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Abstract

We consider the initial boundary value problem for the heat equation in a region with in�nite and �nite boundaries
(direct problem) and the related problem to reconstruct the �nite boundary from Cauchy data on the in�nite boundary
(inverse problem). The numerical solution of the direct problem is realized by a boundary integral equation method. For
an approximate solution of the inverse problem we use a regularized Newton method based on numerical approach for
the direct problem. Numerical examples illustrating our results are presented. c© 1999 Elsevier Science B.V. All rights
reserved.

Keywords: Heat equation; Semi-in�nite region; Initial boundary value problem; Inverse boundary problem; Green’s
function; Integral equation; Collocation method; Trigonometric interpolation; Newton method; Regularization

1. Introduction

The numerical solution of the initial boundary value problems for the linear parabolic equation
is of considerable signi�cance for a number of applied sciences [11]. These problems are of partic-
ular interest for the case of unbounded domains. Then almost all numerical methods are based on
boundary integral equations [3,4,7,13,20]. Since the unknown solution has to be found according to
the known boundary and boundary data, these linear problems are referred to as the direct problems.
The inverse problems for a parabolic equation can be divided into the following principal groups
[21]: (1) the problems of the estimation of the heat 
ux history along a boundary part of a domain
from a known temperature measurements on the rest of the boundary and at interior locations; (2)
the problems of determining the initial condition if the temperature distributions inside a domain
are known at some time; (3) the problems on recovering the di�usion coe�cient from boundary
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measurements of the solution of a parabolic equation; (4) the problems in determining a boundary
part for the bounded domain from a knowledge of the rest of the boundary, the heat and the heat

ux on it (see [1,2,5,8]).
In this paper we consider the direct and the related inverse problems from the fourth group for

the heat equation in the case of a speci�c unbounded domain. Primarily we are interested in the
aspects of the numerical solution of these problems.
Let D2 := {x∈R2: x2¿ 0} be the upper half-plane in R2 and D1 a simply connected bounded

domain in R2 with the boundary �1 of the class C2 such that �D1⊂D2. Let T ¿ 0, I := (0; T ],
�2 := {x: x2 = 0; ∞¡x1¡∞}; D :=D2\ �D1 and let ’ be a given function on @D × I . Further
denote by ’1 and ’2 the restrictions of ’ on �1 × I and �2 × I , respectively. We shall consider
the following direct initial boundary value problem for the heat equation: Find a bounded function
u(x; t) satisfying

@u
@t
=�u in D × I; (1.1)

u(· ; 0) = 0 in D; (1.2)

u= ’ on @D × I: (1.3)

We shall also consider the following related inverse boundary value problem. Under the assumption
that ’1 = 0, ’2 6= 0, to determine the boundary �1 from a knowledge of the heat 
ux

@u
@�
(x; t) on �;

where � := {x: x2 =0; �06x16�1}× [T0; T1], [�0; �1]⊂(−∞;∞) with �0¡�1, [T0; T1]⊆ [0; T ] with
T0¡T1 and � is the outward unit normal on �2. The existence and uniqueness of classical or weak
solutions for the initial boundary value problem (1.1)–(1.3) are well established [12,18]. For our
inverse problem analogous to [8] we have the following uniqueness result.

Theorem 1.1. Let D1; 1 and D1; 2 be two bounded domains in the upper half-plane with the bound-
aries �1; 1 and �1; 2; respectively. Let u1 and u2 be the classical solutions to the initial boundary
value problems (1:1) – (1:3) in the domains D2\D1; 1 and D2\D1; 2; respectively; for ’1 = 0 and
’2 6= 0. Let us assume that the heat 
uxes of both solutions coincide:

@u1=@�= @u2=@� on �:

Then �1; 1 = �1; 2.

