermaritzburg, South Africa

Abstract

In this study, our principle aim is to provide some novel eighth and sixteenth-order families of King’s

method for solving nonlinear equations which should be superior than the existing schemes of same order.

The relevant optimal orders of the proposed families satisfy the classical Kung-Traub conjecture which

was made in 1974. The derivations of the proposed schemes are based on the weight function and rational

approximation approaches, respectively. In addition, convergence properties of the proposed families are

fully investigated along with one lemma and two main theorems describing their order of convergence. We

consider a concrete variety of real life problems e.g. the trajectory of an electron in the air gap between

two parallel plates, chemical engineering problem, Van der Waal’s equation which explains the behavior

of a real gas by introducing in the ideal gas equations and fractional conversion in a chemical reactor, in

order to check the validity, applicability and effectiveness of our proposed methods. Further, it is found

from the numerical results that our proposed methods perform better than the existing ones of the same

order when the accuracy is checked in the multi precision digits.

keywords: Order of convergence, Newton’s method, King’s method, Simple roots, Iterative methods.

1 Introduction

Finding the solution techniques to solve the nonlinear equations, have always been a paramount importance in

the field of numerical analysis which provide the accurate and efficient approximate solution α of a nonlinear

equation of the form

f(x) = 0. (1.1)

One of the main reason of paramount importance of this topic is the applicability in the applied science and

the four major disciples of engineering: chemical, electrical, civil and mechanical (for the detailed explanation

please see the Chapra and Canale [1]). For example, the location of the extremal points of a function

describing some system requires finding the zeros of the derivatives of that function, many problems which

involve critical paths also require the solution of algebraic equations, such as determining all the ray paths
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that are possible in a complex optical system. Those problems can be modeled by different mathematical

equations.

Analytic methods for finding the solutions of such problems are almost non-existent. So, we have to turn

towards the iterative method which can provide the approximate solution corrected up to any specific degree

of accuracy. Multi-point iterative methods belong to the class of most powerful methods that overcome from

the theoretical limitations of one-point iterative methods regarding their order of convergence and efficiency

(for the details please see [2, 3]).

Due to the advancement of digital computer, advanced computer arithmetics and symbolic computation,

the construction of higher-order multi-point methods become more vital and popular because they provide

more accurate and efficient approximated root with in a very small number of iterations and their efficiency

index [2] is better than the classical Newton’s method. Therefore, in the last two decades, a variety of

optimal eighth-order multi-point methods, without memory have been proposed in [4–17]. Most of them are

the extension of Newton’s method or Newton like method at the expense of additional functional evaluations

or increase the substep of the original methods.

It is often desirable to obtain higher-order and more accurate root-finding techniques for obtaining the

roots of nonlinear equations. In 1974, Kung and Traub [18], proposed two general classes of n-point iterative

methods with first-order derivative/derivatives of the involved function and without any derivative. After

some years later, Neta [19], given an optimal sixteenth-order family of multi-point iterative methods. However,

Neta did not present an explicit form of the error equation and more recently it was given by Guem and

Kim [20]. In the recent years, scholars like Guem and Kim [20, 21], Sharma et al. [22], Ullah et al. [23],

have also presented optimal sixteenth-order extension of iterative methods. In addition to this, Li et al. [24]

also have proposed a sixteenth-order scheme but not optimal. Nowadays, obtaining new four-step optimal

methods of order sixteen is very interesting and challenging task in the field of numerical analysis. One of

the reason behind the attention of sixteenth-order iterative methods is the efficiency indices of these methods

E = 5
√

16 ≈ 1.741, which is far better than the classical Newton’s method E ≈ 1.414.

The principle aim of this manuscript is to propose a more accurate and efficient solution technique of order

sixteen as compared to the existing ones. In addition, we have also discussed some important cases which

were not mentioned in earlier study proposed by Artidiello et al. [25]. Then, we extended this family from

eighth-order convergence to sixteenth-order with the help of rational functional approximations approach.

The proposed scheme satisfy the classical Kung-Traub conjecture. The beauty of the proposed scheme is

that we can develop several new optimal methods of order sixteen by considering different types of weight

functions. The efficiency of the proposed methods is tested on a variety of real life problems which can be

seen in the numerical section 4. The numerical experiments demonstrate that our proposed methods perform

better than existing optimal methods of order sixteen in terms of absolute residual errors, difference between

the two consecutive iterations and asymptotic error constants.
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2 An optimal family of eighth-order King’s method

In this section, we will present an optimal eighth-order family of King’s methods [26]. Therefore, we consider

the following three-step scheme:

yn = xn −
f(xn)
f ′(xn)

,

zn = yn −
f(xn) + βf(yn)

f(xn) + (β − 2)f(yn)
f(yn)
f ′(xn)

, β ∈ R,

xn+1 = zn −
f(zn)
f ′(xn)

G(u, v),

(2.1)

where the above weight function G : C2 → C, is an analytic function in the neighborhood of (0, 0) and

u =
f(zn)
f(yn)

, v =
f(yn)
f(xn)

. (2.2)

Since, the above scheme (2.1) uses only four functional evaluations. Then, according to Kung-Traub conjec-

ture its maximum order can be eight. In the following results, we will discuss the conditions on the weight

function so that we will reach at an optimal eighth-order of convergence.

No doubts, this scheme is also independently derived by Artidiello et al. [25] using weight functions

at second and third step. However, we discussed some special cases of iterative methods which were not

mentioned in the earlier study. In addition of this, we did the convergence analysis in the complex analysis

C in stead of R and also shown the applicability of these methods to the real life problems (for the details

please see the numerical section 4). Moreover, Artidiello et al. [25] expanded the weight function of second

step only up to second term and they did not talk about the third term. However, some member from third

term are also involve in the final error equation of eighth-order method which can be seen in the expression

(2.20).

Lemma 2.1 Let us assume that α be a simple zero of the involved function f . Further, we also assume that

the function f : C→ C, is an analytic function in a region enclosing the required zero α. Then, the quotients

defined in (2.2) will satisfy the following error equations

u =
f(zn)
f(yn)

= O(e2
n), v =

f(yn)
f(xn)

= O(en). (2.3)

Proof Let us assume that en = xn − α be the error in the nth iteration. Now, we can expand the function

f(xn) around the point x = α with the help of the Taylor’s series expansion which will leads us:

f(xn) = f ′(α)
(
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + c8e

8
n +O(e9

n)
)
, (2.4)

where f ′(α) 6= 0 and ck = 1
k!
fk(α)
f ′(α) , k = 2, 3, . . . , 8.

