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a b s t r a c t

A computer-assisted proof of non-trivial steady-state solutions for the Kolmogorov flows
is described. The method is based on the infinite-dimensional fixed-point theorem using
Newton-like operator. This paper also proposes a numerical verification algorithm which
generates automatically on a computer a set including the exact non-trivial solution with
local uniqueness. All discussed numerical results take into account the effects of rounding
errors in the floating point computations.
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1. Introduction

Consider the following Navier–Stokes equations:

ut + uux + vuy = ν1u−
1
ρ

px + γ sin
(
πy

b

)
, (1)

vt + uvx + vvy = ν1v−
1
ρ

py, (2)

ux + vy = 0, (3)

where (u, v), ρ, p and ν are velocity vector, mass density, pressure and kinematic viscosity, respectively and γ is a constant
representing the strength of the sinusoidal outer force. Also ∗ξ := ∂/∂ξ(ξ = t, x, y) and 1 := ∂2/∂x2

+ ∂2/∂y2. The flow
region is a rectangle [−a, a] × [−b, b] and the periodic boundary conditions are imposed in both directions. The aspect ratio
is denoted by α := b/a.

The above Eqs. (1)–(3) describe the Navier–Stokes flows in a two-dimensional flat torus under a special driving force
proposed in [1,7] and have a basic solution which is written as

(u, v, p) = (k sin(πy/b), 0, d),

where k := b2γ/(π2ν) and d is any constant. It is known that non-trivial solutions bifurcate from the basic solution at a
certain Reynolds number, which is defined below, if and only if 0 < α < 1 [1]. Okamoto–Shoji [7] computed numerically
bifurcation diagrams with the Reynolds number as a bifurcation parameter varying the aspect ratio as a splitting parameter.
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They also strongly suggested stability of the bifurcating solutions for all 0 < α < 1. Nagatou [3] took a new approach to this
stability problem by employing the theory of verified computation and showed that the stability of the bifurcating solutions
is mathematical rigorously assured for the cases of α = 0.4, 0.7 and 0.8. However, theoretical approach to the non-trivial
solutions of the Eqs. (1)–(3) has not been showed up to now.

The aim of this paper is to propose a method to prove the existence and the local uniqueness of the steady-state solutions
of the Navier–Stokes Eqs. (1)–(3) for a given Reynolds number and aspect ratio by a computer-assisted proof.

In the previous results [11,6], the author considered Rayleigh–Bénard heat convection model which is known as the
Oberbeck–Boussinesq approximations and proposed an approach to prove the existence of the steady-state solutions. In [11,
6], the equation is decomposed into a finite-dimensional part and an infinite-dimensional error part, and if both the parts
lead to contraction maps under suitable assumptions, an infinite-dimensional fixed-point theorem implies the existence of
the solution in a certain function set. In the self-validating process in computer, Newton-like iteration is executed for the
finite-dimensional part, and the computation comes down to solving interval linear systems. However, the method adopted
Schauder’s fixed-point theorem and the local uniqueness is not assured.

On the other hand, Yamamoto [12] have proposed a method to prove the existence and the local uniqueness of solutions to
infinite-dimensional fixed-point equations using computer. However, the algorithm needs a special form of the given finite-
dimensional set and it turned out that there is a possibility that the verification algorithm come to an end unsuccessfully
even if very fine approximate subspaces are used.

Therefore, this paper will take an alternative verification method using norm estimates in the Newton-like iteration.
Note that our verification theorem can be described as a more general form and one may apply it to many kinds of
differential equations and integral equations which can be transformed into fixed-point equations. We will discuss them in
the forthcoming papers.

We admit that our study in this paper has some restrictions (a driving force, two-dimensional rectangle region, boundary
condition, etc.), however, we believe that our idea, not our results themselves, will pave the way to a tool to study the global
bifurcation structure for partial differential equations arising in more practical, or even industrial problems.

The contents of this paper are as follows. The Navier–Stokes equations are transformed into a non-dimensional form and
the function spaces are defined in Section 2. Constructive a priori error estimates for the linearized problems are described in
Section 3, which are needed in numerical computations. A fixed-point formulation and an existence theorem using Newton-
like iteration is considered in Section 4. A computable verification condition is given in Section 5. Numerical results which
prove the existence of steady-state solutions are described in Section 6. All numerical results discussed take into account
the effects of rounding errors in the floating point computations.

