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Abstract

This paper presents, for the first time, numerical solutions for this particular

type of integro-differential equations. According to equations which will be

introduced, suitable wavelet Galerkin method is provided using wavelet basis in

the space Cα(R)
⋂
L2(R), α > 0, that Cα(R) is the Hölder space of exponent

α . This approach has two advantages. First, the wavelets basis are arbitrary.

It means that any differentiable wavelets basis can be used. Second, the desired

orders for this equation are the reasons for involving a wide variety of this

types of equations. The Algorithm and convergence analysis of this scheme

are described. Numerical examples, plots and tablets of errors confirm the

applicability and the validity of the proposed method.
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1. Introduction

. Integro-differential equations whose numerical solution would be achieved by

an arbitrary wavelet scaling function basis φ−J,k (x) are as follows.




f (n) (x) = g (x) +
∫ 2π

0
K (x, t) f (s) (t) dt; n > s; s = 0, 1, ...,m; x ∈ [0, 2π].

αi = f (n−i) (0) , i = 1, 2, ...,n.
(1)

where the functions f (n) (x), f (s) (x) indicate the nth-order and sth-order deriva-

tive of f(x), and n, s, g (x), K (x, t) are known, f (x) is the unknown function.5

The integro-differential equations are applied in many branches of science, such

as physics, engineering, biochemistry and etc. In this study, the numerical solu-

tion of integro-differential equations (1) is discussed using the wavelet Galerkin

method which is solved numerically by any differentiable wavelets function. A

wide range of these types of equations are included because n and s are arbi-10

trary. A quick way to solve the integral equations is offered in [1-4].

Methods for solving nonlinear integro-differential equations and integral equa-

tions using Haar wavelet is provided in [5-7,11,15]. Comparisons between ho-

motopy method and Galerkin method are done. In [16] Haar wavelets for the

solution of fractional integral equations are applied. Another type of integro-15

differential equations of order n were solved and calculations and formulas were

presented by wavelet Galerkin method in [8,9]. In [12,13], based on Gaus-

sian wavelet basis, Volterra integro-differential equations and integro-differential

equations with weakly singular kernels were solved. Wavelet Galerkin method

is presented for integral equations, specifically B-spline wavelets or block-pulse20

functions in [14,15,17]. In [10] trigonometric wavelets have been introduced.

2. Preliminaries of wavelet

Definition 1. ( Multi-Resolution Analysis (MRA)). let Vj , j = ...,−1, 0, 1, ...

be a sequence of subspaces of functions in L2(R), we say that {Vj , j ∈ Z} is a

MRA if the following conditions hold:25

1) Vj ⊂ Vj+1
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2)
⋃
Vj = L2 (R)

3)
⋂
Vj = {0}

4) f (x) ∈ Vj ⇔ f
(
2−jx

)
∈ V0

5) Function φ belongs to V0 and the set {φ (x− k) , k ∈ Z} with inner product30

is an orthonormal basis for V0 .

In fact, the function which is generate a MRA is a scaling function.

Theorem 1. Suppose {Vj , j ∈ Z} is a MRA with scaling function φ that

φ belongs to L2(R). The following scaling relation is established.35

φ (x) =
∑
k akφ (2x− k), ak =

∫ +∞
−∞ φ (x)φ (2x− k) dx .

Proof. [18].

Theorem 2. Suppose {Vj , j ∈ Z} is a MRA with scaling function φ that

φ belongs to L2(R), then
{
φj,k (x) = 2

j
2φ
(
2jx− k

)
; k ∈ Z

}
is a orthonormal40

basis for Vj .

Proof. [18].

Suppose Vj+1 is decomposed to an orthogonal set of Vj and an orthogonal

complement set Wj . Basis function related to Wj space is shown by ψj , ψj will45

be wavelet basis function. Thus
Vj+1 = Vj ⊕Wj = Wj ⊕ Vj−1 ⊕Wj−1 = ... = Wj ⊕Wj−1 ⊕ ...⊕W0 ⊕ V0

L2
2π = V0 ⊕

(
⊕∞j=0Wj

)

Theorem 3. Suppose {Vj , j ∈ Z} is a MRA with wavelet function ψ that

ψ belongs to L2(R), then
{
ψj,k (x) = 2

j
2ψ
(
2jx− k

)
; k ∈ Z

}
is a orthonormal50

basis for Vj .