Similarly, we will obtain

f ′(xn) = f ′(α)
(
1 + 2c2en + 3c3e2

n + 4c4e3
n + 5c5e4

n + 6c6e5
n + 7c7e6

n + 8c8e7
n + 9c9e8

n +O(e9
n)
)
. (2.5)
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With the help of the above equations (2.4), (2.5) and the Taylor’s series expansion, we will further have

f(yn) = f ′(α)


c2e2

n + (2c3 − 2c22)e3
n +

4∑

j=0

Aje
j+4
n +O(e9

n)


 , (2.6)

where A0 = (5c32 − 7c2c3 + 3c4), A1 = −2(6c42 − 12c22c3 + 3c23 + 5c2c4 − 2c5), A2 = 28c52 − 73c32c3 + 34c22c4 −
17c3c4 + c2(37c23 − 13c5) + 5c6, A3 = −2{32c62 − 103c42c3 − 9c33 + 52c32c4 + 6c24 + c22(80c23 − 22c5) + 11c3c5 +

c2(−52c3c4 +8c6)−3c7} and A4 = (37+334β+172β2 +70β3 +18β4 +2β5)c72−2(90+582β+271β2 +86β3 +

12β4)c52c3 +(101+490β+178β2 +30β3)c42c4 +2(25+36β)c23c4−17c4c5 +c32{(253+1098β+432β2 +80β3)c23−
(51 + 156β+ 32β2)c5}− 13c3c6 + c22{10(2 + 3β)c6−

(
209 + 612β + 144β2

)
c3c4}+ c2{4(17 + 24β)c3c5− (91 +

240β + 64β2)c33 + (37 + 54β)c24 − 5c7}.
Further, with the help of previous equations (2.4) and (2.6), we will further obtain

v =
f(yn)
f(xn)

= c2en + (2c3 − 3c22)e2
n + (8c32 − 10c3c2 + 3c4)e3

n + (4c5 − 20c42 + 37c22c3 − 8c23 − 14c2c4)e4
n

+ {48c52 − 118c32c3 + 51c22c4 − 22c3c4 + c2(55c23 − 18c5) + 5c6}e5
n + {344c42c3 − 112c62 + 26c33

− 163c32c4 − 15c24 − 28c3c5 + c22(65c5 − 252c23) + 2c2(75c3c4 − 11c6) + 6c7}e6
n +O(e7

n).
(2.7)

Now, by inserting the equations (2.4)–(2.6), in the second substep of (2.1), we have

zn − α ={(2β + 1)c32 − c2c3}e4
n +

3∑

j=0

Bje
j+5
n +O(e9

n), (2.8)

where Bj = Bj(β, c2, c3, . . . c8) are constant functions of β, c2, c3, . . . c8 and two of them are B0 =

−2{(2 + 6β+ β2)c42− 2(2 + 3β)c22c3 + c23 + c2c4} and B1 = 2(5 + 22β+ 7β2 + β3)c52− 2(15 + 42β+ 8β2)c32c3 +

6(2 + 3β)c22c4 − 7c3c4 + 3c2{(6 + 8β)c23 − c5}, etc.

In the similar fashion as we did in the previous equation (2.4), we can expand the function f(zn) about a

point x = α, which is given by

f(zn) = f ′(ξ)
[
{(2β+1)c32− c2c3}e4

n+B0e
5
n+B1e

6
n+B2e

7
n+[{(2β+1)c32− c2c3}2c2 +B3]e8

n+O(e9
n)
]
. (2.9)

From the equations (2.6) and (2.9), we have

u =
f(zn)
f(yn)

=
(
(2β + 1)c22 − c3

)
e2
n − 2{(1 + 4β + β2)c32 − 2(1 + 2β)c2c3 + c4}e3

n + {(1 + 18β + 10β2 + 2β3)c42

− 2(3 + 19β + 6β2)c22c3 + (3 + 8β)c23 + (5 + 12β)c2c4 − 3c5}e4
n − 2{(14β + 13β2 + 6β3 + β4 − 2)c52

− (48β + 33β2 + 8β3 − 2)c32c3 + (2 + 26β + 9β2)c22c4 − 3(1 + 4β)c3c4 + c2
(
2(1 + 14β + 6β2)c23

− (3 + 8β)c5
)

+ 2c6}e5
n +O(e6

n).
(2.10)

This complete the proof of lemma 2.1. �
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Theorem 2.2 Let us assume that an initial guess x = x0 is sufficiently close to α for the guaranteed

convergence. Then, the iterative scheme (2.1) will reach an optimal eighth-order convergence only if it satisfies

the following conditions on the weight function

G00 = 1, G01 = 2, G10 = 1, G02 = 10− 4β, G11 = 4, G03 = 12(β2 − 6β + 6), (2.11)

where Gij = ∂i+j

∂ui∂vjG(u, v)|(u=0, v=0) for i, j = 0, 1, 2, 3.

Proof Since, it is clear from the above lemma 2.1 that u = O(e2
n) and v = O(en). Therefore, we can expand

the weight function G(u, v) in the neighborhood of (0, 0) with the help Taylor series expansion which leads

to us:
G(u, v) = G00 +G10u+G01v +

1
2!
(
G20u

2 + 2G11uv +G02v
2
)

+
1
3!
(
G30u

3 + 3G21u
2v + 3G12uv

2 +G03v
3
)
.

(2.12)

By using the equations (2.4)–(2.10) and (2.12), in the last substep of the proposed scheme, we will get

en+1 = −(G00 − 1)c2
(
(2β + 1)c22 − c3

)
e4
n +

4∑

j=1

Hje
j+4
n +O(e9

n), (2.13)

where Hj = Hj(β, c2, c3, . . . , c8) are the constant functions in term of β, c2, c3, . . . , c8, e.g. H1 = −{4 +

G01+12β+2G01β+2β2−2G00(3+8β+β2)}c42+{8+G01+12β−2G00(5+6β)}c22c3+2(G00−1)c23+2(G00−1)c2c4.

It is straightforward to say that the above error equation (2.13) will reach at least fifth-order of convergence

if we choose the following value of G00

G00 = 1. (2.14)

Now, by inserting the above value of G00 = 1 in H1 = 0, we will further obtain

G01 = 2. (2.15)

Again, by using the above values of G00 and G01 in H2 = 0, we will obtain the following two independent

relations

G10 − 1 = 0, G02 + 2(2βG10 +G10 − 6) = 0, (2.16)

which further yield

G10 = 1, G02 = 10− 4β. (2.17)

In order to obtain an optimal eighth-order of convergence, we have to use the above values of G00, G01, G10

and G02 in H3 = 0. Then, we obtain

G11 − 4 = 0, G03 + 6
(
−2β2 + 4β + 2βG11 +G11 − 16

)
= 0, (2.18)

which will further leads to us

G11 = 4, G03 = 12(β2 − 6β + 6). (2.19)
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Finally, we will obtain the following error equation by using the equations (2.14), (2.15), (2.17) and (2.19) in

(2.13), which is given by

en+1 = −c2((2β + 1)c22 − c3)
2

[
c42
(
4β3 − 32β2 + 44β + 2βG12 +G12 + (2β + 1)2G20 − 82

)

+ c23(G20 − 2)− 2c4c2 − c3c22(−4β +G12 + 4βG20 + 2G20 − 30)
]
e8
n +O(e9

n).
(2.20)

