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a b s t r a c t

This paper concerns the numerical solution of a fully nonlinear parabolic double obstacle
problem arising from a finite portfolio selection with proportional transaction costs. We
consider optimal allocation ofwealth amongmultiple stocks and a bank account in order to
maximize the finite horizon discounted utility of consumption. The problem ismainly gov-
erned by a time-dependent Hamilton–Jacobi–Bellman equation with gradient constraints.
We propose a numerical method which is composed of Monte Carlo simulation to take
advantage of the high-dimensional properties and finite differencemethod to approximate
the gradients of the value function. Numerical results illustrate behaviors of the optimal
trading strategies and also satisfy all qualitative properties proved in Dai et al. (2009) and
Chen and Dai (2013).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents the numerical solution of an optimal investment–consumption problem in the presence of propor-
tional transaction costs during a finite time period. Given a known initial wealth, the objective of an investor is to decide the
best consumption and investment strategy which maximizes the expected discounted utility of consumption over the finite
investment period. In the absence of transaction costs and for specific utility functions, the solution can be exactly obtained
and an investor’s optimal trading strategy is to maintain a constant proportion of wealth invested in risky stocks, which
is called the Merton proportion shown by Merton [1]. This constant proportion depends on the investor’s risk preference
and also the market parameters. Merton’s strategy, simply stated, is to continuously rebalance portfolio holdings in order to
keep the fraction of investment in risky assets constant. However, in the presence of transaction costs, a continuous portfolio
rebalancing processmay incur infinite costs. Thus, the question arises:what is the optimal strategy if there are transaction costs
in the market?

Transaction cost appears in different ways, as a fixed commission or a proportion to the size of trade. This paper deals
with the case where there is only proportional transaction costs; for a review of constant cost or a mixture of both, see [2]
and references therein. Magill and Constantinides [3] are the first to introduce proportional transaction costs into Merton’s
model. They provide a valuable insight on the optimal strategy; i.e. an investor should maintain the fraction of wealth in
risky assets inside a so-called no-trading region and trading only takes place along the boundary of the no-trading region. As
a consequence, the crucial question is: how to identify the optimal no-trading region which corresponds to the optimal trading
strategy?
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Under certain restricted settings, this question has been partially answered. When the market is confined to consist of
a single risky asset and a bank account, Davis and Norman [4] give a rigorous analysis of the classical Merton’s problem
with proportional transaction costs over infinite time horizon. The optimal policy is formulated as a nonlinear free boundary
problem which separates the buying and the selling regions from the no-trading one. Their paper contains detailed char-
acterization, both theoretical and numerical, of the value function and optimal policies under certain assumptions. Shreve
and Soner [5] relax assumptions of Davis and Norman [4]’s problem, and apply the viscosity solution approach to provide
regularity and existence results. Many other papers have carried out an asymptotic analysis including [6,7], and [8]. A
thorough convergence proof for general utility functions is studied by Soner and Touzi [9], and an extension to several risky
assets is considered by Possamaï et al. [10]. Other numerical schemes have been proposed by Tourin and Zariphopoulou
[11,12] for general utility functions, and by Muthuraman and Kumar [13] for a model with more than one risky asset.
Nevertheless, these papers only deal with the infinite horizon scenario where the no-trading region does not evolve in time,
and are based on finite difference/element method which are not efficient in higher dimensions.

Theoretical analysis on the finite-time problem has been studied recently and is restricted to the no consumption case
with a single risky asset. Liu [14] first shows analytical properties of the optimal investment problem with a deterministic
finite horizon. Dai andYi [15] establish a link between the singular control problemand the obstacle problem, and completely
characterize the behaviors of the resulting free boundaries. Numerical solution of this optimal investment problem is
proposed by Arregui and Vázquez [16]. More recently, there is a plethora of literature devoted to the characterization of
optimal investment–consumption strategy. Dai et al. [17] consider the investment and consumption optimization decision
in finite time horizon, and characterize the behaviors of free boundaries for a single risky asset case. Dai and Zhong [18]
propose the penalty method to demonstrate the numerical solution to a singular control problem arising from portfolio
selectionwith proportional transaction costs. Bichuch [19] provides a proof to the same problemwith power utility function
by expanding the value function into a power series, and obtains a ‘‘nearly optimal’’ strategy.

In the present paper, we propose a numerical scheme based on Monte Carlo simulation for the optimal investment–
consumption problem with proportional transaction costs and deterministic time horizon. As discussed in the next section,
the value function of such control problem is characterized by a Hamilton–Jacobi–Bellman (HJB) equation. The existing
numerical schemes for this HJB equation in the literature including [11,12] and [13] are based on finite difference/element
method, which are only practical in low dimensional problems.Moreover, the dimension can be higher inmany applications,
especially in finance problems. Thus, we propose a numerical technique that combines Monte Carlo simulation with finite
difference discretization so as to solve the nonlinear double obstacle problem, and aim to characterize the free boundaries
and qualitative properties of the solution.

Our numerical scheme is strongly motivated by the aforementioned work of Fahim et al. [20] who introduce the
backward probabilistic numerical scheme combined with Monte Carlo and finite difference method for high-dimensional
fully nonlinear partial differential equations. They decompose the scheme into two steps. First, theMonte Carlo step includes
isolating the linear generator of some underlying diffusion process to split the PDE into this linear part and a remaining
nonlinear one. Then, a projection method is employed to evaluate the remaining nonlinear part of the PDE. In this paper,
we will modify the numerical method to incorporate the free boundaries on the no-trading region. Moreover, we will show
that the proposed method can work in the case of correlated stocks. It is worth noticing that the type of free boundaries in
this current problem is different from the obstacle problem such as the one in [21] and therefore the scheme developed in
this paper is not in the same nature of Monte Carlo scheme. We believe the motivation behind this proposed method can be
extended to various HJB for singular control problems.

This paper is organized as follows. In Section 2 the optimal investment and consumption problem with proportional
transaction costs is presented. Section 3 is dedicated to some simplifications of the control problem in Section 2. The
numerical scheme composed of Monte Carlo simulation and finite difference discretization is proposed in Section 4. In
Section 5, we show that the implementation of the proposed numerical scheme is compatible with the theoretical results
in [17] and [22] in a single risky asset or two risky assets cases. Several examples that illustrate performances of the proposed
numerical method are also presented in this section. And Section 6 draws some conclusion.

2. The optimal investment–consumption problem

We consider an optimal investment–consumption problem in finite time horizon T ∈ (0, ∞) with proportional
transaction costs, the model being the same in [18] and [22].