Proof. [18].

Definition 2. (Hölder space). Hölder space of order 0 < α < 1 is defined

as55

Cα(R) =
{
f ∈ L∞(R); sup |f(x+h)−f(x)|

|h|α <∞
}

, and if α = n+ s′: 0 < s′ < 1.
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Or

Cα(R) =
{
f ∈ L∞(R)

⋂
Cn(R); dn

dxn f ∈ Cs
′
(R)
}
.

Now we define orthogonal projection operator (PJ) by the following Theorem.60

Theorem 5. Let f be a function belonging to (Cα
⋂
L2)(R), α > 0, and φ,

ψ be a scaling and a wavelet basis function. Assume that φ, ψ ∈ Cr for some

0 < α < r. For J > 0, define the projection operatorPJ by

PJ (f) (x) =
∑

k∈z
〈f, φ0,k〉φ0,k (x) +

−1∑

j=−J+1

∑

k∈z
〈f, ψj,k〉ψj,k (x)

Then PJ(f) converges to f in the ‖.‖∞ norm. Moreover, ‖PJ (f)− f‖∞ ≤
c2−Jα, for some constant c depending only of f . (Proof. [19].)65

Hint 1. [19]. Using the multi-resolution analysis definition 1, we can write

above equality in the following form.

f(x) ∼= PJf (x) =
2(J+2)∑

k=1

c−J,kφ−J,k (x) .

70

In this paper because of we want coefficients matrix dimension in wavelet spaces

be finite, so we assume our wavelets have compact support, dimension of Vj

space be finite and j = J ∈ N . Generally, dimension of VJ space and coeffi-

cients matrices dimension depend on basis criteria of {φ−J,k} (or {ψ−J,k}) and

their number. Here, we consider dimVJ = 2J . Later, we will see that dimVJ75

equals to 2J+2 in trigonometric wavelet space.

3. Method of solution:

Here, we offer a method to solve (1). Inner product of two integral function

of f and g on [0, 2π] is defined as 〈f, g〉 = 1
2π

∫ 2π

0
f (x) g (x) dx.80
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Any square integrable function f (n) (x) can be written as a finite linear combi-

nation of scaling function basis as follows

f (n) (x) =
2J∑

k=1

c−J,kφ−J,k (x) (2)

With n times integrations of the both sides of the equation(2), we have :

∫ x

0

∫ x

0

...

∫ x

0︸ ︷︷ ︸
n

f (n) (t) dtdt...dt =
2J∑

k=1

c−J,k

∫ x

0

∫ x

0

...

∫ x

0︸ ︷︷ ︸
n

φ−J,k (t) dtdt...dt. (3)

85

Now, we simply the right side of equation (3) using following formula

∫ x

0

∫ x

0

...

∫ x

0

A

︸ ︷︷ ︸
γ

(x) dtdt...dt =
1

(γ − 1)!

∫ x

0

(x− t)γ−1
A (t) dt,

and the left side using the fact that the nth-order derivative of the function f(x)

is integrated n times. So we obtain the numerical solution as following .

fnumJ (x) = f∗J (x) =
2J∑

k=1

c−J,k

∫ x

0

(x− t)n−1

(n− 1)!
φ−J,k (t) dt+

n−1∑

i=0

xi

i!
f (i)(0). (J ∈ N) (4)

Our goal is calculating coefficients of c−J,k, then by substituting c−J,k in (4),90

we obtain numerical solution f∗J (x).

Now we obtain f (m)(x), so we integrates n-m times of the both sides of the

equation (2) and similar to the before process, we find f (m)(x) that would be

as follows.

f (m)(x) =
2J∑

k=1

c−J,k

∫ x

0

(x− t)n−m−1

(n−m− 1)!
φ−J,k (t) dt+

n−m−1∑

i=0

xi

i!
f (i)(0). (5)

With substituting (2) and (5) in (1) we have95

2J∑

k=1

c−J,k

(
φ−J,k (x)−

∫ 2π

0

K (x, t)

(∫ t

0

(t− r)n−m−1

(n−m− 1)!
φ−J,k (r) dr

)
dt

)
=

g (x) +
n−m−1∑

i=0

f (i)(0)
i!