In the case of the direct problem (1.1)–(1.3) we shall seek the solution of a linear problem
in a semi-in�nite region with the boundary conditions on the �nite and in�nite boundaries, and
in the case of the inverse problem we have to solve a nonlinear and ill-posed problem. The idea
for the numerical solution of (1.1)–(1.3) consists in the application of the integral approach based
on the special fundamental solution satisfying the boundary condition on the in�nite boundary [4].
Following [8,9] we use the Newton method for the numerical solution of the inverse problem and
for every Newton step solve the direct problem (1.1)–(1.3) with special boundary conditions.
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The outline of the paper is as follows. In Section 2 we will describe the numerical solution of the
initial boundary value problem (1.1)–(1.3) via boundary integral equations of the �rst kind. For the
integral representation of the solution we use the single-layer potential with the Green’s function for
the half-plane. Some aspects of using the Newton method for the numerical solution of our inverse
problem are described in Section 3. Finally, in Section 4, we present the results of some numerical
experiments.

2. Numerical solution of the direct problem

The special features of the domain D determine the numerical method for the solution of the direct
problem (1.1)–(1.3). Since D is an unbounded domain, clearly most e�cient numerical method is
the application of boundary integral equations. To avoid the determination of a density on the
in�nite boundary we use the single-layer approach with a Green’s function as a special fundamental
solution. The Green’s function for the heat equation in the upper half-plane has the form

G∞(x − y; t) :=G(x1 − y1; x2 − y2; t)− G(x1 − y1; x2 + y2; t);

where

G(x1; x2; t) =
e−|x21+x22|2=4t

t
; t ¿ 0; x21 + x22 ¿ 0 (2.1)

is the fundamental solution of the heat equation in R2. Then we can seek the solution of the problem
(1.1)–(1.3) in the form

u(x; t) =
1
4�

∫ t

0

∫
�1

q(y; �)G∞(x − y; t − �)ds(y) d�

− 1
4�

∫ t

0

∫
�2

’2(y; �)
@G∞
@�(y)

(x − y; t − �)ds(y) d�; (x; t)∈D × I; (2.2)

with a density q on �1 × I and the outward unit normal � on �2. The heat potential (2.2) satis�es
the heat equation (1.1), the homogeneous initial condition (1.2) and the boundary condition on the
in�nite curve �2. By the classical results on the continuity of the single-layer potential [12] and by
the properties of Green’s functions [14] the problem (1.1)–(1.3) is reduced to the integral equation
of the �rst kind:

1
4�

∫ t

0

∫
�1

q(y; �)G∞(x − y; t − �) ds(y)d�= f(x; t); (x; t)∈�1 × I; (2.3)

where

f(x; t) = ’1(x; t) +
1
4�

∫ t

0

∫
�2

’2(y; �)
@G∞
@�(y)

(x − y; t − �)ds(y) d�: (2.4)

For this equation we can apply the existence result from [10,15] for the integral equation of the
general form in anisotropic Sobolev spaces.
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Theorem 2.1. For any given function ’1 ∈H 1=2;1=4
00 (�1× I) and ’2 ∈L2(�2× I) the integral equation

(2:3) possesses a unique solution q∈H−1=2;−1=4
00 (�1 × I).

We assume that the boundary curve is given through a parametric representation

�1 = {x(s) = (x1(s); x2(s)): 06s62�};
where x :R→ R2 is twice continuously di�erentiable and 2�-periodic with |x′(s)|¿ 0 and x2(s)¿ 0
for all s. Then we transform (2.3) and(2.4) into the parametric form

1
4�

∫ t

0

∫ 2�

0
�(�; �)K (1)(s; �; t; �) d� d�= F(s; t); (s; t)∈ [0; 2�]× I (2.5)

and

F(s; t) = 2g1(s; t) +
1
2�

∫ t

0

∫ ∞

−∞
g2(�; �)K (2)(s; �; t; �) d� d�; (2.6)

where we have set �(s; t) := q(x(s); t)|x′(s)|, g1(s; t) :=’1(x(s); t), and g2(s; t) := ’2(s; 0; t), and
where the kernels are given by

K (1)(s; �; t; �) :=G∞(x(s)− x(�); t − �)

and

K (2)(s; �; t; �) := − x2(s)
(t − �)2

exp

{
−(x1(s)− �)2 + x22(s)