Suppose a continuous time market consisting of one risk-free asset and multiple risky assets available for investment.
The risk-free asset (bank account), denoted by S0t , pays an interest rate r > 0 continuously and thus can be expressed as

dS0t = rS0t dt. (2.1)

Let N be the number of available risky investments, called ‘‘stocks’’ hereafter. The N stocks have constant mean rates of
return α1, α2, . . . , αN . We denote the vector of N stock prices by St = (S1t , S

2
t , . . . , S

N
t )

′ and the mean rates of return by
α = (α1, α2, . . . , αN )′. The evolution of stocks can be written as

dSt = diag(St )(αdt + σdBt ), (2.2)
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where diag(St ) is the N × N matrix formed with elements of St as its diagonal, σ denotes the N × N positive definite
covariance structure, and {Bt : t ∈ [0, T ]} is a standard N-dimensional Brownian motion defined on a filtered probability
space (Ω,F, {Ft}0≤t≤T ,P).

Assume that an investor holds a portfolio (Xt , Yt )′ = (Xt , Y 1
t , . . . , YN

t )′, where Xt and Y i
t are dollar amount invested in

the bank account and in the ith stock at time t . His problem is to choose a consumption and investment strategy over
the deterministic horizon in order to maximize his objective: the discounted utility of consumption during the investment
period. We require that the consumption ct must be non-negative and occur from cash in the bank, and its process ct should
be adapted to Ft and integrable for any finite t , that is,∫ t

0
csds < ∞ ∀t ≥ 0. (2.3)

Now we introduce two Ft-adapted processes Lt = (L1t , . . . , L
N
t )

′ and Mt = (M1
t , . . . ,M

N
t )

′ which are non-negative, non-
decreasing, and right continuous with left limits (RCLL). Lit represents the cumulative dollar value spent for the purchase of
stock i before incurring transaction costs, whereasM i

t represents the cumulative amount of money obtained from the sale of
stock i. Denote the transaction costs for buying and selling stocks by λ = (λ1, λ2, . . . , λN )′ ≥ 0 andµ = (µ1, µ2, . . . , µN )′ ≥

0 respectively. To be more precise, buying a unit of stock iwill cost (1 + λi) in cash from the bank and selling a unit of stock
iwill receive (1 − µi) in cash added into the bank. We assume that λi + µi > 0, i = 1, 2, . . . ,N . With transaction costs and
consumption, the controlled evolution of Xt and Yt can be described by the following equations

dXt = (rXt − ct )dt − (e + λ) · dLt + (e − µ) · dMt , (2.4)

dYt = diag(Yt ) [αdt + σdBt ] + dLt − dMt . (2.5)

Here, ‘‘·’’ is the standard dot product and e is a vector of ones with appropriate length.
We require the investor’s net wealth at any time to be positive because he would not be bankrupt if he is forced

to liquidate his position. If taking transaction costs into consideration, the investor’s net wealth at time t is given by
Xt +

∑N
i=1 min

[
(1 + λi)Y i

t , (1 − µi)Y i
t

]
. Therefore, we define the solvency region Sλ,µ as

Sλ,µ =

{
(x, y) ∈ (R,RN ) : x +

N∑
i=1

min [(1 + λi)yi, (1 − µi)yi] ≥ 0

}
. (2.6)

Given an initial position (X0, Y0)′ = (x, y)′ ∈ Sλ,µ, an investment–consumption strategy (ct , Lt ,Mt ) is called admissible if and
only if the portfolio position (Xt , Yt ) lies in Sλ,µ for all t ∈ [0, T ). LetAt (x, y) be the set of admissible strategies. The investor’s
objective consists of choosing an admissible strategy so as to maximize the expected discounted utility of accumulative
consumption and the terminal wealth, that is,

sup
(ct ,Lt ,Mt )∈A0(x,y)

Ex,y
0

[∫ T

0
e−βtU(ct )dt + e−βTU(WT )

]
, (2.7)

where β > 0 is the discount factor, Ex,y
t denotes the conditional expectation at time t given an initial endowment Xt = x,

Yt = y, WT is the terminal net wealth given by WT = XT +
∑N

i=1 min
[
(1 + λi)Y i

T , (1 − µi)Y i
T

]
, and U is the utility function

which belongs to the class of Constant Relative Risk Aversion (CRRA) utility functions, i.e.

U(c) =

⎧⎨⎩
cγ

γ
if γ < 1, γ ̸= 0,

log(c) if γ = 0.
(2.8)

Here γ is the relative risk aversion coefficient that describes the investor’s risk preference. These utility functions are well-
known and have been used very wildly in modeling the risk preference of an investor. Then we define the value function
by

V (x, y, t) = sup
(ct ,Lt ,Mt )∈At (x,y)

Ex,y
t

[∫ T

t
e−β(s−t)U(cs)ds + e−β(T−t)U(WT )

]
, (2.9)

for (x, y) ∈ Sλ,µ, t ∈ [0, T ).

3. The HJB equation and scaling

By applying the dynamic programming arguments [cf. Section IV.3, Fleming and Soner [23]], the value function V of the
stochastic control problem (2.9) satisfies the following Hamilton–Jacobi–Bellman (HJB) equation:

0 = min
{

− ∂tV −
1
2

N∑
i,j=1

aijyiyj∂yiyjV −

N∑
i=1

αiyi∂yiV − rx∂xV + βV − U∗(∂xV ),

min
i

[
−(1 − µi)∂xV + ∂yiV

]
, min

i

[
(1 + λi)∂xV − ∂yiV

]}
, (3.1)
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with the terminal condition

V (x, y, T ) = U

(
x +

N∑
i=1

min
[
(1 + λi)yi, (1 − µi)yi

])
, (3.2)

where a = [aij]Ni,j=1 = σσ ′ and

U∗(ν) = sup
c≥0

{U(c) − cν} =

⎧⎨⎩
1 − γ

γ
(ν)

γ
γ−1 if γ < 1, γ ̸= 0,

− log(ν) − 1 if γ = 0.

In this paper, we focus on the computational scheme to solve Eq. (3.1) with terminal condition (3.2).

Remark 3.1. Eq. (3.1) can be interpreted in the variational inequality sense, i.e.

(1) The value function V satisfies all three following inequalities

0 ≤ − ∂tV −
1
2

N∑
i,j=1

aijyiyj∂yiyjV −

N∑
i=1

αiyi∂yiV − rx∂xV + βV − U∗(∂xV ),

0 ≤min
i

[
−(1 − µi)∂xV + ∂yiV

]
,

0 ≤min
i

[
(1 + λi)∂xV − ∂yiV

]
.