∫ 2π

0

K (x, t) tidt.
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As a result, the residual function will be as follows:

Rn (x) =
2J∑

k=1

c−J,k

(
φ−J,k (x)−

∫ 2π

0

K (x, t)

(∫ t

0

(t− r)n−m−1

(n−m− 1)!
φ−J,k (r) dr

)
dt

)

−g (x)−
n−m−1∑

i=0

f (i)(0)
i!

∫ 2π

0

K (x, t) tidt.

Now, if we apply the Galerkin method, we get100

〈Rn (x) , φp (x)〉 = 0, p = 1, 2, ..., 2J . And J ∈ N.

The following system of linear equations is obtained from the above relation:

2J∑

k=1

c−J,k

〈
φ−J,k (x)−

∫ 2π

0

K (x, t)

(∫ t

0

(t− r)n−m−1

(n−m− 1)!
φ−J,k (r) dr

)
dt, φ−J,p (x)

〉
=

〈
g (x) +

n−m−1∑

i=0

f (i)(0)
i!

∫ 2π

0

K (x, t) tidt, φ−J,p (x)

〉
, p = 1, 2, ..., 2J . (6)

Suppose [ap,k][c−J,k] = [bp] be matrix form of the linear system of equation (6),

ap,k, ck, and bp are the elements of coefficient matrix, elements of unknowns,

and the elements of known values. Obviously, ap,k and bp are obtained from the105

linear system (6) as (7) and (8), and the wavelet basis φ−J,k (x) and φ−J,p (x)

are known functions considering the wavelet basis type selected.

ap,k =
∫ 2π

0

φ−J,k (x)φ−J,p (x) dx−

∫ 2π

0

∫ 2π

0

K (x, t)φ−J,p (x)

(∫ t

0

(t− r)n−m−1

(n−m− 1)!
φ−J,k (r) dr

)
dxdt. (7)

That p, k = 1, 2, ..., 2J . And also,

110

bp =
∫ 2π

0

g (x)φ−J,p (x) dx+
n−m−1∑

i=0

f (i)(0)
i!

∫ 2π

0

∫ 2π

0

K (x, t) tiφ−J,p (x) dtdx. (8)

That p = 1, 2, ..., 2J .

Eventually, the values of the unknown elements cJ,k are obtained using the

matrix equation [c−J,k] = [ap,k]−1[bp], then by substituting c−J,k in (4), we

obtain numerical solution f∗J (x). Dimension of matrices [ap,k], [c−J,k], [bp] are

in order 2J × 2J , 2J × 1, 2J × 1. (J ∈ N)115
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4. Algorithm of the method

Here, an appropriate algorithm for solving equation (1) is offered.

1) Let {φ−J,k (x)}2
J

k=1 is the scaling functions basis and φ−J,k (x) ∈ Cn [0, 2π] .

A = [ap,k] that ap,k =
∫ 2π

0
φ−J,k (x)φ−J,p (x) dx−

∫ 2π

0

∫ 2π

0
K (x, t)φ−J,p (x)

(∫ t
0

(t−r)n−m−1

(n−m−1)! φ−J,k (r) dr
)
dxdt.120

B = [bp] that bp =
∫ 2π

0
g (x)φ−J,p (x) dx+

∑n−m−1
i=0

f(i)(0)
i!

∫ 2π

0

∫ 2π

0
K (x, t) tiφ−J,p (x) dtdx.

f∗J (x) =
∑2J

k=1 c−J,k
∫ x
0

(x−t)n−1

(n−1)! φ−J,k (t) dt +
∑n−1
i=0

xi

i! f
(i)(0). (J ∈ N) be the

numerical solution.

C = [c−J,k] that c−J,k are unknown.

2) If s ≥ n, (s = 0, 1, 2, ...,m.) the solution is not discussed.125

3) If s < n By solving the system of C = A−1B, the unknown coefficients c−J,k

are obtained and go to 4 phase.

4) Substitute {c−J,k}2
J

k=1 in f∗J (x) =
∑2J

k=1 c−J,k
∫ x
0

(x−t)n−1

(n−1)! φ−J,k (t) dt+
∑n−1
i=0

xi

i! f
(i)(0). (J ∈

N).