2. Non-dimensionalization and function spaces

The letter Tα denotes the rectangular region (−π/α,π/α)× (−π,π) for a given aspect ratio 0 < α < 1. Introducing the
stream function φ satisfying u = φy and v = −φx so that ux + vy = 0, the Eqs. (1)–(3) can be rewritten as

(1φ)t − ν1
2φ− J(φ,1φ) =

γπ

b
cos

(
πy

b

)
(4)

by cross-differentiating Eqs. (1) and (2) and eliminating the pressure p. Here J is a bilinear form defined by

J(u, v) := uxvy − uyvx. (5)

Eq. (4) is non-dimensionalized using change of variables

(x′, y′) =
(
πx

b
,
πy

b

)
, t′ =

γb

νπ
t, φ′(t′, x′, y′) =

νπ3

γb3 φ(t, x, y)

and the Reynolds number R := γb3

ν2π3 . After dropping the primes, an equation

(1φ)t −
1
R
12φ− J(φ,1φ) =

1
R

cos(y) (6)

is obtained.
We shall find steady-state solutions, where (1φ)t is equated to 0 in Eq. (6) in the region Tα, namely consider the following

non-linear problem:

12φ = −R J(φ,1φ)− cos(y) in Tα. (7)

Assume that the stream function φ is periodic in x and y, and the symmetric condition φ(x, y) = φ(−x,−y) [3], then Eq.
(7) has a trivial solution φ = − cos(y) for any R > 0. The aim of this paper is to verify the existence of non-trivial solutions
by a computer.
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From the assumptions imposed above, the solutions of Eq. (7) should be obtained in the following function space
Xk
⊂ Hk(Ω) (k ≥ 0) such that

Xk
:= Xk

0 ⊕ Xk
1 ⊕ Xk

2 ⊕ · · · , (8)

Xk
0 :=

{
∞∑
n=1

an cos(ny)
∣∣∣∣∣an ∈ R, ∞∑

n=1
n2ka2

n <∞

}
, (9)

Xk
m :=

{
∞∑

n=−∞

an cos(mαx+ ny) |an ∈ R,
∞∑

n=−∞

((αm)2k
+ n2k)a2

n <∞

}
, m ≥ 1, (10)

especially

X := X3.

For all ψ ∈ Xk can be represented by

ψ =
∑

(m,n)∈Q

Amn cos(mαx+ ny), Amn ∈ R, (11)

where

Q :=
{
(m, n) ∈ N× N

∣∣∣∣“m = 0 and 1 ≤ n ≤ ∞” or
“1 ≤ m ≤ ∞ and −∞ ≤ n ≤ ∞”

}
, (12)

and it is noted that

( cos(mαx+ ny), cos(kαx+ ly) )L2 =


2π2

α
if k = m and l = n

0 else

holds for any (m, n), (k, l) ∈ Q , where ( ·, · )L2 means the usual L2-inner product in Tα.

3. Approximate subspace and norm estimates

Let XN be the finite-dimensional subspace of X, which depends on a non-negative integer parameter N, defined by

XN :=

 ∑
(m,n)∈QN

Amn cos(mαx+ ny) |Amn ∈ R

 , (13)

where

QN :=

{
(m, n) ∈ N× N

∣∣∣∣“m = 0 and 1 ≤ n ≤ N” or
“1 ≤ m ≤ N and − N ≤ n ≤ N”

}
. (14)

Also let X∗ denote the orthogonal complement of XN in X such that X = XN ⊕ X∗, then for any ψ∗ ∈ X∗ can be represented by

ψ∗ =
∑

(m,n)∈Q∗

Amn cos(mαx+ ny), Amn ∈ R, (15)

where

Q∗ := Q − QN (16)

=

(m, n) ∈ N× N

∣∣∣∣∣∣
“0 ≤ m ≤ N and N + 1 ≤ n ≤ ∞” or
“1 ≤ m ≤ N and −∞ ≤ n ≤ −N − 1” or
“N + 1 ≤ m ≤ ∞ and −∞ ≤ n ≤ ∞”

 . (17)

Now, we define the norm of X as

‖φ‖X := |φ|H3(Ω) =

√
‖φxxx‖

2
L2(Tα)

+ 3‖φxxy‖
2
L2(Tα)

+ 3‖φxyy‖
2
L2(Tα)

+ ‖φyyy‖
2
L2(Tα)

.