(2) If 0 < mini
[
−(1 − µi)∂xV + ∂yiV

]
and 0 < mini

[
(1 + λi)∂xV − ∂yiV

]
, we must have

0 = −∂tV −
1
2

N∑
i,j=1

aijyiyj∂yiyjV −

N∑
i=1

αiyi∂yiV − rx∂xV + βV − U∗(∂xV ).

Following [18], we use the homothetic property of the value function to reduce the dimensionality of the problem for
further numerical analysis. For any constant ρ > 0, the ‘‘homothetic property’’ of the value function is as follows:

V (ρx, ρy, t) =

⎧⎨⎩
ργ V (x, y, t) if γ < 1, γ ̸= 0,(1 − e−β(T−t)

β
+ e−β(T−t)) log(ρ) + V (x, y, t) if γ = 0.

This property allows us to reduce the dimension of the original problem from N + 1 to N by adopting the wealth fraction as
state variables. Indeed, we define a new function

ϕ(y, t) = V (1 − e · y, y, t), (3.3)

where e is a vector of ones with length N , and y represents the vector of the fraction of wealth invested in each stock when
the total wealth w is one (w = 1). It is clearly sufficient to compute ϕ(y, t) since the original value function is then given by

V (x, y, t) = ϕ

(
y

x + e · y
, t
)
(x + e · y)γ .

The derivation of theHJB equation and the computational procedure for both the log utility and the power utility functions
are the same. Therefore we provide a detailed description of the power utility case only. In terms of ϕ(y, t), the HJB equation
in (3.1) for the power utility function (U(c) = cγ /γ ) becomes

0 = min
{
−∂tϕ − L̂ϕ, min

i
Ŝiϕ, min

i
B̂iϕ

}
, (3.4)

with the terminal condition

ϕ(y, T ) = γ −1
(
1 +

N∑
i=1

min {−µiyi, λiyi}
)γ

for y ∈ ΘN ,

where

ΘN
= {(y1, y2, . . . , yN ) ∈ RN

: 1 +

N∑
i=1

min {−µiyi, λiyi} ≥ 0},
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(a) Homotheticity property. (b) Θ2 region and Trading strategy.

Fig. 1. Trading and no-trading regions along thew = 1 cut at time t . (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

and

L̂ϕ =
1
2

N∑
i,j=1

ηij∂yiyjϕ +

N∑
i=1

bi∂yiϕ − ϑϕ +
1 − γ

γ

(
γ ϕ −

N∑
i=1

yi∂yiϕ

) γ
γ−1

, (3.5)

Ŝiϕ =

[
µiγ ϕ −

N∑
k=1

(−δik + µiyk)∂ykϕ

]
, (3.6)

B̂iϕ =

[
λiγ ϕ −

N∑
k=1

(δik + λiyk)∂ykϕ

]
, (3.7)

with

ηij = yiyj
N∑

k=1

N∑
ℓ=1

akℓ(δik − yk)(δjℓ − yℓ), (3.8)

bi =
1
2

N∑
k=1

N∑
ℓ=1

akℓykyℓ(γ − 1)(δik + δiℓ − 2yi) +

N∑
k=1

yk(δik − yi)(αk − r), (3.9)

ϑ = β − γ

(
r +

1
2

N∑
k=1

N∑
ℓ=1

akℓykyℓ(γ − 1) +

N∑
k=1

(αk − r)yk

)
. (3.10)

Here δij represents the Kronecker index with δij = 1 if i = j and δij = 0 otherwise. The above dimension reduction technique
has been wildly used; see, for example, [17] for N = 1, and [13] for N = 2 without the time variable.

We consider a portfolio which consists of a risk-free asset and two risky assets (N = 2) for illustration purpose. Before
adopting the homothetic property, this problem is three dimensions, and the polygon cone in Fig. 1(a) is the no-trading
region. When we apply the homothetic property and rewrite the value function V (x, y, t) by ϕ(y, t) defined in (3.3), we can
reduce the problem to two dimensions. The red region shown in Fig. 1(a) represents the no-trading region with the wealth
equals one cut at time t after dimension reduction.

Now we define the following representations for later use. Let

Bi = {(y, t) ∈ ΘN
× [0, T ) : B̂iϕ = 0}, (3.11)

Si = {(y, t) ∈ ΘN
× [0, T ) : Ŝiϕ = 0}, (3.12)

Ni = ΘN
× [0, T ) \ (Bi ∪ Si), (3.13)

where Bi, Si and Ni represent the buying region, selling region, and no-trading region with respect to the ith stock. For
illustration, we consider the case of N = 2 as well. Fig. 1(b) shows that the domain Θ2 at time t is partitioned into different
regions along the wealth equals one cut. In the area filled with gray, the investor should buy or sell one stock just enough
to push the fraction back to the no-trading region N1 ∩ N2. In the area filled with blue, it is not possible to trade only one
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stock to make the fraction reaching the no-trading region. Thus, two stocks should be transacted simultaneously to reach
the corner of inaction region N1 ∩ N2.

Although we can formulate the value function as the HJB equation presented in (3.4), the complete analytical solution
cannot be obtained. Also, the standard numericalmethods, such as finite differencemethod and finite elementmethod, work
only for low dimensional cases. Due to the curse of dimensionality and the lack of an exact solution, the development of
appropriate numerical methods are highly desirable to approximate the solution and provide qualitative properties under
different model parameter settings. Therefore, in the next section we propose a numerical scheme that combines Monte
Carlo simulation with finite difference discretization in order to solve this nonlinear variational inequality problem.

4. Numerical method

Asmentioned before, the main goal of this paper is to propose an appropriate numerical method in order to approximate
the solution of the optimal investment–consumption problemand consequently obtain the trading strategies.We first notice
that the main difficulties associated with the numerical solution of the HJB in (3.4) are twofold:

(1) the free boundary feature related to the double obstacle problem,

(2) the equation presents a nonlinear term in (3.5),
(
γ ϕ −

∑N
i=1yi∂yiϕ

) γ
γ−1

.