4(t − �)

}

for s 6= �. For the semi-discretization of the integral equation (2.5) we use a collocation method
with respect to the time-variable [3,4,20]. We choose an equidistant mesh on I by

tn = nht; n= 0; : : : ; N; ht = T=N;

and use the constant-time interpolation for the unknown density � and for the given boundary
function g2. Then for t = tn from (2.5) and (2.6) we obtain for approximations �n(s) ≈ �(s; tn) the
following system of Fredholm integral equations of the �rst kind:

1
2�

∫ 2�

0
�n(�)K

(1)
0 (x(s); �) d� = Fn(s)− 1

2�

n−1∑
m=1

∫ 2�

0
�m(�)K

(1)
n−m(x(s); �) d� (2.7)

for s∈ [0; 2�]; n= 1; : : : ; N: Here we have set

Fn(s) = 2g1; n(s)− 1
2�

n∑
m=1

∫ ∞

−∞
g2;m(�)K

(2)
n−m(x(s); �) d�; (2.8)

where gi;n(s) := gi(s; tn), i = 1; 2; and where the functions K (i)
p are given by

K (i)
n−m(x(s); �) :=

∫ tm

tm−1

Ki(s; �; tn; �) d�:

After some elementary calculations we �nd

K (1)
p (x(s); �) = K (1)

1; p(x(s); �)− K (1)
2;p(x(s); �); (2.9)
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where

K (1)
i;p (x(s); �) = E1

(
r2i (x(s); �)
4ht(p+ 1)

)
− E1

(
r2i (x(s); �)
4htp

)
;

for i = 1; 2 and

K (2)
p (x(s); �) =− 4x2(s)

r̃2(x(s); �)

[
exp

(
− r̃2(x(s); �)
4ht(p+ 1)

)
− exp

(
− r̃2(x(s); �)

4htp

)]

for p = 0; : : : ; N − 1 (for p = 0 the second terms on the right-hand sides in the two last formulas
have to be set equal to zero). Here we introduced the functions

r1(x(s); �) := |x(s)− x(�)|; r2(x(s); �) := ([x1(s)− x1(�)]
2 + [x2(s) + x2(�)]

2)1=2

and

r̃(x(s); �) := ([x1(s)− �]2 + x22(s))
1=2;

and E1 denotes the exponential integral function (see [19]). Since the function E1 has the expansion

E1(z) =−
− ln z −
∞∑
n=1

(−1)nzn
n! n

; 
= 0:57721 : : : ;

we can write the kernel K (1)
1; 0 in the form

K (1)
1; 0(x(s); �) =−ln

(
4
e
sin2

s− �
2

)
+ K (1; 0)

1; 0 (s; �); s 6= �;

where

K (1; 0)
1; 0 (s; �) = K (1)

1; 0(x(s); �) + ln
(
4
e
sin2

s− �
2

)
:

The functions K (1; 0)
1; 0 and K (1)

1; p, p = 1; : : : ; N − 1; can be shown to be continuous with the diagonal
terms

K (1; 0)
1; 0 (s; s) =−
− ln e|x

′(s)|2
4ht

; K (1)
1; p(x(s); s) = ln

p+ 1
p

:

The kernels K (1)
2;p and K (2)

p are trivially continuous for p= 0; 1; : : : ; N − 1.
Thus we have to solve a system of integral equations of the �rst kind with a logarithmic singu-

larity. For a full discretization of this system we combine a quadrature method and a collocation
method based on trigonometric interpolation. For this we choose an equidistant mesh by setting

sj := j�=M; j = 0; : : : ; 2M − 1;
and use the following two quadrature rules:

1
2�

∫ 2�

0
g(�)ln

(
4
e
sin2

sj − �
2

)
d� ≈

2M−1∑
k=0

R|j−k| g(sk); (2.10)

1
2�

∫ 2�

0
g(�) d� ≈ 1

2M

2M−1∑
k=0

g(sk) (2.11)