5. Convergence Analysis130

We use orthogonal projection operator PJ(f) to provide the convergence

analysis that J ∈ N and known. Assume that matrix [a]p×k is invertible,

A−1
J = [ap,k]−1, c−J,k is exact coefficient, c∗−J,k denotes the numerical approx-

imation to the wavelet coefficients c−J,k, PJ (f) (x) =
∑2J

k=1 c−J,kφ−J,k (x) is

exact solution projection operator, let P ∗J (f) (x) =
∑2J

k=1 c
∗
−J,kφ−J,k (x) be a135

numerical approximation to PJ(f). P (n)
J (f) and P

(s)
J (f) are functions projec-

tion operators f (n) (x) and f (s) (x).

We proof if J , J1, J2 →∞ then f (x)→ P ∗J (f) or ‖f (x)− P ∗J (f)‖∞ = 0.

‖f (x)− P ∗J (f)‖∞ ≤ ‖f (x)− PJ (f)‖∞ + ‖PJ (f)− P ∗J (f)‖∞. According to

the Theorem 5 we have ‖f (x)− PJ (f)‖∞ ≤ c2−Jα, for some constant c. Now,140

we find an upper bound for ‖PJ (f)− P ∗J (f)‖∞. According to Hint 1, we have:

‖PJ (f)− P ∗J (f)‖∞ ≤

∣∣∣∣∣∣

2J∑

k=1

(
c−J,k − c∗−J,k

)
φ−J,k (x)

∣∣∣∣∣∣
≤
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∥∥c−J,k − c∗−J,k
∥∥
∞

2J∑

k=1

|φ−J,k (x)| ≤

∥∥c−J,k − c∗−J,k
∥∥
∞ 2

−J
2

2J∑

k=1

∣∣φ
(
2−Jx− k

)∣∣ ≤
∥∥c−J,k − c∗−J,k

∥∥
∞ 2

−J
2 M1. (9)

Now, we find a upper bound for
∥∥∥c−J,k − c∗−J,k

∥∥∥
∞

. According to (1) we had,

f (n) (x) = g (x) +
∫ 2π

0

K (x, t) f (s) (t) dt.

So145

P
(n)
J (f)−P (n)

J (f)+f (n) (x) =
∫ 2π

0

K (x, t)
[
f (s) (t)− P (s)

J (f) + P
(s)
J (f)

]
dt +g (x) .

Or

P
(n)
J (f) (x) =

∫ 2π

0

K (x, t)P (s)
J (f) (t) dt+

g (x) + P
(n)
J (f) (x)− f (n) (x) +

∫ 2π

0

K (x, t)
(
f (s) (t)− P (s)

J (f) (t)
)
dt

︸ ︷︷ ︸
∧
g(x)

(10)

If
∧
g (x) = g (x)+P (n)

J (f) (x)−f (n) (x)+
∫ 2π

0
K (x, t)

(
f (s) (t)− P (s)

J (f) (t)
)
dt. (11)

From (10) we can write,

150

P
(n)
J (f) (x) =

∫ 2π

0

K (x, t)P (s)
J (f) (t) dt+

∧
g (x) . x ∈ [0, 2π] (12)

And similar (4.8) from [19] we can write

P
(n∗)
J (f) (x) =

∫ 2π

0

K (x, t)P (m∗)
J (f) (t) dt+g (x) . x ∈ [0, 2π] (13)

Although (4.8) is written for a limited number of points, but (4.8) is true for

every x ∈ [0, 2π].

By solving the integro-differential equations (12) and (13) according to the155

method in Section 3 ([ck] = [ap,k]−1[bp]) and using (8), we have,

c−J,k = A−1
J

[∫ 2π

0

∧
g (x)φ−J,p (x) dx+

n−m−1∑

i=0

f (i)(0)
i!

∫ 2π

0

∫ 2π

0

K (x, t) tiφ−J,p (x) dtdx.

]

p×1

8



c∗−J,k = A−1
J

[∫ 2π

0
g (x)φ−J,p (x) dx+

∑n−m−1
i=0

f(i)(0)
i!

∫ 2π

0

∫ 2π

0
K (x, t) tiφ−J,p (x) dtdx

]
p×1

.

Thus

160

sup
∣∣c−J,k − c∗−J,k

∣∣ ≤
∥∥A−1

J

∥∥
∞ sup

∣∣∣∣
∫ 2π

0

(
g (x)− ∧g (x)

)
φ−J,p (x) dx

∣∣∣∣ ≤

2π
∥∥A−1

J

∥∥
∞ sup

∣∣∣∣g (x)− ∧g (x)
∣∣∣∣ sup |φ−J,p (x)| ≤ 2πM2

∥∥A−1
J

∥∥
∞ sup

∣∣∣∣g (x)− ∧g (x)
∣∣∣∣ (14)

Now we find a bound for sup
∣∣∣∣g (x)− ∧g (x)

∣∣∣∣ . Equation (11) was the following

form.