4.1. The two-step procedure

In order to overcome the free boundary feature, we will use a two-step procedure which extends the idea proposed
by Muthuraman and Kumar [13]. Step 1 solves the nonlinear second order PDE in the first part of the HJB equation while
step 2 updates the value function in different regions of the domain ΘN . To be more precise, we begin by finding the values
ϕ(y, t) for all y in the domain ΘN such that the first part of HJB equation in (3.4) holds true, that is,

− ∂tϕ − L̂ϕ = 0 for y ∈ ΘN , (4.1)

with the boundary condition

ϕ(y, t) =

{
0 if γ > 0,
−∞ if γ < 0, for y ∈ ∂ΘN , t ∈ [0, T ).

The reason that we set the boundary condition in (4.1) to be zero or negative infinity is because on the boundary of solvency
region, the investor is forced to liquidate his position at any time t and his net wealth on the boundary is zero. Since we
consider the power utility function, the utility of consumption is zero for γ > 0 and negative infinity for γ < 0 because of
zero net wealth. For the power utility function, we can set

ϕ(y, t) =

{
0 if γ > 0,
−∞ if γ < 0,

for y ∈ ∂ΘN
∪ (RN

\ ΘN ), t ∈ [0, T ) because the investor’s position never exits the solvency region. This will later become
useful in the numerical implementation where we have to define the value function at the discrete points outside the region
ΘN .

We also require that the other two formulas in (3.4) should be satisfied in the domain ΘN . Hence, in the next step our
procedure deals with the free boundary terms Ŝiϕ and B̂iϕ in (3.6) and (3.7) for all i = 1, 2, . . . ,N . We have to find the point
y∗ where Ŝiϕ(y∗, t) and/or B̂iϕ(y∗, t) are negative, and then adjust the value at the point such that the variational inequalities
hold true. Denote the trading strategy for buying and selling stocks at (y∗, t) by

υ(y∗,t)
= (1

{B̂1(y∗,t)<0}, . . . , 1{B̂N (y∗,t)<0})
′,

and

ϱ(y∗,t)
= (1

{Ŝ1(y∗,t)<0}, . . . , 1{ŜN (y∗,t)<0})
′,

where 1 is an indicator function. We update the value function at (y∗, t) by

ϕ(y∗, t) = ϕ(ȳ, t)

(
1 +

∑N
i=1 λiy∗

i υ
(y∗,t)
i −

∑N
i=1 µiy∗

i ϱ
(y∗,t)
i

1 +
∑N

i=1 λiȳiυ
(y∗,t)
i −

∑N
i=1 µiȳiϱ

(y∗,t)
i

)γ

. (4.2)

Here ȳ is the point that satisfies the following conditions:

(1) ȳ is the point that is closest to y∗ along the characteristic curves in the region which includes y∗,
(2) ȳ is the point on the boundary of the no-trading region facing the region to which y∗ belongs.
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Fig. 2. Illustration for the two-step procedure with N = 2 at time t . (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

This procedure will be repeated backward in time until a sequence of no-trading regions and trading strategies are obtained
at each time step.

For illustration purpose, we use Fig. 2 to convey the idea of the two-step procedure when N = 2 at a given time t . The
region inside the blue diamond refers to the domain Θ2. First, we have to solve ϕ(y, t) for y ∈ Θ2 satisfying the nonlinear
second order partial differential equation in (4.1). Once the values ϕ(y, t) are known, we check the gradient constraints Ŝiϕ
and B̂iϕ for i = 1, 2. The no-trading region filled with red meets the conditions Ŝiϕ ≥ 0 and B̂iϕ ≥ 0 for i = 1, 2, and thus
the value ϕ(y, t) in this region do not need to be changed. However, for example, if y∗

= (y∗

1, y
∗

2) marked green in Fig. 2 is the
point such that B̂1ϕ(y∗, t) < 0 and Ŝ2ϕ(y∗, t) < 0, y∗ is classified as an element in the set B1 ∩ S2 and also its value ϕ(y∗, t)
should be adjusted to meet the conditions B̂1ϕ(y∗, t) = 0 and Ŝ2ϕ(y∗, t) = 0. In Fig. 2, ȳ = (ȳ1, ȳ2) marked green is the point
which is closest to the point y∗ along the characteristic curves and also on the boundary of the no-trading region facing the
region to which y∗ belongs. Therefore we update the value function by

ϕ(y∗, t) = ϕ(ȳ, t)
(
1 + λ1y∗

1 − µ2y∗

2

1 + λ1ȳ1 − µ2ȳ2

)γ

.

It means that the investor should buy the first stock and sell the second one to rebalance his position so as to reach the corner
of no-trading region. For another example, ŷ = (ŷ1, ŷ2) marked orange in Fig. 2 is the point such that B̂1ϕ(ŷ, t) < 0, and then
we have to adjust its value function by

ϕ(ŷ, t) = ϕ(y̌, t)
(
1 + λ1ŷ1
1 + λ1y̌1

)γ

,

where y̌ is the point marked orange in Fig. 2 that is closest to ŷ along the characteristic curve in the B1 region.

4.2. The computational scheme for solving the nonlinear second order PDE

Due to the curse of dimensionality and the lack of an analytical solution, an appropriate numerical method for solving
high-dimensional fully nonlinear PDEs is highly desirable. Our numerical method is mainly motivated by the recent work
of Fahim et al. [20]. The computational scheme they provided consists of two parts. First, the Monte Carlo step includes
isolating the linear generator of some underlying diffusion process to split the PDE into this linear part and a remaining
nonlinear one. Next, discrete-time finite difference approximation is applied to evaluate the remaining nonlinear part of the
PDE along the underlying diffusion process. The first part takes the advantage of the high-dimensional property of Monte
Carlo method while the second part deals with the nonlinear term of the equation. In this paper, we modify the numerical
method to incorporate the free boundaries on the no-trading region.

4.2.1. Notation
We shall first introduce some notations. The collection of n × d matrices with real entries is denoted by M(n, d). For a

matrix A ∈ M(n, d), A′ represents its transpose and
√
A returns square root of each element in thematrix. For A, B ∈ M(n, d),
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we define A · B := Tr[A′B]. In particular, A and B are vectors of Rn when d = 1 and A · B reduces to the standard dot product.
D and D2 are the gradient and the Hessian matrix defined by

Dϕ =

( ∂ϕ

∂y1
,

∂ϕ

∂y2
, . . . ,

∂ϕ

∂yN

)′

and D2ϕ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2ϕ

∂y21

∂2ϕ

∂y1∂y2
· · ·

∂2ϕ

∂y1∂yN
∂2ϕ

∂y2∂y1

∂2ϕ

∂y22
· · ·

∂2ϕ

∂y2∂yN
...

...
. . .

...