46 R. Chapko / Journal of Computational and Applied Mathematics 108 (1999) 41–55

with the weights

Rj := − 1
2M

{
1 + 2

M−1∑
m=1

1
m
cosmsj +

(−1) j
M

}
:

For the numerical calculation of the integrals on an in�nite interval in (2.8) we use the quadrature
rule

1
�

∫ ∞

−∞
g(�)d� ≈ h∞

M1∑
j=−M1

g(jh∞); h∞ =
c√
M1

; c¿ 0: (2.12)

These quadrature formulas are obtained by replacing g by its trigonometric interpolation polynomial
in the case of (2.10) and (2.11) (see [16]) and by sinc approximation in the case of (2.12) (see
[22]) and then integrating exactly. For the rules (2.10) and(2.11) in the case of periodic analytic
functions g and for the rule (2.12) in the case of analytic functions g satisfying g(s)=O(e−�|s|) for
|s| → ∞ and some positive constant � we obtain exponential convergence.
Now we apply the quadrature rules (2.10) and (2.11) in the integral equations (2.7) and the

rule (2.12) in (2.8) and then discretize the corresponding approximate equations by a trigonometric
collocation. As a result we obtain a sequence of linear systems

2M−1∑
j=0

�̃n(sj)
{
−R|i−j| +

1
2M

[K (1; 0)
1; 0 (si; sj)− K (1)

2;0 (x(si); sj)]
}

=Fn(si)− 1
2M

n−1∑
m=1

2M−1∑
j=0

�̃m(sj)K
(1)
n−m(x(si); sj) (2.13)

with

Fn(si) = 2g1; n(si) +
h∞
2�

n∑
m=1

M1∑
j=−M1

g2;m(jh∞)K
(2)
n−m(x(si); jh∞)

for i = 0; : : : ; 2M − 1; n = 1; : : : ; N: This numerical method was suggested and analyzed for one
integral equation of the type (2.7) in [6] in a H�older space and in [17] in a Sobolev space setting.
In the case of an analytic boundary and boundary data as shown by the error analysis in [6,17],
we obtain the exponential convergence for the numerical solution of the integral equations (2.7)
with respect to the number M of the space discretization. The numerical experiments (see Section
4) con�rm this and show also the linear convergence with respect to the number N of the time
discretization for the used numerical method.
Thus for the solution of the initial boundary value problem (1.1)–(1.3) we have the following

approach:

u(x; tn) ≈
n∑

m=1


 1
4M

2M−1∑
j=0

�̃m(sj)K
(1)
n−m(x; sj)−

h∞
4�

M1∑
j=−M1

g2;m(jh∞)K
(2)
n−m(x; jh∞)


 (2.14)

for x∈D; n= 1; : : : ; N . Clearly, the function K (1)
0 has no singularity and is calculated by (2.9).
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For the numerical implementation of the inverse problem we need the approximations for the
normal derivative of the solution (2.2) on the boundaries. From the jump relations for the normal
derivative of a single-layer potential [12] and from the continuity for the normal derivative of a
double-layer potential [10,15] we have

@u
@�
(x; t) =−1

2
q(x; t) +

1
4�

∫ t

0

∫
�1

q(y; �)
@

@�(x)
G∞(x − y; t − �) ds(y)d�

− 1
4�

∫ t

0

∫
�2

’2(y; �)
@2

@�(x)@�(y)
G∞(x − y; t − �) ds(y)d�; (x; t)∈�1 × I (2.15)

and

@u
@�
(x; t) =

1
4�

∫ t

0

∫
�1

q(y; �)
@

@�(x)
G∞(x − y; t − �) ds(y)d�

− 1
4�

@
@�(x)

∫ t

0

∫
�2

’2(y; �)
@

@�(y)
G∞(x − y; t − �) ds(y)d�; (x; t)∈�2 × I: (2.16)

Then connecting formula (2.15) with the numerical solution of integral equation (2.3) we have the
following approximation for the 
ux on �1:

@u
@�
(x(si); tn)≈− �̃n(si)