The above error equation demonstrate that our proposed scheme (2.1) reaches at eighth-order convergence

by consuming only four functional evaluations per iteration. Therefore, the scheme (2.1) have also reached

the optimal order of convergence in the sense of Kung-Traub conjecture. This completes the proof. �

2.1 Special cases

In this section, we will discuss some of the important cases of the proposed scheme which were not discussed

in the earlier study. We can choose weight functions by two different approaches. In the first way, we can

directly use the same weight function which is used for the construction of the proposed scheme. In the second

way, we can pick any two variable function which satisfies the conditions of Theorem 2.2. Both approaches

are defined as follows:

Approach-1:

In this case, we will use directly the conditions on Gij (which are defined in (2.11)) in the weight function

(2.12). This is the first way of obtaining the new weight functions, which is given as follows:

G(u, v) = 1 + u+ 2v +
1
2
(
G20u

2 + 8uv + (10− 4β)v2
)

+
1
6
(
G30u

3 + 3G12uv
2 + 3G21u

2v + 12
(
β2 − 6β + 6

)
v3
)
,

(2.21)

where G20, G12, G21 and G30 are free disposable parameters. By using the above weight function and the

values of the disposable parameters in the scheme (2.1), we will obtain several optimal eighth-order families

of King’s method.

Approach-2:

(a) Let us consider the following weight function

G(u, v) =
2β + u

(
2β + 2(β2 − 2β − 4)v − 5

)
− (4β + 1)v2 + 2(β2 − 4β + 1)v − 5

2β + 2 (β2 − 6β + 6) v − 5
. (2.22)

Clearly, the above function satisfies the conditions of Theorem 2.2, which will further yield

yn = xn − f(xn)

f ′(xn)
,

zn = yn − f(xn) + βf(yn)

f(xn) + (β − 2)f(yn)

f(yn)

f ′(xn)
,

xn+1 = zn − f(zn)

f ′(xn)

(
2β + u

(
2β + 2(β2 − 2β − 4)v − 5

)
− (4β + 1)v2 + 2(β2 − 4β + 1)v − 5

2β + 2 (β2 − 6β + 6) v − 5

)
.

(2.23)

In this way, we obtain an optimal eighth-order family of King’s method.
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(b) In order to obtain another optimal eighth-order family of King’s method, we consider the following weight

function

G(u, v) = 1 + u+ 4uv − (4β + 1)v
2 (β2 − 6β + 6)

+
a2v

a1v + 1
, (2.24)

where a1 =
2(β2−6β+6)

2β−5 and a2 = 2β−5
a1

.

With the aid of the above weight function, we will further obtain the following optimal scheme of eighth-

order

yn = xn −
f(xn)
f ′(xn)

,

zn = yn −
f(xn) + βf(yn)

f(xn) + (β − 2)f(yn)
f(yn)
f ′(xn)

,

xn+1 = zn −
f(zn)
f ′(xn)

(
1 + 4uv + u− (4β + 1)v

2 (β2 − 6β + 6)
+

a2v

a1v + 1

)
.

(2.25)

In the similar fashion, if we consider more two varible functions provided the conditions of Theorem 2.2

should be satisfy then we will further obtain several optimal iterative methods of order eight.

3 An optimal family of sixteenth-order King’s method

This section is devoted to the main contribution of this study. We will propose a new optimal sixteenth-order

family of iterative methods based on rational functional approach. The idea is to consider one additional

substep to the previous family (2.1). So, we use the same notation as in the previous section and rewrite the

scheme (2.1) in the following way

yn = xn −
f(xn)
f ′(xn)

,

zn = yn −
f(xn) + βf(yn)

f(xn) + (β − 2)f(yn)
f(yn)
f ′(xn)

,

tn = zn −
f(zn)
f ′(xn)

G(u, v).

(3.1)

In order to obtain the next approximation xn+1 to the required root, we consider the following rational

function

Q(x) =
(x− xn) + θ1

θ2(x− xn)3 + θ3(x− xn)2 + θ4(x− xn) + θ5
, (3.2)

where θ1, θ2, θ3, θ4 and θ5 are disposable parameters. These parameters can be determined by imposing

tangency conditions, which are given by

Q(xn) = f(xn), Q′(xn) = f ′(xn), Q(yn) = f(yn), Q(zn) = f(zn), Q(tn) = f(tn). (3.3)

Now, we assume that the above rational function meets the x – axis at a point x = xn+1 in order to find the

next approximation, which is given by

Q(xn+1) = 0, (3.4)
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which further yields

xn+1 = xn − θ1. (3.5)

By imposing the first two tangency conditions, we have

θ1 = θ5f(xn), θ4 =
1− θ5f

′(xn)
f(xn)

. (3.6)

From the last three tangency conditions, we obtain

f(yn)
[
f ′(xn)

(
f ′(xn) (2θ5f

′(xn)− 1) + θ3f(xn)2
)
− θ2f(xn)3

]
= f ′(xn)2f(xn) (θ5f

′(xn)− 1) ,

f(zn)
[

(1− θ5f
′(xn))(zn − xn)
f(xn)

+ θ2(zn − xn)3 + θ3(xn − zn)2 + θ5

]
= θ5f(xn) + zn − xn,

f(tn)
[

(1− θ5f
′(xn))(tn − xn)
f(xn)

+ θ2(tn − xn)3 + θ3(tn − xn)2 + θ5

]
= θ5f(xn) + tn − xn.

(3.7)

Solve the above expressions in (3.7) for θ5. Then, we have

θ5 =
anbn

(
u1f(xn)2f(yn) + u2f

′(xn)f(tn)f(zn)
)

v1f(xn)3 + v2f ′(xn)f(tn)f(zn)
, (3.8)

where

u1 = f(tn)
(
b2nf
′(xn) + bnf(xn)− cnf(zn)

)
+ an

(
f(xn)− anf

′(xn)
)
f(zn),

u2 = anbncnf
′(xn)

(
f(yn)− f(xn)

)
+ cnf(yn)f(xn)(an − bn),

v1 = f(yn)
[
bnf(tn)

(
b2nf
′(xn) + bnf(xn)− cnf(zn)

)
+
(
a3

nf
′(xn) + cnanf(tn)− a2

nf(xn)
)
f(zn)

]
,

v2 = a2
nb

2
ncnf

′(xn)2
(
2f(yn)− f(xn)

)
+ anbncn(2an − cn)f ′(xn)f(yn)f(xn) + cn

(
anbn − ancn − b2n

)
f(yn)f(xn)2,

an = xn − zn, bn = tn − xn, cn = tn − zn.

Now, by using the equations (3.1), (3.5) and (3.8), we obtain

yn = xn −
f(xn)
f ′(xn)

,

zn = yn −
f(xn) + βf(yn)

f(xn) + (β − 2)f(yn)
f(yn)
f ′(xn)

,

tn = zn −
f(zn)
f ′(xn)

G(u, v),

xn+1 = xn − θ5f(xn).

(3.9)

where θ5 is defined by (3.8). The following Theorem 3.1 demonstrates that the optimal sixteenth-order of

convergence is achieved.