∂2ϕ

∂yN∂y1

∂2ϕ

∂yN∂y2
· · ·

∂2ϕ

∂y2N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.3)

Let b = (b1, b2, . . . , bN )′ be a vector ofRN where bi is the coefficient of the first derivative of ϕ with respect to the variable
yi in (3.9), and η ∈ M(N,N) be a matrix with elements of ηij at row i and column j in (3.8). The diagonal matrix ξ ∈ M(N,N)
is defined by ξ := diag(η). Next, we determine the linear operator

LŶϕ := ∂tϕ + b · Dϕ +
1
2

ξ · D2ϕ.

Then the remaining nonlinear parts are represented as

F (y, t, ϕ,Dϕ,D2ϕ) :=
1
2

N∑
i,j=1,j̸=i

ηij∂yiyjϕ − ϑϕ +
1 − γ

γ

(
γ ϕ −

N∑
i=1

yi∂yiϕ

) γ
γ−1

.

Hence, the problem we have to deal with becomes

0 = −LŶϕ(y, t, ϕ,Dϕ,D2ϕ) − F (y, t, ϕ,Dϕ,D2ϕ) for y ∈ ΘN , t = [0, T ); (4.4)

ϕ(y, T ) = γ −1
(
1 +

N∑
i=1

min {−µiyi, λiyi}
)γ

for y ∈ ΘN . (4.5)

4.2.2. Discretization
Aswith any numerical scheme, the first step is to discretize the time space and the domain of state variables. Let h := T/n

be the time step, and tk = kh, k = 0, 1, . . . , n for a positive integer n. Suppose we have a uniform grid, denoted by G tk
∆y, for

the domain ΘN with the grid size ∆y = (∆y1, ∆y2, . . . , ∆yN )′ in each state variable direction. Denote a discretized point
with y = (y1, y2, . . . , yN )′ ∈ G tk

∆y at time tk by (y, tk).
Let Bt be an RN -dimensional standard Brownian motion defined in Section 2. Consider the one-step-ahead Euler

discretization of the diffusion Ŷ corresponding to the linear operator LŶ

Ŷ y,tk+1
h := y + b(y, tk)h +

√
ξ (y, tk) (Btk+1 − Btk ). (4.6)

If we assume that the nonlinear PDE in (4.1) has a solution, we follow from Itô’s formula and replace the process Ŷ by its
Euler discretization to get

Etk,y

[
ϕ(Ŷ y,tk+1

h , tk+1)
]

= ϕ(y, tk) + Etk,y

[∫ tk+1

tk

LŶϕ(Ŷs, s, ϕ,Dϕ,D2ϕ) ds
]

, (4.7)

where Etk,y := E[·|Ŷtk = y] is the conditional expectation, and Dκ is the κth order partial differential operator with respect
to the space variable y defined in (4.3). By approximating the integral, the value function ϕ(y, tk) can be evaluated as follows:

ϕ(y, tk) = Etk,y

[
ϕ(Ŷ y,tk+1

h , tk+1)
]

− h LŶϕ(y, tk,D0ϕ,D1ϕ,D2ϕ) + O(h), (4.8)

Dκϕ := Etk,y[D
κϕ(Ŷ y,tk+1

h , tk+1)], κ = 0, 1, 2. (4.9)

Since ϕ is also a solution to the PDE in (4.4) which means

LŶϕ(y, tk,D0ϕ,D1ϕ,D2ϕ) = −F (y, tk,D0ϕ,D1ϕ,D2ϕ),

we have the discretized approximation of the value function as follows:

ϕh(y, tn) := γ −1
(
1 +

N∑
i=1

min {−µiyi, λiyi}
)γ

for y ∈ G tn
∆y, (4.10)
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Algorithm 1Mixed Monte Carlo Simulation and Finite Difference Method Algorithm
Output: The value function ϕh(y, t), and the optimal buying and selling boundaries

1: Let h := T/n and tk = kh, k = 0, 1, · · · , n be the time step
2: Discretize the domainΘN into uniform grid, denoted by G tk

∆y, with the grid size∆y = (∆y1, ∆y2, · · · , ∆yN )′ in each state
variable direction

3: for each y ∈ G tn
∆y do

4: Set the value function ϕh(y, tn) at time tn according to its terminal condition in (4.10)
5: Evaluate ∂yiϕ

h(y, tn) and ∂yiyjϕ
h(y, tn) for i, j = 1, 2, · · · ,N in each state variable direction by centered-difference

approximation in (4.12) and (4.13)
6: end for
7: for ℓ = n − 1 ; ℓ ≥ 0 ; ℓ = ℓ − 1 do
8: for each y ∈ G tℓ

∆y do
9: GenerateM sample paths of Ŷ y,tℓ+1

h by the one-step-ahead Euler discretization in (4.6)
10: Estimate the values ϕh(Ŷ y,tℓ+1

h , tℓ+1), ∂yiϕ
h(Ŷ y,tℓ+1

h , tℓ+1), and ∂yiyjϕ
h(Ŷ y,tℓ+1

h , tℓ+1) by linear interpolation if the
simulated point Ŷ y,tℓ+1

h is not on the grid
11: Approximate Dκϕh for κ = 0, 1, 2 in (4.9) by ÊM

[Dκϕh(Ŷ y,tℓ+1
h , tℓ+1)] corresponding to the sample sizeM

12: Compute ϕh(y, tℓ) based on (4.11)
13: end for
14: for each y ∈ G tℓ

∆y do
15: Find the grid point y∗ where Ŝiϕh(y∗, tℓ) < 0 and/or B̂iϕ

h(y∗, tℓ) < 0 for i = 1, 2, · · · ,N in (3.6) and (3.7), and then
adjust the value ϕh(y∗, tℓ) by (4.2) such that the Ŝiϕh(y∗, tℓ) = 0 and/or B̂iϕ

h(y∗, tℓ) = 0
16: end for
17: end for

and for y ∈ G tk
∆y, k = 0, . . . , n − 1

ϕh(y, tk) := Etk,y

[
ϕh(Ŷ y,tk+1

h , tk+1)
]

+ h F (y, tk,D0ϕh,D1ϕh,D2ϕh). (4.11)

Once the linear operator LŶϕ is chosen, the remaining nonlinear parts are handled by means of classical centered
difference approximation. Let ei be the unit vector in the yi direction and then the first order term ∂yiϕ

h(y, tk) is discretized
by the centered difference approximation of the gradient, that is,

∂yiϕ
h(y, tk) ≈

ϕh(y + ∆yiei, tk) − ϕh(y − ∆yiei, tk)
2∆yi

. (4.12)

The cross derivative term ∂yiyjϕ
h is discretized as follows

∂yiyjϕ
h(y, tk) ≈

1
4∆yi∆yj

[
ϕh(y + ∆yiei + ∆yjej, tk) + ϕh(y − ∆yiei − ∆yjej, tk)

− ϕh(y + ∆yiei − ∆yjej, tk) − ϕh(y − ∆yiei + ∆yjej, tk)

]
.