Here, using the property:

‖φ‖2
X =

2π2

α

∑
(m,n)∈Q

(α2m2
+ n2)3A2

mn

for φ =
∑

(m,n)∈Q Amn cos(mαx+ ny) ∈ X, the following norm estimates hold.
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Lemma 3.1. For any ψ ∈ X and ψ∗ ∈ X∗, it can be checked that

‖ψ‖L2(Tα) ≤ α
−3
‖ψ‖X, ‖ψ∗‖L2(Tα) ≤ C1‖ψ∗‖X,

‖ψx‖L2(Tα) ≤ α
−2
‖ψ‖X, ‖(ψ∗)x‖L2(Tα) ≤ C2‖ψ∗‖X,

‖ψy‖L2(Tα) ≤ C3‖ψ‖X, ‖(ψ∗)y‖L2(Tα) ≤ C4‖ψ∗‖X,

‖∇ψ‖L2(Tα) ≤ α
−2
‖ψ‖X, ‖∇ψ∗‖L2(Tα) ≤ C2‖ψ∗‖X,

‖∇ψx‖L2(Tα) ≤ α
−1
‖ψ‖X, ‖∇(ψ∗)x‖L2(Tα) ≤ C5‖ψ∗‖X,

‖∇ψy‖L2(Tα) ≤ C6‖ψ‖X, ‖∇(ψ∗)y‖L2(Tα) ≤ C7‖ψ∗‖X,

‖1ψ‖L2(Tα) ≤ α
−1
‖ψ‖X, ‖1ψ∗‖L2(Tα) ≤ C5‖ψ∗‖X,

‖1ψx‖L2(Tα) ≤ ‖ψ‖X, ‖1(ψ∗)x‖L2(Tα) ≤ ‖ψ∗‖X,

‖1ψy‖L2(Tα) ≤ ‖ψ‖X, ‖1(ψ∗)y‖L2(Tα) ≤ ‖ψ∗‖X,

where

C1 =
1

α3(N + 1)3 , C2 =
1

α2(N + 1)2 ,

C3 = max
{

1,
2
√

3
9α2

}
, C4 = max

{
1

(N + 1)2 ,
2
√

3
9α2(N + 1)2

}
,

C5 =
1

α(N + 1)
, C6 = max

{
1,

1
2α

}
,

C7 = max
{ 1
N + 1

,
1

2α(N + 1)

}
.

Proof. We show the construction of C5. The other estimates are quite similar. For ψ∗ represented by Eq. (15),

‖∇(ψ∗)x‖
2
L2(Tα) = ‖(ψ∗)xx‖

2
L2(Tα) + ‖(ψ∗)xy‖

2
L2(Tα)

=
2π2

α

∑
(m,n)∈Q∗

α2m2(α2m2
+ n2)A2

mn

≤ max
(m,n)∈Q∗

α2m2

(α2m2 + n2)2 ‖ψ∗‖
2
X,

hence using 0 < α < 1,

max
(m,n)∈Q∗

αm

α2m2 + n2 = max
{

max
0≤m≤N

αm

α2m2 + (N + 1)2 ,
1

α(N + 1)

}
≤ max

{ 1
2(N + 1)

,
1

α(N + 1)

}
=

1
α(N + 1)

.

�

In actual calculations, L∞-estimates proposed by Plum [8] are also needed.

Lemma 3.2 ([8]). For ψ ∈ X, the following assertion holds true:

‖ψ‖L∞(Tα) ≤ C8‖ψ‖L2(Tα) + C9‖∇ψ‖L2(Tα) + C10‖1ψ‖L2(Tα), (18)

where ‖ · ‖L∞(Tα) is the sup-norm and

C8 =

√
α

2π
, C9 =

1.1548
√

3

√
α2 + 1
α

, C10 = π
0.44722

3

√
9α4 + 10α2 + 9

5α3 .

Lemmas 3.1 and 3.2 imply L∞-estimates immediately.