Theorem 3.1 Under the assumptions of Theorem 2.2, the iterative scheme defined by (3.9) has an optimal

sixteenth-order convergence and satisfies the following error equation

en+1 = −c
3
2((2β + 1)c22 − c3)2

2

[
c42
(
4β3 − 32β2 + 44β + 2βG12 +G12 + (2β + 1)2G20 − 82

)

+ c23(G20 − 2)− 2c4c2 − c3c22(−4β +G12 + 4βG20 + 2G20 − 30)
]
(c42 − 3c3c22 + 2c4c2

+ c23 − c5)e16
n +O(e17

n ).

(3.10)
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Proof Let us expand the function f(xn) and its first-order derivative f ′(xn) around x = α, by using the

Taylor’s series expansion. Then, we have

f(xn) = f ′(α)

[
16∑

k=1

cke
k
n +O(e17

n )

]
, (3.11)

and

f ′(xn) = f ′(α)

[
16∑

k=1

kcke
k−1
n +O(e17

n )

]
, (3.12)

respectively, where ck = 1
k!
fk(α)
f ′(α) , k = 2, 3, . . . , 16.

Now, we find the following expansion of f(yn) about a point x = ξ with the help of above expressions (3.11)

and (3.12)

f(yn) = f ′(ξ)

[
c2e

2
n + (2c3 − 2c22)e3

n + (5c32 − 7c3c2 + 3c4)e4
n +

11∑

k=0

Hke
k+5
n +O(e17

n )

]
, (3.13)

where Hk = Hk(c2, c3, . . . , c16) are given in the term of c2, c3, . . . , c16 and some of them are H0 = −2(6c42 −
12c22c3 + 3c23 + 5c2c4 − 2c5), H1 = 28c52 − 73c32c3 + 34c22c4 − 17c3c4 + c2(37c23 − 13c5) + 5c6, H2 = −2{32c62 −
103c42c3− 9c33 + 52c32c4 + 6c24 + c22(80c23− 22c5) + 11c3c5 + c2(8c6− 52c3c4)− 3c7} and H3 = 144c72− 552c52c3 +

297c42c4 + 75c23c4 + 2c32(291c23− 67c5)− 31c4c5− 27c3c6 + c22(−455c3c4 + 54c6) + c2(−147c33 + 73c24 + 134c3c5−
19c7) + 7c8, etc.

By using the equations (3.11), (3.12) and (3.13), in the second-step, we obtain

zn − α =λ0e
4
n + λ1e

5
n + λ2e

6
n + λ3e

7
n + λ4e

8
n + λ5e

9
n + λ6e

10
n + λ7e

11
n + λ8e

12
n + λ9e

13
n

+ λ10e
14
n + λ11e

15
n + λ12e

16
n +O(e17

n ),
(3.14)

where λk = λk(β, c2, c3, . . . , c16) are the functions of constants in term of c2, c3, . . . , c16 and some of them

are λ0 = (2β + 1)c32 − c2c3, λ1 = −2{(2 + 6β + β2)c42 − 2(2 + 3β)c22c3 + c23 + c2c4}, λ2 = 2(5 + 22β + 7β2 +

β3)c52−2(15 + 42β+ 8β2)c32c3 + 6(2 + 3β)c22c4−7c3c4 + 3c2{(6 + 8β)c23− c5}, λ3 = 2
[
(10 + 64β+ 28β2 + 8β3 +

β4)c62 − 2(20 + 88β + 31β2 + 5β3)c42c3 − 2(3 + 4β)c33 + 4(5 + 15β + 3β2)c32c4 + 3c24 + 5c3c5 + 4c22{(10 + 27β +

6β2)c23 − (2 + 3β)c5} + c2{−2(13 + 18β)c3c4 + 2c6}
]

and λ4 = 2(18 + 165β + 84β2 + 35β3 + 9β4 + β5)c72 −
2(89 + 580β + 271β2 + 86β3 + 12β4)c52c3 + (101 + 490β + 178β2 + 30β3)c42c4 + 2(25 + 36β)c23c4 − 17c4c5 +

c32{2(126 + 549β+ 216β2 + 40β3)c23− (51 + 156β+ 32β2)c5}−13c3c6 + c22{−(209 + 612β+ 144β2)c3c4 + 10(2 +

3β)c6}+ c2{−(91 + 240β + 64β2)c33 + (37 + 54β)c24 + 4(17 + 24β)c3c5 − 5c7}, etc.
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Again, expand the Taylor series expansion of function f(zn) about a point z = α, we obtain

f(zn) =f ′(ξ)
[
λ0e

4
n + λ1e

5
n + λ2e

6
n + λ3e

7
n(λ2

0c2 + λ4)e8
n + (2λ0λ1c2 + λ5)e9

n + {(λ2
1 + 2λ0λ2)c2

+ λ6}e10
n + {(2(λ1λ2 + λ0λ3)c2 + λ7}e11

n + (λ3
0c3 + 2λ4λ0c2 + λ2

2c2 + 2λ1λ3c2 + λ8)e12
n

+ (3λ1λ
2
0c3 + 2λ5λ0c2 + 2λ2λ3c2 + 2λ1λ4c2 + λ9)e13

n + (3λ2λ
2
0c3 + 2λ6λ0c2 + 3λ2

1λ0c3

+ λ2
3c2 + 2λ2λ4c2 + 2λ1λ5c2 + λ10)e14

n + {λ3
1c3 + 6λ0λ2λ1c3 + 2(λ3λ4 + λ2λ5

+ λ1λ6 + λ0λ7)c2 + 3λ2
0λ3c3 + λ11}e15

n + (λ4
0c4 + 3λ4λ

2
0c3 + 2λ8λ0c2 + 3λ2

2λ0c3

+ 6λ1λ3λ0c3 + λ2
4c2 + 2λ3λ5c2 + 2λ2λ6c2 + 2λ1λ7c2 + 3λ2

1λ2c3 + λ12)e16
n +O(e17

n )
]
,

(3.15)

By inserting the equations (2.11), (2.12), (3.11)–(3.15) in the third substep, we have

tn − α = θ0e
8
n + θ1e

9
n + θ2e

10
n + θ3e

11
n + θ4e

12
n + θ5e

13
n + θ6e

14
n + θ7e

15
n + θ8e

16
n +O(e17

n ) (3.16)

where θk are the constant function of (β, c2, c3, . . . , c16) and some of them are θ0 = c2((2β+1)c22−c3)
2

[
c42{4β3−

32β2 +44β+2βG12 +G12 +(2β+1)2G20−82}+ c23(G20−2)−2c4c2− c3c22(−4β+G12 +4βG20 +2G20−30)
]

and θ1 = 1
2

[
{−1152−G21− 1888β− 6G21β+ 1032β2− 12G21β

2− 944β3− 8G21β
3 + 20β4 + 16β5 + 2G20(1 +

2β)2(5+16β+3β2)+2G12(7+32β+38β2 +4β3)}c82−{−2372−3G21−1640β−12G21β+252β2−12G21β
2−

832β3 + 116β4 + 2G12(19 + 56β+ 30β2) + 2G20(19 + 102β+ 162β2 + 68β3)}c62c3 + 2(−2 +G20)c43 + 2{−118−
36β− 42β2 + 4β3 + 3G20(1 + 2β)2 +G12(2 + 4β)}c52c4− 4(−38 +G12 + 3G20− 16β+ 6G20β)c32c3c4 + 2(−10 +

3G20)c2c23c4 +c42
{(
−1292−3G21−216β−6G21β−408β2 +40β3 +10G12(3+4β)+6G20(8+28β+21β2)

)
c23 +

4(1 + 2β)c5
}
− c22{(−184 + 6G12 + 22G20 −G21 − 48β + 36G20β)c33 + 4c24 + 4c3c5}

]
, etc.

