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Abstract

Let � ⊆ C be a closed set of positive capacity at each point in � and w :�→ [0;∞) a continuous, weight
with |z|w(z) → 0; |z| → ∞; z ∈� if � is unbounded. Assume further that the set where w is positive is of
positive capacity. A classical theorem, obtained independently by Rakhmanov and Mhaskar and Sa- says that
if Sw denotes the support of the equilibrium measure for w, then ‖Pnwn‖� = ‖Pnwn‖Sw for any polynomial
Pn with degPn6 n. This does not rule out the possibility that |Pnwn| may attain a maximum outside Sw. We
prove that if in addition, � is regular with respect to the Dirichlet problem on C and if it coincides with
its outer boundary, then all points where |Pnwn| attain their maxima must lie in Sw. The case when � ⊆ R
consists of a 9nite union of 9nite or in9nite intervals is due to Lorentz, von Golitschek and Makovoz. Counter
examples are given to show that our requirements on � cannot in general be relaxed.
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1. Introduction and statement of main result

The purpose of this note, is to extend a theorem of Lorentz et al. [3, Proposition 1.4.1] dealing with
the characterization of sets in the complex plane where weighted polynomials attain their maximum
values. To set the scene for our investigation, let � ⊆ C be a closed set and w :� → [0;∞) a
continuous weight. If � is unbounded, assume further that |z|w(z) → 0; |z| → ∞; z ∈�. We will
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also henceforth suppose that � is of positive capacity at each point in �, i.e., for every point z0 ∈�,
the set {z ∈� : |z−z0|¡	} has positive capacity for any 	¿ 0 and that the set where w is positive,
has positive capacity. We set Q := −logw and call w strongly admissible and Q the external 9eld
associated with w. The equilibrium measure, see [4], in the presence of an admissible external 9eld,

Q :�→ R
is the unique Borel probability measure �w with compact support on � satisfying for a unique
constant Fw,

Mw(z) := U�w(z) + Q(z) − Fw6 0; z ∈ Sw := supp(�w) (1.1)

and

Mw(z)¿ 0; q:e: z ∈�: (1.2)

Here, U�w denotes the logarithmic potential of �w, i.e.,

U�w(z) : =
∫
�

log
1

|z − t| d�w(t); z ∈C
and q.e. z ∈� means that (1.2) holds everywhere on � with the exception of a set of logarithmic
capacity zero. A classical theorem, obtained independently in [4, Corollary 3.2.6] is well known:

Proposition 1.1. Let w be strongly admissible. Then

‖Pnwn‖� = ‖Pnwn‖Sw
for every polynomial Pn with degPn6 n.

Proposition 1.1 says that the sup norm of a weighted polynomial lives in the set Sw. It does not
however rule out the possibility that a weighted polynomial may take a maximum outside Sw. In
this note, we show that if we assume some additional structure on the underlying set �, namely if
we assume that it is regular with respect to the Dirichlet problem on C and that it coincides with
its outer boundary, then all points where |Pnwn| attain their maxima are contained in the set Sw.
We also show by way of counter examples, that our additional assumptions on the set � cannot in
general be removed. Throughout let �n denote the class of polynomials of degree at most n; n¿ 1.

For our main result, we need two important de9nitions:

(a) The outer domain � of � is the unbounded component of the complement IC \ �. The outer
boundary of � is de9ned to be 9�, the boundary of �. For example we shall need in Remark
1.3(b) below the fact (see [4, Corollary 4.5]), that if w ≡ 1, Sw is contained in the outer
boundary of �.

(b) We shall say that a point z ∈� is regular with respect to the Dirichlet problem (or for short
regular) on C if the Green’s function for �, (see [4, p. 108]), is continuous at z. If every point
in � is regular, then � is regular. For example, if � is simply connected or a 9nite union of
9nite or in9nite real intervals, then � is regular.

Using the above two concepts, we shall henceforth adopt the following convention. � will be
called strongly regular if it is regular and if the outer boundary of � coincides with �.
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It is easy to see, in view of (a) and (b), that if � is simply connected with empty interior then
� is strongly regular. Moreover if � is a 9nite union of 9nite or in9nite intervals, then � is also
strongly regular. Examples of sets in the plane which are strongly regular are line segments and
simple closed contours. If � is strongly regular and w is strongly admissible, then it follows from
[4, Theorems 1.4.4 and 1.5.1 (iv′)] that U�w is continuous everywhere in C and hence that (1.2)
holds everywhere on �.

Following is our main result:

Theorem 1.2. Let w be strongly admissible and let m∈N.

(a) Then for every collection of polynomials {Pn;k}mk=1 ∈�n; n¿ 1∣∣∣∣∣
∣∣∣∣∣
m∑
k=1

|Pn;k |wn
∣∣∣∣∣
∣∣∣∣∣
�

=

∣∣∣∣∣
∣∣∣∣∣
m∑
k=1

|Pn;k |wn
∣∣∣∣∣
∣∣∣∣∣
Sw

: (1.3)

(b) Assume in addition that � is strongly regular. Then if x0 ∈� is a point where ‖∑m
k=1 |Pn;k |wn‖�

is attained, then x0 ∈ Sw.