2|x′(si)| +
1
4M

n∑
m=1

2∑
k=1


 1
4M

2M−1∑
j=0

�̃m(sj)�
(1)
k (si; sj)L

(1; k)
n−m (si; sj)

− h∞
4�

M1∑
j=−M1

g2;m(jh∞)�
(2)
k (si; jh∞)L

(2;k)
n−m(si; jh∞)


 (2.17)

for i = 0; 1; : : : ; 2M − 1, n= 1; : : : ; N , where

L(1; k)p (s; �) = exp

(
− r2k (x(s); �)
4ht(p+ 1)

)
− exp

(
−r2k (x(s); �)

4htp

)

for k = 1; 2;

L(2;1)p (s; �) =

[
1

2ht(p+ 1)
+

2
r̃2(x(s); �)

]
exp

(
− r̃2(x(s); �)
4ht(p+ 1)

)

−
[
1
2htp

+
2

r̃2(x(s); �)

]
exp

(
− r̃2(x(s); �)

4htp

)

and

L(2;2)p (s; �) = exp

(
− r̃2(x(s); �)
4ht(p+ 1)

)
− exp

(
− r̃2(x(s); �)

4htp

)
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for p = 0; : : : ; N − 1 (for p = 0 the second terms on the right-hand sides have to be set equal to
zero). The functions �(k)i have the form

�(1)1 (s; �) =




x′2(s)x
′′
1 (s)− x′1(s)x

′′
2 (s)

|x′(s)|3 ; s= �;

−2[x1(s)− x1(�)]x′2(s)− [x2(s)− x2(�)]x′1(s)
|x′(s)|r21(x(s); �)

; otherwise;

�(1)2 (s; �) = 2
[x1(s)− x1(�)]x′2(s)− [x2(s) + x2(�)]x′1(s)

|x′(s)|r22(x(s); �)
;

�(2)1 (s; �) = 4
x′1(s)x

2
2(s)− x2(s)(x1(s)− �)
|x′(s)|r̃2(x(s); �) and �(2)2 (s; �) =−4 x′1(s)

|x′(s)|r̃2(x(s); �) :

We note here that for ht → 0 (N → ∞) the kernels L(2;1)0 and K (1)
i;0 have a pronounced delta function

like behavior. A similar problem is arising also in another numerical method for the parabolic
problems [7,20]. For the numerical experiments in Section 4 we choose the time discretization
parameter not very large and co-ordinated it with the spatial discretization parameter, i.e. we increase
the number M of quadrature points when the number N of collocation points with respect to the
time is increased. This re
ects the general requirement to balance spatial and time discretization in
the numerical solution of the nonstationry problems.
The numerical calculation of the 
ux (2.16) causes additional di�culties because of a strong

singularity in the kernel of the second term. We shall consider this case in more detail. Let

P(x; t) :=
1
4�

@
@�(x)

∫ t

0

∫
�2

’2(y; �)
@

@�(y)
G∞(x − y; t − �) ds(y)d�; (x; t)∈�2 × I:

After the parametrization of �2 and the constant-time interpolation for ’2 we have

P(s; tn) ≈ 1
4�

n∑
m=1

∫ ∞

−∞
g2;m(�)H

(2)
n−m(s; �)d�; −∞¡s¡∞; n= 1; : : : ; N;

where

H (2)
p (s; �) =

4
(s− �)2

{
exp

(
− (s− �)2

4ht(p+ 1)

)
− exp

(
−s− �)2

4htp

)}

for p=0; : : : ; N − 1 (for p=0 the second term on the �gured brackets has to be set equal to zero).
Since

H (2)
p (s; s) =

1
htp

− 1
ht(p+ 1)

for p= 1; : : : ; N − 1;

we consider only the integral with the integrand H (2)
0 (s; �) as a �nite part integral, that is, as