Again, with the help of Taylor series, we have

f(tn) =f ′(ξ)
[
θ0e

8
n + θ1e

9
n + θ2e

10
n + θ3e

11
n + θ4e

12
n + θ5e

13
n + θ6e

14
n + θ7e

15
n + (θ2

0c2 + θ8)e16
n +O(e17

n )
]
.

(3.17)

Using equations (3.11) – (3.17), in the last substep of the proposed scheme (3.9) and further simplifying the

equations, we get

en+1 =λ0θ0(c42 − 3c3c22 + 2c4c2 + c23 − c5)e16
n +O(e17

n ),

or

en+1 =− c32((2β + 1)c22 − c3)2

2

[
c42
(
4β3 − 32β2 + 44β + 2βG12 +G12 + (2β + 1)2G20 − 82

)

+ c23(G20 − 2)− 2c4c2 − c3c22(−4β +G12 + 4βG20 + 2G20 − 30)
]
(c42 − 3c3c22 + 2c4c2

+ c23 − c5)e16
n +O(e17

n ).

(3.18)

This reveals that the proposed scheme (3.9) reaches an optimal sixteenth-order convergence in the sense of

Kung-Traub conjecture. It is worthy to note that only λ0 and θ0 play the important role in the construction

of an optimal sixteenth-order scheme. This is the complete proof of the theorem. �
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4 Numerical experiments

This section is fully devoted to check the effectiveness and validity of our theoretical results which we have

proposed in the earlier Sections. For this purpose, we consider four number of real life problems e.g. the

trajectory of an electron in the air gap between two parallel plates, chemical engineering problem, Van der

Waal’s equation which explains the behavior of a real gas by introducing in the ideal gas equations and

fractional conversion in a chemical reactor. The details of chosen examples and zeros to the corresponding

function can be seen in the following examples 4.1–4.4. In addition, initial guesses are also displayed in the

tables 1–8.

First of all, we employ the eighth-order families namely, (2.23) (for β = 0, − 1
2 , − 1

3 ), called by (CM1),

(CM2) and (CM3), respectively, to check the effectiveness and validity of the theoretical results. We will

compare these methods with new families of iterative methods for solving nonlinear equations with optimal

eighth-order convergence designed by Heydari et al. [4], out of them, we consider one of their best method

(14) (for λ = 30, θ = 6, a = 8) (which is claimed by them not by us), denoted by (HHL). In addition,

we also compare them with three-step optimal iterative scheme of order presented by Khatri [5] and Bi et

al. [6], out which we choose methods namely, method (2.1) (for α = 56, β = −1, µ = 0) and method

(36) (for α = 1), called by (KM) and (BRW ), respectively. Finally, we also compared our methods with a

new eighth-order iterative method (17) for solving nonlinear equations developed by Thukral [8], denoted by

(TM).

In the context of sixteenth-order methods for solving nonlinear equations, we employ the same weight

functions which we have considered in the eighth-order schemes CMi, i = 1, 2, 3, to obtain the corresponding

sixteenth-order iterative methods given by (3.9). We have called the new iterative scheme by ĈM1, ĈM2

and ĈM3 respectively. Now, we will also consider optimal sixteenth-order methods namely, method (19) (for

a = 1) and method (9), from the methods proposed by Sharma et al. [22] and Ullah et al. [23], denoted

by (SGG) and (UFA), respectively. In addition, we will also compare them with a family of multipoint

methods for non-linear equations designed by Neta [19], out of which we consider method (12) (for A = 1),

denoted by (NM). Finally, we will also compare them with a biparametric family of optimally convergent

sixteenth-order multipoint methods proposed by Geum and Kim [21], out of the proposed methods we shall

choose the expression (1.7), called by GK.

For better comparison of our proposed methods with the existing iterative methods, we compare them

with respect to approximated zeros (xn), absolute residual error of the corresponding function (|f(xn)|),
errors between the two consecutive iterations |xn+1 − xn|,

∣∣∣ en+1
ep

n

∣∣∣ where ( p = 8 or p = 16), the asymptotic

error constant η = lim
n→∞

∣∣∣∣
en+1

epn

∣∣∣∣ and computational order of convergence ρ ≈ ln |ěn+1/ěn|
ln |ěn/ěn−1| , where ěn = xn−xn−1

(for the details of this formula for calculating ρ please see Cordero and Torregrosa [27]) which can be seen in

the Tables 1 – 8.

We calculate the computational order of convergence and asymptotic error constant and other constants
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up to several number of significant digits (minimum 1000 significant digits) to minimize the round off error.

Due to the page limitation, we only displayed the values of xn up to 20 significant digits with/without

exponents. In addition, the absolute residual error in the function |f(xn)| and the difference between the two

consecutive iterations |xn+1 − xn| are up to 2 significant digits with exponent power. Moreover, the values

of
∣∣∣ en+1
ep

n

∣∣∣ and η are up to 10 significant digits with/without exponent power. Finally, computational order of

convergence ρ is up to 5 significant digits.

For the computer programming, all computations have been performed using the programming package

Mathematica 10 with multiple precision arithmetic. In addition, a(±b) stands for a×10(±b) in the following

Tables 1–8.

Example 4.1 In the study of the multi-factor effect, the trajectory of an electron in the air gap between

two parallel plates is given by

x(t) =x0 +
(
v0 + e

E0

mω
sin(ωt0 + α)

)
(t− t0) + e

E0

mω2

(
cos(ωt+ α) + sin(ω + α)

)
, (4.1)

where e and m are the charge and the mass of the electron at rest, x0 and v0 are the position and velocity

of the electron at time t0 and E0 sin(ωt + α) is the RF electric field between the plates. We choose the

particulars parameters in the expression (4.1) in order to deal with a simpler expression, which is defined as

follows:

f1(x) = x− 1
2

cos(x) +
π

4
. (4.2)

The required zero of the above function α = −0.309093271541794952741986808924.