Lemma 3.3. For ψ ∈ X and ψ∗ ∈ X∗, the following estimates hold:

‖ψ‖L∞(Tα) ≤ C11‖ψ‖X, ‖ψ∗‖L∞(Tα) ≤ C12‖ψ‖X,

‖ψx‖L∞(Tα) ≤ C13‖ψ‖X, ‖(ψ∗)x‖L∞(Tα) ≤ C14‖ψ∗‖X,

‖ψy‖L∞(Tα) ≤ C15‖ψ‖X, ‖(ψ∗)y‖L∞(Tα) ≤ C16‖ψ∗‖X,
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where

C11 = α
−3C8 + α

−2C9 + α
−1C10, C12 = C1C8 + C2C9 + C5C10,

C13 = α
−2C8 + α

−1C9 + C10, C14 = C2C8 + C5C9 + C10,

C15 = C3C8 + C6C9 + C10, C16 = C4C8 + C7C9 + C10.

Moreover, some “inverse”-order estimates are required (proofs are similar as that of Lemma 3.1).

Lemma 3.4. For ψN ∈ XN the following estimates hold:

‖ψN‖X ≤ C17‖1ψN‖L2(Tα),

‖(ψN)x‖X ≤ C18‖1ψN‖L2(Tα),

‖(ψN)y‖X ≤ C19‖1ψN‖L2(Tα),

where

C17 = N
√

1+ α2, C18 = αN
2
√

1+ α2, C19 = N2
√

1+ α2.

4. Fixed-point formulation and error estimates

The bilinear form J defined by Eq. (5) has the following properties.

( J(u, v),w )L2 = ( J(w, u), v )L2 = −( J(u,w), v )L2 , u, v,w ∈ X2, (19)

J(u, v) ∈ X0, u, v ∈ X1. (20)

Denote an approximate solution of Eq. (7) by φN ∈ XN which is obtained by an appropriate method. Then setting

ψ := φ− φN (21)

and

f (ψ) := −R J(φN +ψ,1φN +1ψ)− cos(y)−12φN, (22)

problem (7) is rewritten as the residual form to find ψ ∈ X satisfying

12ψ = f (ψ) in Tα (23)

in a weak sense. Note that ψ is expected to be small if φN is an accurate approximation. By virtue of the property (20) for J,
f is the bounded continuous map from X to X0.

Moreover, it is easily shown that for all g ∈ X0, the linear problem 12ξ = g has a unique solution ξ ∈ X4. When this
mapping is denoted by ξ = Kg, denoting the embedding from X4 into X by I and 1−2

:= IK, the operator 1−2
: X0
−→ X is

a compact map because of the compactness of the embedding H4(Tα) ↪→ H3(Tα) and the boundedness of K. Therefore, Eq.
(23) is rewritten by a fixed-point equation:

ψ = F(ψ) (24)

for the compact operator F := 1−2f on X.
Now, the H2

0-projection PN : X −→ XN is defined by

(1(ψ− PNψ),1ψN )L2 = 0, ∀ψN ∈ XN. (25)

Note that for ψ =
∑

(m,n)∈Q Amn cos(mαx+ ny) ∈ X the projection coincides with truncation: PNψ =
∑

(m,n)∈QN
Amn cos(mαx+

ny) ∈ XN . From this fact, the following constructive a priori error estimate is derived.

Lemma 4.1. For each g ∈ X0, let ξ ∈ X4 be the solution of 12ξ = g and PNξ ∈ XN be the finite-dimensional approximation defined
by Eq. (25), then

‖ξ− PNξ‖X ≤ C5‖g‖L2(Tα). (26)

Proof. The estimate (26) is derived immediately from the stronger fact:

‖ξ∗‖
2
X ≤ max

(m,n)∈Q∗

1
α2m2 + n2

2π2

α

∑
(m,n)∈Q∗

(α2m2
+ n2)4A2

mn

≤ C2
5‖1

2ξ∗‖
2
L2(Tα),

for ξ∗ =
∑

(m,n)∈Q∗ Amn cos(mαx+ ny), Amn ∈ R satisfying 12ξ∗ ∈ X0. �
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Now, we apply the Newton-like method for non-linear elliptic problems proposed by Nakao [4,5] to the fixed-point Eq.
(24). Using the projection PN , the fixed-point problem ψ = F(ψ) can be uniquely decomposed as the finite-dimensional
(projection) part XN and infinite-dimensional (error) part X∗ as follows:{