(4.13)

Once we have the set of one-step-ahead random path simulations Ŷ y,tk+1
h , the iteration computes the discrete solution

ϕh(y, tk) at time tk from ϕh(y, tk+1) by (4.9)–(4.11). Note that if the simulated point Ŷ y,tk+1
h is not on the grid G tk

∆y, we will
approximate the value ϕh(Ŷ y,tk+1

h , tk+1), ∂yiϕ
h(Ŷ y,tk+1

h , tk+1), and ∂yiyjϕ
h(Ŷ y,tk+1

h , tk+1) by interpolation. The interpolated value
at a query point is based on linear interpolation of the values at neighboring grid points in each respective dimension.

In view of the above interpretation associated with the value function, our numerical scheme studied in this paper can be
expressed as a mixed Monte Carlo simulation and finite difference method. The Monte Carlo portion includes the choice of
an underlying diffusion process while the finite difference portion consists of the derivative approximation of the remaining
nonlinearity. We summarize the two-step iterative procedure in Algorithm 1.

Remark 4.1. The numerical method in Algorithm 1 is inspired by Fahim et al. [20] where they developed a Monte Carlo
scheme for fully nonlinear PDEs of the form
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0 = Lv + G(y, t, v,Dv,D2v)
v(T , y) = g(y)

where L is a linear parabolic operator and G is a nonlinear parabolic operator. In the numerical scheme of Fahim et al. [20],
they use the linear parabolic operatorL to generate sample paths of the diffusion process. Therefore, one has some flexibility
in choosing the underlying diffusion process of the samples paths; e.g. one can also choose a linear parabolic operator L1 to
generate the diffusion sample paths as long as the nonlinear term

F (y, t, ϕ,Dϕ,D2ϕ) := (L − L1)ϕ + G(y, t, ϕ,Dϕ,D2ϕ),

remains parabolic. G(y, t, r, p, γ ) : RN
×[0, T ]×R×Rn

×M(N,N) → R is called parabolic if∇γG is positive definite where
∇ denotes the vector differential operator.

The numerical scheme in Algorithm 1 sets

LŶϕ := L1ϕ = ∂tϕ + b · Dϕ +
1
2

diag(η) · D2ϕ

and leaves the off-diagonal terms

1
2

N∑
i,j=1,j̸=i

ηij∂yiyjϕ

for the nonlinear part. It is simply because the diffusion process simulated by this parabolic operator is less complicated
when we have only diagonal elements. On the other hand, inclusion of off-diagonal second order derivative terms does
not affect the sufficient conditions in [20] for the convergence of the numerical scheme, i.e. consistency, stability and
monotonicity. For instance, monotonicity in [20] is guaranteed by the assumption that Tr[diag(η)−1

∇γ F ] ≤ 1; that is,
the diffusion coefficient in L1 dominates the derivative of the nonlinear operator F with respect to the component of D2v.
Since L1 has the diagonal elements of the second order derivative and L − L1 has only the off-diagonal elements, we have
Tr[diag(η)−1

∇γ F ] = Tr[diag(η)−1
∇γG].

It is worth mentioning that the adjustment in Step 15 of Algorithm 1 to handle the free boundary makes it difficult to
show the scheme is monotone. Therefore, we restrict our study to the numerical convergence of the proposed scheme.

5. Numerical results

The objectives in this section are: (1) to examine the performance of the mixed Monte Carlo simulation and finite
difference method algorithm applying on the investment–consumption optimization problem; (2) to indicate the behaviors
of optimal trading strategies.

5.1. Test 1

In this first example, we consider the following set of financial parameters:

N = 1, r = 0.07, α1 = 0.12, σ11 = 0.4, β = 0.1, γ = 0.2, µ1 = λ1 = 0.05,

and solve the problem for the time interval t ∈ [0, 5]. The theoretical properties of the solution and free boundaries to the
problem (3.4) for N = 1 case are presented in [17]. We will use the following proven statements to verify the numerical
results obtained from our mixed Monte Carlo/finite difference method.

Let

τ =
1

α1 − r
log
( 1 + λ1

1 − µ1

)
and ỹ = −

α1 − r − (1 − γ )σ 2
11

α1 − r
. (5.1)

According to Theorem5.4 in [17], the two free boundaries Bt and St for theN = 1 case should satisfy the following properties:

(1) for t ∈ [0, T ),

Bt < St , and St ≥ ST− =
1

1 + (1 − µ1)ỹ
;

moreover,

St = 1 if α1 − r − (1 − γ )σ 2
11 = 0,

St > 1 if α1 − r − (1 − γ )σ 2
11 > 0,

St < 1 if α1 − r − (1 − γ )σ 2
11 < 0.
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(a) α1 = 0.12. (b) Varying α1 .

Fig. 3. The estimated selling, buying, and no-trading regions for the N = 1 case. Test 1 parameters: r = 0.07, σ11 = 0.4, µ1 = λ1 = 0.05, γ = 0.2, β =

0.1.

(2) for t ∈ [0, T ),

Bt ≤
1

1 + (1 + λ1)ỹ
,

and

Bt = 0 if and only if t ∈ [T − τ , T ).

Nowwe have the values α1 − r − (1−γ )σ 2
11 ≈ −0.078 < 0 and τ ≈ 2.002 so that the selling and buying boundaries should

satisfy⎧⎪⎪⎨⎪⎪⎩
1

1 + (1 − µ1)ỹ
≈ 0.4029 ≤ St < 1 for t ∈ [0, T );

Bt ≤
1

1 + (1 + λ1)ỹ
≈ 0.3791 for t ∈ [0, T − τ ); and Bt = 0 for t ∈ [T − τ , T ).