Remark 1.3(a). (a) Theorem 1.2(a) for m= 1 is [4, Corollary 3.2.6] which was obtained indepen-
dently by Rakhmanov and Mhaskar and Sa-.

(b) For m¿ 1 and under the assumption that w is convex, positive and �=(c; d) with −∞6 c¡ 0
¡d6∞, Theorem 1.2(b) follows from [2, Theorem 2.6]. When m= 1 and � is a 9nite union of
9nite or in9nite real intervals, Theorem 1.2(b) has been shown earlier in [3, Proposition 4.1.1]. Our
proof of Theorem 1.2(b) uses methods of logarithmic potential theory which were developed in
[1, Lemma 2.2]. As is shown in Remark 1.3(b) below, it essentially cannot be improved further.

Remark 1.3(b). In this remark we explain why the strong regularity assumptions of Theorem 1.2(b)
cannot be dropped in general. Indeed, let us take in Theorem 1.2(b), w ≡ 1. Then using [4, Corollary
4.5], we know that Sw is contained in the outer boundary of �. If this outer boundary was not �
itself, one could choose Pn to be constant and then the maximum of Pnwn is attained everywhere, not
just on Sw. For a particular w 
≡ 1, Sa- and Totik in [4, p. 157] construct an annulus with positive
interior for which Theorem 1.2(b) fails.

2. Proof of main result

In this section, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. We will need the inequality, see [4, Theorem 3.5.1 and Corollarry 3.5.3],

|Pnwn(z)|6 exp(−nMw(z))‖Pnwn‖Sw ; z ∈�; Pn ∈�n; n¿ 1: (2.1)

Let {Pn;k}mk=1 ∈�n be given. We will assume that m= n for the general case follows in exactly the
same way. Let us also choose x0 ∈� for which∣∣∣∣∣

∣∣∣∣∣
n∑
k=1

|Pn;k |wn
∣∣∣∣∣
∣∣∣∣∣
�

=
n∑
k=1

|Pn;k |(x0)wn(x0):
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Now choose Qn ∈�n such that

‖Qnwn‖� = ‖Qnwn‖Sw =

∣∣∣∣∣
∣∣∣∣∣
n∑
k=1

|Pn;k |wn
∣∣∣∣∣
∣∣∣∣∣
�

=
n∑
k=1

|Pn;k |(x0)wn(x0) = |Qn(x0)wn(x0)|: (2.2)

This is done by considering

Qn(x) =
n∑
k=1

�kPn;k(x); �k = sign Pn;k(x0)

and using (2.1). See [5, Lemma 1]. Theorem 1.2(a) then follows.
The diMcult task is to now show that x0 ∈ Sw. Indeed, using (1.1), (1.2), (2.1) and (2.2) it follows

that

x0 ∈ S∗w := {z ∈�: Mw(z) = 0}:
If w is convex, positive and � = (c; d) with −∞6 c¡ 0¡d6∞ it follows from [2, Theorem
2.6] that S∗w = Sw and Theorem 1.2(b) would then follow. In general, however it is not true that
S∗w = Sw. We now show that indeed x0 ∈ Sw and in doing so we establish Theorem 1.2(b). Actually
we will prove the following:

Let � := �w and suppose that

U�(x0) +
1
n

log|Qn(x0)|¿max
z∈Sw

(
U�(z) +

1
n

log|Qn(z)|
)
: (2.3)

Then x0 ∈ Sw. To see this, consider the function

U� +
1
n

log|Qn|:
Firstly U� is harmonic outside Sw and therefore U� + (1=n) log|Qn| is subharmonic outside Sw. It is
also subharmonic at ∞. To see this, simply observe that

U� +
1
n

log|Qn| = U�−�n ;

where �n is the normalized counting measure of Qn with mass ‖�n‖6 ‖�‖= 1. See also [1, Lemma
2.2].

By the maximum principle for subharmonic functions, see [4, Theorem 1.2.4], U� + (1=n) log|Qn|
attains its maximum on Sw. If the maximum is attained at a point outside Sw, then necessarily
U�(z) + (1=n) log|Qn|(z) is constant for every z ∈C. If this is the case, we may let |z| → ∞ and
conclude that

U�(z) = −1
n

log|Qn|(z); ∀z ∈C:
This is clearly impossible as U� is continuous everywhere on C. Thus if (2.3) holds for x0, then
x0 ∈ Sw. Thus everything boils down to showing (2.3).

Indeed, using (1.5) and (1.6), we 9rst see that

max
z∈Sw

(U�(z) + Q(z)) = Fw6U�(z) + Q(z); z ∈�:
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Thus applying the above and (2.2) we see that

U�(x0) +
1
n

log|Qn(x0)|

=
1
n

log|Qn(x0)wn(x0)| + U�(x0) + Q(x0)

¿max
z∈Sw

1
n

log|Qn(z)wn(z)| + max
z∈Sw

(U�(z) + Q(z))

¿max
z∈Sw

[
1
n

log|Qn(z)wn(z)| + U�(z) + Q(z)
]

=max
z∈Sw

[
U�(z) +

1
n

log|Qn(z)|
]
:

Thus (2.3) holds and we have proved Theorem 1.2(b).
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