∧
g (x) = g (x) + P

(n)
J (f) (x)− f (n) (x) +

∫ 2π

0

K (x, t)
(
f (s) (t)− P (s)

J (f) (t)
)
dt.

So

165

g (x)− ∧g (x) = f (n) (x)− P (n)
J (f) (x) +

∫ 2π

0

K (x, t)
(
P

(s)
J (f) (t)− f (s) (t)

)
dt.

Thus,

sup
∣∣∣∣g (x)− ∧g (x)

∣∣∣∣ ≤ sup
∣∣∣f (n) (x)− P (n)

J (f) (x)
∣∣∣+

sup
∫ 2π

0

|K (x, t)|
∣∣∣f (s) (t)− P (s)

J (f) (t)
∣∣∣ dt ≤

sup |f (n) (x)−P (n)
J (f) (x) |+2π sup |K(s, t)||f (s) (t)−P (s)

J (f) (t) |. (15)

According Theorem 5 when J −→∞, ‖f (x)− PJ (f) (x)‖∞ = 0, or170

PJ (f) (x) = f (x), thus
∥∥∥f (n) (x)− P (n)

J (f) (x)
∥∥∥
∞

=
∥∥f (n) (x)− f (n) (x)

∥∥
∞ =

0, and also
∥∥∥f (s) (x)− P (s)

J (f) (x)
∥∥∥
∞

=
∥∥f (s) (x)− f (s) (x)

∥∥
∞ = 0. Thus there

are J1 and J2 that

sup |f (n) (x)− P (n)
J (f) (x) |+ 2π sup |K(s, t)||f (s) (t)− P (s)

J (f) (t) | ≤
c12−J1+2πMc22−J2 , for some constant c1 and c2. (16)175

we can obtain a bound using relations (16), (14) and (9) for ‖PJ (f)− P ∗J (f)‖∞
as following

‖PJ (f)− P ∗J (f)‖∞ ≤ 2(−J2 +1)πM1M2‖A−1‖∞(c12−J1 + 2πMc22−J2), for some

9



constant c1 and c2. Thus

‖f (x)− P ∗J (f)‖∞ ≤ ‖f (x)− PJ (f)‖∞ + ‖PJ (f)− P ∗J (f)‖∞ ≤180

c2−Jα + 2(−J2 +1)πM1M2‖A−1
J ‖∞(c12−J1 + 2πMc22−J2). For some constant c,

c1, c2, and the convergence analysis is complete.

(The second argument for (16) inequality: f (n) (x) and P
(n)
J (f) (x) satisfy in

condition of Theorem 4, thus there is J
′

that
∥∥∥f (n) (x)− P (n)

J (f) (x)
∥∥∥
∞
≤

c2−J
′
).185

6. Numerical examples

In this section we present some numerical examples to illustrate the efficiency

of method. In all of the examples, trigonometric scaling functions have been

used as wavelet basis. Hence, prior to presenting the examples, explanations

are provided on trigonometric wavelets from [10]. In order to analyze the error190

of the method, we use the following relations in Examples 1 and 2.

‖EJ‖∞ = ‖f(xj)−f∗J (xj)‖∞ = sup{|f(xj)−f∗J (xj)| : xj = jπ
2000 , j = 0, 1, 2, ..., 1000}.

Absolute error=|f(xj)− f∗J (xj)| : xj = π/20, 3π/20, π/4, 7π/20, 9π/20.

To start talking about trigonometric wavelets, we introduce Dirichlet kernel and

conjugate Dirichlet kernel195

D` (x) =
1
2

+
∑̀

k=1

cos (kx) =





sin(`+1/2)x
2 sin(x/2) , x /∈ 2πZ

`+ 1
2 , x ∈ 2πZ.

∼
D (x) =

∑̀

k=1

sin (kx) =





cos(x/2)−cos(`+1/2)x
2 sin(x/2) , x /∈ 2πZ

0, x ∈ 2πZ.

Trigonometric wavelet scaling functions φ0
−J,n(x), φ1

−J,n(x) and their details are

defined as follows:

φ0
−J,0(x) =

1
22J+1

2J+1−1∑

`=0

D`(x).