PNψ = PNF(ψ),
(I − PN)ψ = (I − PN)F(ψ),

(27)

where I is the identity map on X. Suppose that the restriction of the operator PN(I − F′[0]) : X −→ XN to XN has an inverse

[I − PNF
′
[0]]−1

N : XN −→ XN, (28)

where F′[ψ] denotes the Fréchet derivative of F atψ. Note that this assumption is equivalent to the invertibility of a matrix,
which can be checked numerically in actual verified computations (for example see Rump [9]). Applying the Newton-like
method to the first term of Eq. (27), the operator N : X −→ XN is defined by

N (ψ) := PNψ− [I − PNF
′
[0]]−1

N PN(ψ− F(ψ)),

and also the compact map T : X −→ X is defined by

T(ψ) := N (ψ)+ (I − PN)F(ψ).

Then under the invertibility assumption of the existence for [I − PNF′[0]]−1
N , two fixed-point problems:

ψ = T(ψ) (29)

and Eq. (24) are equivalent. If the approximate solution φN is sufficiently good, the finite-dimensional part of T will possibly
be a contraction. On the other hand, the magnitude of the infinite-dimensional part of T is expected to be small when the
truncation numbers of XN are taken to be sufficiently large, because of Lemma 4.1.

The question which we must consider next is to find a solution of Eq. (29) in a set U, referred to as a candidate set. Let the
finite-dimensional part of the candidate set UN and the infinite-dimensional part of the candidate set U∗ be balls with radius
γ > 0 and β > 0 such as

UN := {ψN ∈ XN | ‖ψN‖X ≤ γ}, (30)
U∗ := {ψ∗ ∈ X∗ | ‖ψ∗‖X ≤ β}, (31)

respectively. The candidate set U ⊂ X is defined by

U := UN + U∗. (32)

Now, the following verification condition is held.

Theorem 4.1. Let N ′ be the Fréchet derivative of N . For Y1, Y2, Z1(U) and Z2(U) > 0 satisfying

‖N (0)‖X ≤ Y1, (33)

sup
ψ1,ψ2∈U

‖N ′[ψ1](ψ2)‖X ≤ Z1(U), (34)

‖(I − PN)F(0)‖X ≤ Y2, (35)

sup
ψ1,ψ2∈U

‖(I − PN)F
′
[ψ1](ψ2)‖X ≤ Z2(U), (36)

if it holds that

Y1 + Z1(U) < γ, Y2 + Z2(U) < β,

then there exists a fixed-point of F in

Û := ÛN + Û∗,

ÛN := {ψN ∈ XN | ‖ψN‖X ≤ Y1 + Z1(U)},

Û∗ := {ψ∗ ∈ X∗ | ‖ψ∗‖X ≤ Y2 + Z2(U)}.

Moreover, this fixed-point is unique within the set U.

Proof. From Banach’s fixed-point theorem, it is sufficient to check that the two conditions:

T(U) ⊂ U, (37)

and ∃k < 1 such that

‖T(u1)− T(u2)‖ ≤ k‖u1 − u2‖, ∀u1, u2 ∈ U (38)
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hold. Applying the mean value theorem [12], condition (37) can be shown by

‖N (u)‖X ≤ ‖N (0)‖X + sup
s∈[0,1]

‖N ′[su](u)‖X ≤ Y1 + Z1(U) ≤ γ,

‖(I − PN)F(u)‖X ≤ ‖(I − PN)F(0)‖X + sup
s∈[0,1]

‖(I − PN)F
′
[su](u)‖X

≤ Y2 + Z2(U) ≤ α

for any u ∈ U.
Next, define the norm ‖ · ‖U by

‖u‖U := max
{
‖PNu‖X
γ

,
‖(I − PN)u‖X

α

}
, (39)

then for any u1, u2 ∈ U, the condition (38) holds by

‖T(u1)− T(u2)‖U ≤ sup
w∈U
‖T ′[w](u1 − u2)‖U

≤ sup
w∈U

max
{
‖N ′[w](u1 − u2)‖X

γ
,
‖(I − PN)F′[w](u1 − u2)‖X

α

}
≤ max

{
γ − Y1

γ
,
α− Y2

α

}
‖u1 − u2‖U. �

Note that in the References [2,12] the finite-dimensional part is taken to be a set of linear combinations of base functions
with interval coefficients.