Hadamard’s hypersingular integral. By partial integration we obtain∫ ∞

−∞
g2; n(�)H

(2)
0 (s; �)d�=4

∫ ∞

−∞

g′2; n(�)
� − s

exp

(
−(s− �)2

4ht

)
d�

− 2
ht

∫ ∞

−∞
g2; n(�)exp

(
−(s− �)2

4ht

)
d�; −∞¡s¡∞:
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Here the �rst integral is considered as a Cauchy singular integral. For the numerical integration of
this integral we use the sinc quadrature rule [22]

1
�

∫ ∞

−∞

g(�)
s− �

d� ≈
M1∑

j=−M1

g(jh∞)R̃j(s);

where

R̃j(s) :=
cos[(�=h∞)(s− jh∞)]
(�=h∞)(s− jh∞)

:

Thus, �nally, the approximate heat 
ux on �2 is given by

@u
@�
(s; tn)≈ 1

4M

n∑
m=1

2M−1∑
j=0

�̃m(sj)H
(1)
n−m(s; sj)−

h∞
4�

n−1∑
m=1

M1∑
j=−M1

g2;m(jh∞)H
(2)
n−m(s; jh∞)

+
M1∑

j=−M1

{
h∞
2�ht

g2; n(jh∞)− g′2; n(jh∞)R̃j(s)
}
exp

(
−(s− jh∞)2

4ht

)
; (2.18)

where

H (1)
p (s; �) =− 4x2(�)

r̃2(x(�); s)

{
exp

(
− r̃2(x(�); s)
4ht(p+ 1)

)
− exp

(
− r̃2(x(�); s)

4htp

)}

for p=0; : : : ; N − 1 (for p=0 the second term on the �gured brackets has to be set equal to zero).

3. The numerical solution of the inverse problem

The solution of the direct initial boundary value problem (1.1)–(1.3) de�nes a nonlinear operator

F :�1 → @u
@�
(x; t); (x; t)∈�;

which maps the curve �1 onto the 
ux @u=@� on the line �2. In this sense the solution of our inverse
problem consists in the solution of the nonlinear equation

F(�1) =  ; (3.1)

where  (x; t) := @u=@�(x; t); (x; t)∈�: Let us assume that �1 is starlike, i.e.

x(s) = (r(s)cos s; r(s)sin s+ d); 06s62� (3.2)

with a positive function r(s)∈C2(�1) and a positive constant d, such that x2(s)¿ 0 for all s. Clearly
r(s) is to be found. We transform Eq. (3.1) into the parametric form

F(r) = 
(s; t); (s; t)∈�∗; (3.3)

where 
(s; t) :=  (s; 0; t) and �∗ := [�0; �1]× [T0; T1].
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Assume that the curve �̃1, with the parametric representation z(s) is an approximation for the
curve �1 and let h(s) be the unknown correction such that z̃(s)=z(s)+h(s) is a new approximation.
We look for h(s) in the form

h(s) = (q(s)cos s; q(s)sin s+ d); (3.4)

where q(s) is the unknown. After the linearization of Eq. (3.3) we get the following approximating
linear equation with respect to h(s):

F(r) +F′(r; h) = 
(s; t); (s; t)∈�∗: (3.5)

We approximate q(s) in the form

q(s) =
K∑

j=1

ajqj(s) (3.6)

with basis functions qj(s). The collocation method for (3.5) with respect to the collocation points
(s̃k ; t̃i)∈�∗, k = 1; : : : ; Minv, i = 1; : : : ; Ninv, yields the system of linear equations

K∑
j=1

ajF
′(r; hj)(s̃k ; t̃i) = 
(s̃k ; t̃i)−F(r)(s̃k ; t̃i); (3.7)

where hj(s) := (qj(s)cos s; qj(s)sin s + d) and MinvNinv¿K . Analogous to the case of the inverse
problems for the heat equation in a bounded domain [8] for the derivative F′(r; h) we have the
following result:

Theorem 3.1. Let D̃1 be a bounded domain with the boundary �̃1 and D̃ :=D2\D̃1. Let ’2 ∈L2(�2×
I); h∈C2(�̃1;R2) and u be a weak solution of the initial boundary value problem (1:1) – (1:3) in
D̃ × I with ’1 = 0. Then the domain derivative F′(r; h) exists and is given by

F′(r; h) =
@u′

@�

∣∣∣∣
�
;

where u′ solves the heat equation

@u′

@t
=�u′ in D̃ × I (3.8)

in the weak sense and satis�es the boundary condition

u′ =−h · �@u
@�

on �̃1 × I and u′ = 0 on �2 × I: (3.9)

Here � is the outward unit normal on �̃1.