Example 4.2 Let us consider a quartic equation from [28,29], which describes the fraction of the nitrogen-

hydrogen feed that gets converted to ammonia (this fraction is called fractional conversion). By considering

250 atm and 5000 C, then the mentioned equation can be converter in to the following form

f3(z) = z4 − 7.79075z3 + 14.7445z2 + 2.511z − 1.674. (4.3)

The above function has total four number of zeros and out of them two are real and other two are complex

conjugate to each other. However, our desired zero is α = 3.9485424455620457727+0.3161235708970163733i.

Example 4.3 Van der Waals equation of state

(
P +

a1n
2

V 2

)
(V − na2) = nRT, (4.4)

explains the behavior of a real gas by introducing in the ideal gas equations two parameters, a1 and a2,

specific for each gas. The determination of the volume V of the gas in terms of the remaining parameters

requires the solution of a nonlinear equation in V.

PV 3 − (na2P + nRT )V 2 + a1n
2V − a1a2n

2 = 0. (4.5)
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Given the constants a1 and a2 of a particular gas, one can find values for n, P and T , such that this equation

has a three simple roots. By using the particular values, we obtain the following nonlinear function

f2(x) = 0.986x3 − 5.181x2 + 9.067x− 5.289. (4.6)

have three zeros and out of them two are complex zeros and third one is real zero. However, our desired root

is α = 1.92984624284786221848752742787.

Example 4.4 Fractional conversion in a chemical reactor:

Let us consider the following expression (for the details of this problem please see [30])

f1(x) =
x

1− x − 5 log
[

0.4(1− x)
0.4− 0.5x

]
+ 4.45977, (4.7)

In the above expression x represents the fractional conversion of species A in a chemical reactor. Since,

there will be no physical meaning of above fractional conversion if x is less than zero or greater than one.

In this sense, x is bounded in the region 0 ≤ x ≤ 1. In addition, our required zero to this problem is

α = 0.757396246253753879459641297929. Moreover, it is interesting to note that the above expression will

be undefined in the region 0.8 ≤ x ≤ 1 which is very close to our desired zero. Furthermore, there are

some other properties to this function which make the solution more difficult. The derivative of the above

expression will be very close to zero in the region 0 ≤ x ≤ 0.5 and there is an infeasible solution for x = 1.098.

4.1 Results and discussion

It is straightforward to say from the Table 2, 4, 6, 8 that our new optimal sixteenth-order methods have

smaller residual error in the each corresponding test function as compared to the existing methods of same

order. In addition, smaller difference error between the two consecutive iterations belongs to our methods.

So, we can say that our method of sixteenth-order converge faster towards the required root as compared to

the existing ones. Moreover, our methods also have simple asymptotic error constant corresponding to each

test function which can be seen in the Table 2, 4, 6, 8. Similarly, optimal eighth-order methods show the same

qualties as sixteenth-order method which can be seen in tables 1, 3, 5, 7 comparatively to existing optimal

eighth-order methods. However, one can find different behavior of our methods when he/she consider some

different nonlinear equations. Actually, the behavior of the iterative methods depend on several things like

the body structure of the iterative method, considered test function, initial approximation and programming

softwares, etc.

5 Conclusions

In this paper, we contributed further to the development of the theory of iteration processes and presented

some novel eighth and sixteenth-order families of King’s method for solving nonlinear equations which is
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Table 1: (Convergence behavior of different optimal eighth-order methods for f1(x))

I.M. n xn |f(xn)| |xn+1 − xn| ρ
∣∣∣ xn+1−xn

(xn−xn−1)8

∣∣∣ η

HHL

0 −1.4 7.0(−1) 1.1

1 −0.31054252241788734737 1.2(−3) 1.4(−3) 7.302327376(−4) 4.783792148(−4)

2 −0.30909327154179495274 7.9(−27) 9.3(−27) 8.0639 4.783792148(−4)

KM

0 −1.4 7.0(−1) 1.2

1 −0.22621526699385031990 7.2(−2) 8.3(−2) 2.300020113(−2) 8.991135622(−3)

2 −0.30909327152178118590 1.7(−11) 2.0(−11) 8.3544 8.991135622(−3)

BRW

0 −1.4 7.0(−1) 1.1

1 −0.30810534816829296667 8.4(−4) 9.9(−4) 4.889645234(−4) 2.505693707(−4)

2 −0.30909327154179495274 1.9(−28) 2.3(−28) 8.0954 2.505693707(−4)

TM

0 −1.4 7.0(−1) 1.1

1 −0.31346329528647993607 3.7(−3) 4.4(−3) 2.249720579(−3) 4.961187072(−3)

2 −0.30909327154179495274 5.6(−22) 6.6(−22) 7.8566 4.961187072(−3)

CM1

0 −1.4 7.0(−1) 1.1

1 −0.30890418608346173211 1.6(−4) 1.9(−4) 9.413584255(−5) 3.070176352(−5)

2 −0.30909327154179495274 4.3(−35) 5.0(−35) 8.1294 3.070176352(−5)

CM2

0 −1.4 7.0(−1) 1.1

1 −0.30873789131635075682 3.0(−4) 3.6(−4) 1.767098072(−4) 1.219195717(−4)

2 −0.30909327154179495274 2.6(−32) 3.1(−32) 8.0462 1.219195717(−4)

CM3

0 −1.4 7.0(−1) 1.1

1 −0.3087088306688318140407209 3.3(−4) 3.8(−4) 1.911192477(−4) 1.296839259(−5)

2 −0.3090932715417949527419868 5.2(−33) 6.2(−33) 8.3384 1.296839259(−5)

(I.M. stands for iterative method.)

Table 2: (Convergence behavior of different optimal sixteenth-order methods for f1(x))
I.M. n xn |f(xn)| |xn+1 − xn| ρ

∣∣∣ xn+1−xn

(xn−xn−1)16

∣∣∣ η

SGG

0 −1.4 7.0(−1) 1.1

1 −0.30909308285600657847 1.6(−7) 1.9(−7) 4.689602825(−8) 5.574538270(−8)

2 −0.30909327154179495274 1.2(−115) 1.4(−115) 15.989 5.574538270(−8)

UFA

0 −1.4 7.0(−1) 1.1(−)

1 −0.31988758845307883793 9.1(−3) 1.1(−2) 3.145515715(−3) 1.879138194(−6)

2 −0.30909327154179495274 5.4(−38) 6.4(−38) 17.612 1.879138194(−6)

NM

0 −1.4 7.0(−1) 1.1

1 −0.30909226304255541811 8.6(−7) 1.0(−6) 2.506497207(−7) 2.816558964(−8)

2 −0.30909327154179495274 2.7(−104) 3.2(−104) 16.157 2.816558964(−8)

GK

0 −1.4 7.0(−1) 1.2

1 −0.22488634461964713535 7.3(−2) 8.4(−2) 6.368979489(−3) 1.836934337(−7)

2 −0.30909327154179495274 1.0(−24) 1.2(−24) 19.966 1.836934337(−7)

ĈM1

0 −1.4 7.0(−1) 1.1

1 −0.30909326391515776445 6.5(−9) 7.6(−9) 1.895531963(−9) 1.380398523(−9)

2 −0.30909327154179495274 1.5(−139) 1.8(−139) 16.017 1.380398523(−9)