If we obtain a fixed-pointψ ∈ X by Theorem 4.1, we can also assure the existence of a non-trivial solution φ = φN+ψ ∈ X
for (7) with the error bound

‖φ− φN‖X ≤ Y1 + Z1(U)+ Y2 + Z2(U).

Moreover, since ψ can be written as ψ = ψN +ψ∗,ψN ∈ UN,ψ∗ ∈ U∗, a L∞-error estimate:

‖φ− φN‖L∞(Tα) ≤ C11(Y1 + Z1(U))+ C12(Y2 + Z2(U)) (40)

is obtained by Lemma 3.3.

5. Verification procedure

This section is devoted to the detailed estimation satisfying Eqs. (33)–(36).

5.1. Estimation of Y1

Consider the computation of Y1 > 0 such that ‖N (0)‖X ≤ Y1. Since N (0) = [I − PNF′[0]]−1
N PNF(0), it holds that

PN(I − F′[0])N (0) = PNF(0). (41)

Let M := dim XN and let ψi(1 ≤ i ≤ M) be a basis of XN , then N (0) can be represented as

N (0) =
M∑
i=1

aiψi, a = [ai] ∈ RM.

By the definition of PN , Eq. (41) is equivalent to

M∑
j=1

(1(I − F′[0])(ψj),1ψi )L2 aj = (1F(0),1ψi )L2 , 1 ≤ i ≤ M. (42)

Then by partial integration and the definition of F and F′, the Eq. (42) is written as

M∑
j=1

{
(1ψj,1ψi )L2 − ( f ′[0](ψj),ψi )L2

}
aj = ( f (0),ψi )L2 , 1 ≤ i ≤ M. (43)

Here, defining a M ×M matrix G = [Gij] by

Gij := (1ψj,1ψi )L2 − ( f ′[0](ψj),ψi )L2 , 1 ≤ i, j ≤ M, (44)

and M-dimensional vector r = [ri] by

ri := ( f (0),ψi )L2 , 1 ≤ i ≤ M.
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the vector a is obtained by

a = G−1r. (45)

Therefore after some transformation of indices for ai ← am,n, (m, n) ∈ QN , the norm ‖N (0)‖X can be estimated as

‖N (0)‖2
X =

2π2

α

∑
(m,n)∈QN

(α2m2
+ n2)3a2

mn,

and Y1 > 0 is taken to be

π

√√√√ 2
α

∑
(m,n)∈QN

(α2m2 + n2)3a2
mn ≤ Y1.

Note that all the computation procedures for Y1 > 0 should take into account the effects of rounding errors. Here, f (0) and
f ′[0](ψj) can be computed using the approximate solution φN .

5.2. Estimation of Z1(U)

Consider the computation of Z1(U) > 0 satisfying supψ1,ψ2∈U
‖N ′[ψ1](ψ2)‖X ≤ Z1(U).

Let M ×M diagonal matrices D = [Dij] and H = [Hij] be

Dij := (1ψj,1ψi )L2 1 ≤ i, j ≤ M, (46)

Hij := ( (ψj)xxx, (ψi)xxx )L2 + 3( (ψj)xxy, (ψi)xxy )L2 + 3( (ψj)xyy, (ψi)xyy )L2 + ( (ψj)yyy, (ψi)yyy )L2 ,
1 ≤ i, j ≤ M. (47)

Since H is the positive diagonal, H can be decomposed as H = H1/2H1/2. Define now the upper bound of the Euclidean norm
ρ > 0 by

‖H1/2G−1DH−1/2
‖E ≤ ρ, (48)

the following Lemma is obtained.

Lemma 5.1. For each wN ∈ XN and vN = [I − PNF′[0]]−1
N wN ∈ XN , it holds that

‖vN‖X ≤ ρ ‖wN‖X.

Proof. Set vN,wN ∈ XN as

vN =
M∑
i=1

viψi, v = [vi] ∈ RM, wN =

M∑
i=1

wiψi, w = [wi] ∈ RM.