Due to the linear equation (3.5) being an ill-posed equation, we have to incorporate some regu-
larization to stabilize our problem, for example a Tikhonov regularization. Hence, we replace (3.7)
by the following least-squares problem to minimize the penalized residual

T := �
K∑

k=1

wka2k +
Minv∑
i=1

Ninv∑
j=1

∣∣∣∣∣
K∑

k=1

akF
′(r; hk)(s̃i; t̃j)− 
(s̃i; t̃j) +F(r)(s̃i; t̃j)

∣∣∣∣∣
2
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with some regularization parameter �¿ 0 and some positive weights w1; : : : ; wK . Minimizing of T
with respect to a1; : : : ; aK is equivalent to solving the following linear system:

�wpap +
K∑

k=1

ak

Minv∑
i=1

Ninv∑
j=1

F′(r; hk)(s̃i; t̃j)F′(r; hp)(s̃i; t̃j)

=
Minv∑
i=1

Ninv∑
j=1

{
(s̃i; t̃j)−F(r)(s̃i; t̃j)}F′(r; hp)(s̃i; t̃j); p= 1; : : : ; K: (3.10)

We choose the weights wp as in the Levenberg–Marquardt algorithm:

wp =
Minv∑
i=1

Ninv∑
j=1

F′(r; qp)(s̃i; t̃j)F′(r; qp)(s̃i; t̃j); p= 1; : : : ; K:

Finally, we summarize the description of one step of the Newton method as follows:

1. Given the initial approximation z0 for �1 (the circle as an example), solve the direct problem
(1.1)–(1.3) by the method in Section 2 and compute @u=@� on �2 via (2.18).

2. Compute the numerical solutions for the sequence of direct initial boundary value problems
(1.1)–(1.3) with the corresponding boundary conditions.

3. Solve the system of linear equations (3.10).
4. Compute the correction h via (3.4) and (3.6) and �nd the new approximation zi+1 = zi + h for
the boundary �1.

As a stopping rule for the number of iterations we use the condition

‖ q ‖L2 = ‖ ri ‖L2 ¡�;

where � is a given precision.

4. Numerical experiments

At �rst we consider the numerical solution of the direct problem (1.1)–(1.3). The �nite boundary
�1 is a bean-shaped curve given by (3.2) with the radial function

r(s) =
1:0 + 0:9 cos s+ 0:1sin 2s

2:0 + 1:5 cos s
; 06s62�; (4.11)

and d=1:5. The boundary conditions are given by the restriction of the fundamental solution (2.1)
on the boundaries

’i(x; t) = G(x1; x2 − 1:5; t); (x; t)∈�i × I; i = 1; 2: (4.12)

For the length of the time interval we assume T = 2 and the parameters are chosen as M = 32,
M1 =100 and h∞=0:2. Fig. 1 illustrates the relative errors Er(x; t) := |unum(x; t)− uex(x; t)|=|uex(x; t)|
at spatial point x = (1; 1:5) for the various time discretization parameter N .
For the second numerical example in the case of the direct problem the boundary �1 is given by

(4.11) and the boundary conditions are

’1(x; t) = 0; (x; t)∈�1 × I (4.13)
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Fig. 1. Relative errors for the various time discretization parameters N .