ĈM2

0 −1.4 7.0(−1) 1.1

1 −0.30909322152103935082 4.2(−8) 5.0(−8) 1.243220042(−8) 3.343337786(−9)

2 −0.30909327154179495274 4.4(−126) 5.1(−126) 16.078 3.343337786(−9)

ĈM3

0 −1.4 7.0(−1) 1.1

1 −0.30909322944174186550 3.6(−8) 4.2(−8) 1.046358361(−8) 4.310973773(−11)

2 −0.30909327154179495274 3.6(−129) 4.2(−129) 16.322 4.310973773(−11)
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Table 3: (Convergence behavior of different optimal eighth-order methods for f2(x))

I.M. n xn |f(xn)| |xn+1 − xn| ρ

∣∣∣∣
xn+1−xn

(xn−xn−1)8

∣∣∣∣ η

HHL

0 3.7 + 0.25i 2.2 2.6(−1)

1 3.9461582106838576735 + 0.3244500764547603881i 8.9(−2) 8.7(−3) 452.6946045 108.4285690

2 3.9485424455620427064 + 0.3161235708970179056i 3.5(−14) 3.4(−15) 8.4215 108.4285690

KM

0 3.7 + 0.25i 2.2 1.4(+1)

1 14.173169989904450595 + 8.972128120579796566i 5.2(+4) 9.9 8.331271374(−9) 3.341767653(−8)∗

2 6.3365181967521583250 + 2.8886252101364599707i 6.9(+2) 3.1 3.6264 3.341767653(−8)

BRW

0 3.7 + 0.25i 2.2 2.6(−1)

1 3.9489549971040609806 + 0.3158097221175631175i 5.2(−3) 5.2(−4) 26.81207461 38.13353148

2 3.9485424455620457811 + 0.3161235708970163774i 2.0(−24) 2.0(−25) 7.9433 38.13353148

TM

0 3.7 + 0.25i 2.2 3.4(−1)

1 4.0362974538615480508 + 0.3122463813278141890i 9.3(−1) 8.8(−2) 469.2294516 1813.071595

2 3.9485428513760347267 + 0.3161171575747692166i 6.5(−4) 6.4(−6) 7.0056 1813.071595

CM1

0 3.7 + 0.25i 2.2 2.5(−1)

1 3.9451578944579097603 + 0.3188770196103508534i 4.4(−2) 4.4(−3) 246.7464818 70.82996656

2 3.9485424455620457727 + 0.3161235708970163733i 9.4(−17) 9.3(−18) 8.3069

CM2

0 3.7 + 0.25i 2.2 2.6(−1)

1 3.9487782373203197330 + 0.3159986648044963396I 2.7(−3) 2.7(−4) 13.85440138 12.79093893

2 3.9485424455620457811 + 0.3161235708970163774I 3.3(−27) 3.3(−28) 8.0116 12.79093893

CM3

0 3.7 + 0.25i 2.2 2.6(−1)

1 3.9482032052129934710 + 0.3156349392190159856i 6.0(−3) 5.9(−4) 31.51578066 9.425998318

2 3.9485424455620457811 + 0.3161235708970163774i 1.5(−24) 1.5(−25) 8.1989 9.425998318
∗ stands for the lowest asymptotic error constant. But, you can see that the method KM is far way from the required zero.

Table 4: (Convergence behavior of different optimal sixteenth-order methods for f2(x))
I.M. n xn |f(xn)| |xn+1 − xn| ρ

∣∣∣∣
xn+1−xn

(xn−xn−1)16

∣∣∣∣ η

SSG

0 3.7 + 0.25i 2.2 2.6(−1)

1 3.9485462355554471971 + 0.3161264649882498978i 4.8(−5) 4.8(−6) 13009.56675 13811.45870

2 3.9485424455620457811 + 0.3161235708970163774i 1.0(−80) 9.9(−82) 15.995 13811.45870

UFA

0 3.7 + 0.25i 2.2 2.6(−1)

1 3.9484626775672587214 + 0.3160075863965059338i 1.4(−3) 1.4(−4) 386703.1697 8934.008788

2 3.9485424455620457811 + 0.3161235708970163774i 2.1(−57) 2.1(−58) 16.502 8934.008788

NM

0 3.7 + 0.25i 2.2 2.6(−1)

1 3.9489774984650989428 + 0.3161558563556219178i 4.4(−3) 4.4(−4) 1159174.966 11307198.79

2 3.9485424455620457811 + 0.3161235708970163774i 2.0(−47) 1.9(−48) 16.004 1130719.879

GK

0 3.7 + 0.25i 2.2 2.6(−1)

1 3.9487161094780216385 + 0.3159856662724177312i 2.2(−3) 2.2(−4) 600193.9616 603111.2675

2 3.9485424455620457811 + 0.3161235708970163774i 2.1(−52) 2.1(−53) 15.999 603111.2675

ĈM1

0 3.7 + 0.25i 5.5(−1) 5.4(−2)

1 3.9485424455620458064− 0.3161235708970163861i 2.7(−16) 2.7(−17) 5231.165298 3312.965593

2 3.9485424455620457811− 0.3161235708970163774i 2.3(−261) 2.3(−262) 16.013 3312.965593

ĈM2

0 3.7 + 0.25i 2.2 2.6(−1)

1 3.9485424894115482310 + 0.3161236372093710606i 8.0(−7) 7.9(−8) 216.9447057 183.7100071

2 3.9485424455620457811 + 0.3161235708970163774i 4.7(−111) 4.7(−112) 16.011 183.7100071

ĈM3

0 3.7 + 0.25i 2.2 2.6(−1)

1 3.9485424691967845225 + 0.3161232918008315069i 2.8(−6) 2.8(−7) 764.3553603 141.2285802

2 3.9485424455620457811 + 0.3161235708970163774i 2.1(−102) 2.0(−103) 16.123 141.2285802
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Table 5: (Convergence behavior of different optimal eighth-order methods for f3(x))
I.M. n xn |f(xn)| |xn+1 − xn| ρ

∣∣∣ xn+1−xn

(xn−xn−1)8

∣∣∣ η

HHL

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360190299327 2.3(−12) 1.6(−13) 9.179659358(−3) 1.139245679(−2)

2 −0.45486388360206112538 6.4(−104) 4.5(−105) 7.9918 1.139245679(−2)

KM

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360632983604 6.1(−11) 4.3(−12) 0.2478010878 0.1532598525

2 −0.45486388360206112538 2.4(−91) 1.7(−92) 8.0208 0.1532598525

BRW

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360212890660 9.8(−13) 6.8(−14) 3.934738594(−3) 4.816376176(−3)

2 −0.45486388360206112538 3.1(−107) 2.1(−108) 7.9926 4.816376176(−3)

TM

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360440583158 3.4(−11) 2.3(−12) 0.1361115319 0.1624400952

2 −0.45486388360206112538 2.1(−93) 1.5(−94) 7.9925 0.1624400952

CM1

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360210171401 5.8(−13) 4.5(−14) 2.356193116(−3) 2.397926607(−3)