Concerning the numerical method, we use the time step h = 0.01 and uniform grid with length ∆y = 0.01. Another
numerical parameter that we have used is the number of simulated sample paths M = 105. Fig. 3(a) shows the numerical
approximation of the optimal trading strategies in the fraction of wealth in stock at each time step. The upper function is
the selling boundary while the lower one is the buying boundary. Clearly, these two boundaries depend on time, and the
no-trading region is between these two boundaries. First, we have verified that the theoretical properties are satisfied for all
the grid points at every discrete time step. Also, it shows that the value of the buying boundary tends to zero as the time is
greater than T−τ ≈ 3which indicates that it is suboptimal to buy a risky asset soon as the finite horizon is approaching. This
phenomenon, known as ‘‘no-buying near maturity’’, was first proved by Dai et al. [17] with consumption and transaction
costs in finite time horizon. Furthermore, the optimal selling boundary is always greater than the buying one which mainly
points out that a risk averse investor prefers to buy low and sell high.

Fig. 3(b) shows the optimal trading boundaries with varying α1. We can observe that both the buying and selling
boundaries increase as the value of α1 increases, which indicates that the investor should hold a larger fraction of wealth in
risky asset when the return of risky asset is higher. If α1 < 0.198, the selling boundary is less than one which means it is
always suboptimal to leverage. However, leverage will be needed if α1 > 0.198. The obtained numerical results are again in
full agreement with the theoretical properties stated in [17] Theorem 5.4.

5.2. Test 2

In this second numerical test, the following financial parameter values have been considered:

N = 2, r = 0, β = 0.1, γ = 0.2, µ1 = λ1 = µ2 = λ2 = 0.05
α1 = 0.14, α2 = 0.12, a11 = 0.16, a22 = 0.1225,
(a) positive correlated: a12 = a21 = 0.028,
(b) negative correlated: a12 = a21 = −0.028,

and the investment period is set to be one year (T = 1). In this case, we investigate the optimal trading strategy for a risk
averse investor who can access two positively or negatively correlated stocks as well as a risk-free asset. We use the time
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(a) Θ2 region and trading strategy. (b) Enlarged no-trading region.

Fig. 4. The estimated selling, buying, and no-trading regions for the N = 2 case at time t = 0.9. Test 2 parameters: r = 0, α1 = 0.14, α2 = 0.12, a11 =

0.16, a22 = 0.1225, a12 = a21 = 0.028, µ1 = λ1 = µ2 = λ2 = 0.05, γ = 0.2, β = 0.1.

(a) Positive correlated: a12 = a21 = 0.028. (b) Negative correlated: a12 = a21 = −0.028.

Fig. 5. The estimated no-trading region for the N = 2 case at different time steps. Test 2 parameters: r = 0, α1 = 0.14, α2 = 0.12, a11 = 0.16, a22 =

0.1225, µ1 = λ1 = µ2 = λ2 = 0.05, γ = 0.2, β = 0.1.

step h = 0.01, uniform grid with length ∆y = (0.01, 0.01) in each dimension, and the number of simulated sample paths
M = 105.

Fig. 4 shows the decomposition of the domain Θ2 into selling (Si, i = 1, 2), buying (Bi, i = 1, 2), and no-trading
(Ni, i = 1, 2) regions at time t = 0.9 for the two positively correlated stocks case. It can be observed that the domain
Θ2 is partitioned into nine different regions, with the no-trading region N1 ∩N2 in the center surrounded by trading regions
S1∩S2, S1∩N2, S1∩B2,N1∩B2, B1∩B2, B1∩N2, and B1∩S2 in the clockwise order. In addition, the four intersections ∂S1∩∂S2,
∂S1 ∩ ∂B2, ∂B1 ∩ ∂S2, and ∂B1 ∩ ∂B2 are a singleton. This means that if the initial portfolio position is in B1 ∩ S2, for example,
the investor should buy the first stock and sell the second one to reach the unique corner ∂B1 ∩ ∂S2. The phenomena we
observed are consistent with rigorous analysis results proved in [22].

The numerical approximation of the no-trading region at different time steps is provided in Fig. 5 for both the two
positively and negatively correlated stocks cases. Here the expected rate of return for the first stock α1 = 14% is more
than that of the second stock α2 = 12% and transaction costs for buying and selling stocks are kept equal. Since the first
stock gives a higher rate of return, as expected the investor will not only put more fraction in the first stock but have a larger
inhibition to trade the first one. In Fig. 5(a) since these two stocks are positive correlated, the region of inaction can only
elongate along the main diagonal. An explanation of this behavior is that the investor does not lose much by having more
fraction in one stock and less in the other because one partially hedges the other. On the other hand, the result for the two
negatively correlated stocks case is displayed in Fig. 5(b). As we can see from the figure, the no-trading region elongates
along the anti-diagonal direction. This implies that when the price of one performs worse than usual, the other will likely
do better than usual. The gain in one stock is therefore likely to offset the loss in the other. Hence, the investor does not lose
much by having more fraction in both stocks. These observations are the same as the results obtained in [13] for the infinite
time horizon problem. Moreover, we can observe that B1 = 0 and B2 = 0 when the time approaches to the maturity of the
investment period, which confirms the ‘‘no-buying near maturity’’ phenomenon.
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(a) Mixed MC and FD algorithm. (b) Implicit FD method.

Fig. 6. The estimated selling, buying, and no-trading regions for the N = 2 case at time t = 0.9. Test 2 parameters: r = 0, α1 = 0.14, α2 = 0.12, a11 =

0.16, a22 = 0.1225, a12 = a21 = 0.028, µ1 = λ1 = µ2 = λ2 = 0.05, γ = 0.2, β = 0.1.

Remark 5.1. Muthuraman and Kumar [13] provide a computational method to solve the portfolio optimization problem
with infinite horizon. They use an iterative scheme that adapts the finite element method in order to capture the region
of inaction (please see [13] for more detail). Their problem does not depend on time, so it can be focused on finding the
no-trading region only. However, if we consider the same optimization problem with finite time horizon, different trading
regions should be characterized in order to adjust the value function based on the different regions.

We notice that if we follow the numerical scheme proposed byMuthuraman and Kumar [13] and adapt the implicit finite
differencemethod instead, we obtain the same no trading region. However, the estimated buying and selling regions are not
acceptable. Take N = 2 for example. Fig. 6 shows the comparison of results at time t = 0.9 obtained by the mixed Monte
Carlo simulation and finite difference method we proposed and the iterative scheme adapting the implicit finite difference
method using the same parameter settings in Test 2(a). Observe that when the iterative scheme adapting finite difference
method is applied, the numerical result illustrates B1 ̸= 0 and B2 ̸= 0 as the time approaches maturity, which obviously
violates the ‘‘no-buying near maturity’’ phenomenon. The implementation of the proposed Monte Carlo scheme could cure
this problem, and therefore gives a compatible result with the theoretical analysis.