Table 1
Numerical results for the boundary conditions (4.13) and(4.14)

x = (0; 0:5) x = (1; 1:5)

t M N = 10 N = 20 N = 40 N = 10 N = 20 N = 40

0.2 16 0.029736 0.024630 0.021749 0.000095 0.000063 0.000045
32 0.029736 0.024630 0.021749 0.000095 0.000060 0.000044

0.4 16 0.067445 0.064590 0.062842 0.001019 0.000903 0.000832
32 0.067445 0.064590 0.062842 0.001019 0.000898 0.000830

0.6 16 0.078015 0.078292 0.078370 0.002488 0.002386 0.002320
32 0.078015 0.078292 0.078370 0.002488 0.002384 0.002319

0.8 16 0.068023 0.069772 0.070752 0.003476 0.003441 0.003416
32 0.068023 0.069772 0.070752 0.003476 0.003442 0.003416

1.0 16 0.050837 0.052784 0.053912 0.003671 0.003692 0.003703
32 0.050837 0.052784 0.053912 0.003671 0.003694 0.003704

and

’2(x; t) = t2 exp(−4(t + |x|2) + 2); (x; t)∈�2 × I: (4.14)

Table 1 gives some values for the numerical solution of the initial boundary value problem (1.1)–
(1.3) at the two space points for the time interval with the length T = 1.
Now we turn to the numerical solution of the inverse problem to reconstruct the boundary �1

given by (4.11). The boundary conditions are given by (4.13) and(4.14). For the solution of the
forward problem generating the 
ux  = @u=@� on �2 we used the numerical method of Section 2.
For an approximating subspace for the radial function we choose trigonometric polynomials of
degree less than or equal to K , i.e.,

q(s) =
K∑

k=0

ak cos ks+
2K∑

k=K+1

ak sin(k − K)s:
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Table 2
Numerical results for various space intervals

[�0; �1] Minv L E F �

a [−1,0] 6 13 0.040389 0.000013 0
b [−0.4,0] 3 9 0.091784 0.000010 10−4

c [0,0.4] 3 11 0.085335 0.000017 10−5

d [−0.4,0.4] 6 9 0.093867 0.000007 10−5

Fig. 2. Relative error of the Newton iteration for cases a and b.

Table 2 shows the relative error

E :=
‖ rL − r ‖L2[0; 2�]

‖ r ‖L2[0; 2�]

and the relative residual

F :=
‖ @uL=@�−  ‖L2(�)

‖  ‖L2(�)

for various space intervals [�0; �1]⊆ [− 1; 1] and �xed time interval [T0; T1] = [0; 3]. The number L
counts the iteration steps required for the tolerance �= 0:005.
The relative errors in every Newton step for the case a and b in Table 2 are illustrated in Fig. 2.

The reconstructions of the boundary �1 corresponding to Table 2 are presented in Fig. 3. The full
part of the straight line corresponds to the measurement interval [�0; �1] on the in�nite curve �2.
For all examples the discretization parameters are M = 32, N = 20; Ninv = N and M1 = 100.
The �nite closed boundary �1 to be reconstructed is a peanut-shaped curve given by (3.2) with

r(s) =
√
cos2 s+ 0:26 sin2(s+ 0:5); 06s62�:

The boundary conditions are ’1 = 0 and

’2(x; t) = t2 exp(−4t + 2); (x; t)∈�2 × I

with T = 2. Table 3 gives some numerical results for this inverse problem. The reconstructions
illustrated in Fig. 4 correspond to the �rst and third row of Table 3. In all our numerical experiments
for the inverse problem we observe that the reconstruction is strongly dependent on the length of
the space interval [�0; �1] on the in�nite line �2 and on the distance between the reconstructed
boundary and the measurement interval.



54 R. Chapko / Journal of Computational and Applied Mathematics 108 (1999) 41–55

Fig. 3. Reconstruction of a bean-shaped �gure with K = 4.

Fig. 4. Reconstruction of a peanut-shaped �gure with K = 4.

Table 3
Numerical results for a peanut-shaped �gure

[�0; �1] d Minv Ninv L E F �

[−2,2] 1 21 12 26 0.075709 0.000469 10−4

2 21 12 6 0.187662 0.000462 10−3

[-1; 1] 1 11 20 15 0.125483 0.000393 10−4

2 11 20 7 0.197161 0.000241 10−3
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