200

φ1
−J,0(x) =

1
22J+1

(D̃2J+1−1(x) +
1
2

sin(2J+1x)).

10



Lemma 5.1 For any J ∈ N , we have

φ0
J,0 (x) =





1
22J+2

sin2(2Jx)
sin2( x2 ) , x /∈ 2πZ

1 , x ∈ 2πZ

φ1
J,0 (x) =





1
22J+2

(
1− cos

(
2J+1x

))
cot x2 , x /∈ 2πZ

0 , x ∈ 2πZ

(Proof. [10].)

And also

205

φ0
−J,n(x) = φ0

−J,0(x− x−J,n), φ1
−J,n(x) = φ1

−J,0(x− x−J,n).

Where x−J,n = nπ
2J

, n = 1, 2, . . ., 2J−1. And J ∈ N .

For J ∈ N , the spaces VJ are defined by

VJ = span
{

1, cosx, ..., cos(2J+1 − 1)x, sinx, ..., sin2J+1x
}
.

Thus dimVJ = 2(J+2), and coefficients matrix dimension of linear system (6) in

trigonometric wavelet space is 2J+2 × 2J+2. [10].

Consequently, [c−J,k]2J+2×1 = [ap,k]−1
2J+2×2J+2 [bp]2J+2×1.210

Example 1. We consider integro-differential equation as follow





f (10) (x) = cosx− (1− π2

4 )sinx+ 2x3 + (π − 4) +
∫ π/2
0

(x3 + t2sinx)f (7) (t) dt.

f (i) (0) =





1, i = 1, 2, 5, 6, 9.

−1, i = 0, 3, 4, 7, 8.

The exact solution is f(x) = sinx − cosx. The results are shown in Fig 1

and Table 1.215

Example 2. We consider integro-differential equation as follow

11







f (7) (x) = g(x) +
∫ π/2
0

(x2t3 − e2t)f (4) (t) dt.

f (i) (0) =





0, i = 1, 5.

−1, i = 0, 2, 4, 6.

−2, i = 3.

That

g(x) = 8
15 + 2

5e
π− 1

3e
3π
2 −ex+ 1

8 (96−6π2 +e
π
2 (−48+24π−6π2 +π3))x2−cosx.

The exact solution is f(x) = sinx − ex. The results are shown in Fig 2 and220

Table 2.

Table 1: Absolute errors and ‖EJ‖∞ for numerical solution of Example 1.

x J = 1 J = 2 J = 3 J = 10 J = 15

π/20 7.32E-1 7.43E-2 7.72E-3 8.01E-10 3.12E-15

3π/20 2.45E-1 3.92E-2 2.61E-3 2.70E-10 2.31E-15

π/4 3.12E-2 1.21E-3 2.21E-4 2.93E-11 2.51E-16

7π/20 3.79E-1 2.94E-2 2.95E-3 7.22E-10 8.93E-15

9π/20 8.21E-1 7.92E-2 9.12E-3 1.71E-9 3.23E-14

‖f(xj)− f∗J (xj)‖∞ 9.68E-1 9.76E-2 2.28E-2 7.17E-9 1.57E-14

Table 2: Absolute errors and ‖EJ‖∞ for numerical solution of Example 2.

x J = 1 J = 2 J = 3 J = 10 J = 15

π/20 2.40E-1 9.90E-2 2.27E-3 4.96E-10 7.96E-16

3π/20 9.17E-2 6.07E-2 8.72E-4 2.95E-10 2.08E-16

π/4 1.03E-1 7.18E-3 1.24E-3 1.94E-11 8.11E-17

7π/20 3.42E-1 6.14E-2 4.25E-3 3.24E-10 4.68E-16

9π/20 6.28E-1 1.46E-1 8.45E-3 7.27E-10 8.73E-16

‖f(xj)− f∗J (xj)‖∞ 7.14E-1 2.59E-1 1.32E-2 9.34E-10 1.04E-15

12



7. Conclusion

In this paper, we reduce integro-differential equation of an arbitrary order to

a linear system of equations using the Galerkin method by an arbitrary wavelet

basis. For the convergence analysis, we proof that the numerical solution of225

integro-differential equation converge to the exact solution. Figs. 1, 2, shown

the numerical solution convergence to exact solution.
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Figure 1: Plots of the exact and numerical solutions for Example 1.
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