5.3. Test 3

In this numerical test, we consider both the correlated and uncorrelated stocks cases with the following financial
parameter values:

N = 3, r = 0.07, β = 0.1, γ = 0.2, µ1 = λ1 = µ2 = λ2 = µ3 = λ3 = 0.1,
α1 = 0.14, α2 = 0.12, α3 = 0.1, a11 = 0.16, a22 = 0.1225, a33 = 0.09,
(a) uncorrelated: aij = 0, for i ̸= j,
(b) correlated: a12 = a21 = 0.014, a23 = a32 = 0.0105, a13 = a31 = 0.012,

and the investment period is set to be one year (T = 1). The numerical result is obtained by using time step h = 0.01, uniform
grid with length ∆y = (0.01, 0.01, 0.01) in each dimension, and the number of simulated sample paths M = 105. We test
the computational method for three stocks case for two reasons. First, we would like to demonstrate that the proposed
numerical method can be applied to high-dimensional problem. Second, it allows us to see if the insights we have in the two
stocks case carry over to higher dimensions.

Fig. 7 shows the approximated no-trading region for both the three independent stocks case and the three correlated
stocks case at time t = 0.9. First observe that the no-trading region is a closed region set bounded by six surfaces in three
dimensions. Also note that the no-trading region of the independent stocks case in Fig. 7(a) is close to a rectangular cubic
while theno-trading regionof the correlated stocks case in Fig. 7(b) is askew,which are consistentwithprevious observations
in the two dimensional case. Since the rate of return for the first stockα1 = 0.14 is greater than the other two, a large fraction
of wealth in the first stock can be expected, and it is obvious that fewer transactions will be made for the first one. Finally,
it also verifies the ‘‘no-buying near maturity’’ phenomenon as the time approaches the end of investment period for both
cases.

5.4. Test 4

In this numerical test, we consider the following financial parameter values:

N = 10, r = 0.07, β = 0.1, γ = −1, µi = λi = 10−6 for i = 1, . . . , 10,
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(a) Uncorrelated. (b) Correlated.

Fig. 7. The estimated no-trading region for the N = 3 case. Test 3 parameters: r = 0.07, β = 0.1, γ = 0.2, µ1 = λ1 = µ2 = λ2 = µ3 =

λ3 = 0.1, α1 = 0.14, α2 = 0.12, α3 = 0.1, a11 = 0.16, a22 = 0.1225, a33 = 0.09. (a) Uncorrelated: aij = 0, i ̸= j. (b) Correlated:
a12 = a21 = 0.014, a23 = a32 = 0.0105, a13 = a31 = 0.012.

Table 1
The estimated no-trading region for the N = 10 case at time t = 0.9.

No-trading region y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
Lower bound 0.21 0.21 0.20 0.20 0.16 0.16 0.08 0.08 0.08 0.08
Upper bound 0.22 0.22 0.21 0.21 0.17 0.17 0.08 0.08 0.08 0.08
Merton proportion 0.2188 0.2188 0.2041 0.2041 0.1667 0.1667 0.08 0.08 0.08 0.08

Test 4 parameters: N = 10, r = 0.07, β = 0.1, γ = −1, µi = λi = 10−6 for i = 1, . . . , 10, α =

(0.14, 0.14, 0.12, 0.12, 0.1, 0.1, 0.08, 0.08, 0.08, 0.08)′, a = diag(0.16, 0.16, 0.1225, 0.1225, 0.09, 0.09, 0.0625, 0.0625, 0.6025, 0.0625),
aij = 0, for i ̸= j.

α = (0.14, 0.14, 0.12, 0.12, 0.1, 0.1, 0.08, 0.08, 0.08, 0.08)′,
a = diag(0.16, 0.16, 0.1225, 0.1225, 0.09, 0.09, 0.0625, 0.0625, 0.6025, 0.0625),
aij = 0, for i ̸= j.

and the investment period is set to be one year (T = 1). The numerical result is obtained by using time step h = 0.01, uniform
grid with length∆yi = 0.01 for i = 1, . . . , 10 in each dimension, and the number of simulated sample pathsM = 105. Since
transaction costs are really small, this problem is approximately reduced to the Merton’s problem. As we can expect, the
no-trading region under these parameter settings should be a bounded small region including the Merton proportion at any
time step. Denote the Merton proportionwith the power utility function by π∗, and then we have

π∗
=

1
(1 − γ )

a−1(α − re)

shown in [1]. This solution gives a valuable comparison, and can be used as a benchmark to test whether the algorithm we
proposed could provide a qualitative result or not.

Table 1 shows the approximated no-trading region for the ten independent stocks case at time t = 0.9. The lower
and upper bounds mean boundaries of the no-trading region in each dimension. We can observe from the table that the
no-trading region is such a small region that it is almost the Merton proportion point because small transaction costs are
applied. Thismainly indicates thatwhen the transaction costs are really small, the investor iswilling to rebalance his portfolio
position so that the proportion ofwealth in risky assets is nearly a constant. This result again demonstrates that the proposed
numerical method can be applied to high-dimensional problems.

6. Conclusion

In this paper, we have proposed a mixed numerical method including Monte Carlo simulation and finite difference
method to cope with the different difficulties associated with the optimal investment and consumption problem in the
presence of transaction costs during a finite investment period, for which no analytical solution exists. The computed
approximations satisfy all the qualitative properties which have been theoretically proved for the one risky asset case.
Furthermore, the numerical solutions provide the optimal approximated value function in the presence of transaction costs
and also determine the behaviors of optimal no-trading, selling, and buying regions.

It is worthwhile to point out that we not only characterize boundaries of the optimal trading policies but also provide
admissible heuristics for a portfolio which includesmany stocks. We believe themotivation behind this proposed numerical
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scheme in Section 4 can be extended to various HJB models for singular control problems. For instance, it can be directly
adapted to the optimal investment problem with transaction costs.

Indeed, thiswork carries outmany directions of future research. Arguablywe do notwork on different choices of diffusion
coefficients in theMonte Carlo step. On the other hand, in order to obtain amore accurate approximation,we observe that the
high-level refinement of themeshes is required as the dimension increaseswhich leads to an increase in computational time.
It is important to mention that it does not automatically give a better result if we only refine the grids near the no-trading
region and regions in which we trade only one stock. We eventually hope to include theoretical analysis and improved
algorithm for these parts.
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