2 −0.45486388360206112538 2.5(−109) 1.8(−110) 7.9994 2.397926607(−3)

CM2

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360208461155 3.4(−13) 2.3(−14) 1.363385276(−3) 1.623626931(−3)

2 −0.45486388360206112538 2.2(−111) 1.5(−112) 7.9938 1.623626931(−3)

CM3

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360206016159 1.4(−14) 9.6(−16) 5.594847795(−5) 6.417013796(−7)

2 −0.45486388360206112538 6.9(−126) 4.8(−127) 8.1419 6.417013796(−7)

Table 6: (Convergence behavior of different optimal sixteenth-order methods for f3(x))
I.M. n xn |f(xn)| |xn+1 − xn| ρ

∣∣∣ xn+1−xn

(xn−xn−1)16

∣∣∣ η

SGG

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360206112538 6.2(−27) 4.3(−28) 1.462246081(−6) 1.866092671(−6)

2 −0.45486388360206112538 4.2(−443) 2.9(−444) 15.996 1.866092671(−6)

UFA

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360206112538 3.6(−25) 2.5(−26) 8.315288407(−5) 8.867741641(−6)

2 −0.45486388360206112538 2.4(−437) 1.7(−438) 16.988 8.867741641(−6)

NM

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360206112538 3.8(−24) 2.6(−25) 8.789478072(−4) 1.226655221(−3)

2 −0.45486388360206112538 8.1(−396) 5.6(−397) 15.994 1.226655221(−3)

GK

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360206112538 3.8(−24) 2.7(−25) 8.938142323(−4) 4.250332533(−5)

2 −0.45486388360206112538 3.7(−397) 2.6(−398) 16.057 4.250332533(−5)

ĈM1

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360206112538 1.2(−27) 8.6(−29) 2.906305046(−7) 3.188722638(−7)

2 −0.45486388360206112538 4.3(−455) 3.0(−456) 15.998 3.188722638(−7)

ĈM2

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360206112538 3.3(−28) 2.3(−29) 7.816949998(−8) 1.078677960(−7)

2 −0.45486388360206112538 1.1(−464) 7.6(−466) 15.995 1.078677960(−7)

ĈM3

0 −0.5 6.6(−1) 4.5(−2)

1 −0.45486388360206112538 7.9(−31) 5.5(−32) 1.848183196(−10) 2.260671818(−14)

2 −0.45486388360206112538 2.2(−513) 1.5(−514) 16.131 2.260671818(−14)
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Table 7: (Convergence behavior of different optimal eighth-order methods for f4(x))
I.M. n xn |f(xn)| |xn+1 − xn| ρ

∣∣∣ xn+1−xn

(xn−xn−1)8

∣∣∣ η

HHL

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625394371490 1.5(−11) 1.9(−13) 8.986240332(+7) 8.260494485(+7)

2 0.75739624625375387946 1.1(−92) 1.4(−94) 8.0036 8.260494485(+7)

KM

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624637402723293 9.6(−9) 1.2(−10) 5.693381924(+10) 3.338940315(+10)

2 0.75739624625375387946 1.2(−67) 1.5(−69) 8.0316 3.338940315(+10)

BRW

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625619642800 1.9(−10) 2.4(−12) 1.156229226(+9) 1.042496594(+9)

2 0.75739624625375387946 1.1(−82) 1.3(−84) 8.0050 1.042496594(+9)

TM

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625936593295 4.5(−10) 5.6(−12) 2.656577845(+9) 2.637991832(+9)

2 0.75739624625375387946 2.1(−79) 2.6(−81) 8.0004 2.637991832(+9)

CM1

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625378120221 2.2(−12) 2.7(−14) 1.293377275(+7) 1.087518132(+7)

2 0.75739624625375387946 2.7(−100) 3.4(−102) 8.0069 1.087518132(+7)

CM2

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625392423067 1.4(−11) 1.7(−13) 8.063915443(+7) 6.628788778(+7)

2 0.75739624625375387946 3.7(−93) 4.7(−95) 8.008 6.628788778(+7)

CM3

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625410961573 2.8(−11) 3.6(−13) 1.683948825(+8) 1.475120052(+8)

2 0.75739624625375387946 3.0(−90) 3.8(−92) 8.0058 1.475120052(+8)

Table 8: (Convergence behavior of different optimal sixteenth-order methods for f4(x))
I.M. n xn |f(xn)| |xn+1 − xn| ρ

∣∣∣ xn+1−xn

(xn−xn−1)16

∣∣∣ η

SGG

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625375387946 1.1(−23) 1.3(−25) 3.014905005(+16) 2.625622084(+16)

2 0.75739624625375387946 2.4(−380) 3.0(−382) 16.003 2.625622084(+16)

UFA

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625375387947 6.6(−19) 8.3(−21) 1.855260159(+21) 2.261301253(+21)

2 0.75739624625375387946 8.8(−299) 1.1(−300) 15.995 2.261301253(+21)

NM

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625375387946 1.1(−21) 1.4(−23) 3.026115120(+18) 3.185978259(+18)

2 0.75739624625375387946 3.1(−346) 3.9(−348) 15.999 3.185978259(+18)

GK

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625375387946 1.1(−21) 1.4(−23) 3.085852902(+18) 4.005025354(+18)

2 0.75739624625375387946 5.3(−346) 6.7(−348) 15.994 4.005025354(+18)

ĈM1

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625375387946 1.1(−25) 1.4(−27) 3.063390532(+14) 2.048207850(+14)

2 0.75739624625375387946 2.4(−414) 3.0(−416) 16.007 2.048207850(+14)

ĈM2

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625375387946 1.2(−23) 1.5(−25) 3.402606716(+16) 2.422970554(+16)

2 0.75739624625375387946 1.5(−379) 1.9(−381) 16.007 2.422970554(+16)

ĈM3

0 0.76 2.2(−1) 2.6(−3)

1 0.75739624625375387946 1.7(−23) 2.2(−25) 4.837223430(+16) 3.687202764(+16)

2 0.75739624625375387946 6.5(−377) 8.2(−379) 16.005 3.687202764(+16)
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based on the weight function and rational functional approximation approaches. Analysis of convergence

demonstrate that the order of convergence of the proposed families are eight and sixteen. Further, the pro-

posed families are optimal in the sense of the classical Kung-Traub conjecture. The computational efficiency

index is defined as E = p1/θ, where p is the order of convergence and θ is the number of functional evaluations

per iteration. Thus, the efficiency indices of the proposed families are E = 4
√

8 ≈ 1.682 and E = 5
√

16 ≈ 1.741

which are better than the classical Newton’s method E ≈ 1.414. Moreover, the beauty of the proposed

sixteenth-order family is that we can easily obtain several new optimal methods of order sixteen by consider-

ing different types of weight functions. Finally, on accounts of the results obtained, it can be concluded that

our proposed methods are highly efficient and perform better than the existing methods.
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