Then the relation PN(I − F′[0])vN = wN can be expanded as

M∑
j=1

{
(1ψj,1ψi )L2 − ( f ′[0](ψj),ψi )L2

}
vj =

M∑
j=1

(1ψj,1ψi )L2 wj, 1 ≤ i ≤ M. (49)

Eq. (49) is represented by the matrix and vector form by v = G−1Dw and this implies

‖vN‖X = ‖H
1/2v‖E

= ‖H1/2G−1Dw‖E
≤ ‖H1/2G−1DH−1/2

‖E ‖H
1/2w‖E

≤ ρ‖wN‖X

which proves the lemma. �

Now for any ψ1,ψ2 ∈ U,

N ′[ψ1](ψ2) = [I − PNF
′
[0]]−1

N PN(F
′
[ψ1](ψ2)− F′[0](PNψ2)),

then Lemma 5.1 leads

‖N ′(ψ1)ψ2‖X ≤ ρ ‖PN(F
′
[ψ1](ψ2)− F′[0](PNψ2))‖X.

Therefore Z1(U) > 0 can be decided satisfying

ρ sup
ψ1,ψ2∈U

‖PN(F
′
[ψ1](ψ2)− F′[0](PNψ2))‖X ≤ Z1(U). (50)

We will discuss more concrete computation procedure for Z1(U) in the next subsection.
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The estimation of ρ satisfying inequality (48) is generally reduced to a computation of the singular value of a matrix.
Actually, when setting indices of QN by (mi, ni), and M ×M diagonal matrix D̃ by

D̃ii =
1√

α2m2
i + n2

i

,

it is not difficult to check that

(H1/2G−1DH−1/2)−1
=

α

2π2 D̃GD̃
3.

Hence, we apply some computational algorithm with the result verification to estimate rigorous bounds for the smallest
singular value (e.g. see Rump [10]).

5.3. Estimation of Z1(U) (detail)

This subsection is devoted for the detailed estimation of

sup
ψ1,ψ2∈U

‖PN(F
′
[ψ1](ψ2)− F′[0](PNψ2))‖X

in Eq. (50). First, for obtained approximate solution φN , define computable upper bounds τ1, τ2, τ3, τ4 > 0 such that

‖(φN)x‖L∞(Tα) ≤ τ1, (51)

‖(φN)y‖L∞(Tα) ≤ τ2, (52)

‖1(φN)x‖L∞(Tα) ≤ τ3, (53)

‖1(φN)y‖L∞(Tα) ≤ τ4. (54)

For fixed ψ1,ψ2 ∈ U can be decomposed as

ψ1 = ψ
(1)
N +ψ

(1)
∗

, ψ2 = ψ
(2)
N +ψ

(2)
∗

, ψ
(1)
N ,ψ

(2)
N ∈ UN,ψ

(1)
∗

,ψ(2)
∗
∈ U∗.

Then the result

f ′[ψ1](ψ2)− f ′[0](PNψ2) = −R
(
J(φN,1ψ

(2)
∗

)+ J(ψ(2)
∗

,1φN)+ J(ψ2,1ψ1)+ J(ψ1,1ψ2)
)

implies

‖PN(F
′
[ψ1](ψ2)− F′[0](PNψ2))‖X = ‖PN1

−2(f ′[ψ1](ψ2)− f ′[0](PNψ2))‖X

≤ ‖PN1
−2ξ1‖X + ‖PN1

−2ξ2‖X,

where

ξ1 := −RJ(φN,1ψ
(2)
∗

),

ξ2 := −R
(
J(ψ(2)
∗

,1φN)+ J(ψ2,1ψ1)+ J(ψ1,1ψ2)
)
.

Here, term ξ1 has to be estimated separately in order to obtain O(1/N) described below.

5.3.1. Estimation of ‖PN1−2ξ1‖X

Setting ψN = PN1−2J(φN,1ψ
(2)
∗

) ∈ XN , from the definition of PN , Eq. (19) and Lemma 3.1, it holds that

‖1ψN‖
2
L2(Tα) = ( J(φN,1ψ

(2)
∗

),ψN )L2

= (1J(ψN,φN),ψ
(2)
∗

)L2

= (1(I − PN)J(ψN,φN),ψ
(2)
∗

)L2

≤ ‖1(I − PN)J(ψN,φN)‖L2(Tα) ‖ψ
(2)
∗
‖L2(Tα)

≤ C1C5‖(I − PN)J(ψN,φN)‖X β.

And Lemma 3.4 assures that

‖(I − PN)J(ψN,φN)‖X ≤ ‖J(ψN,φN)‖X

≤ ‖(ψN)x(φN)y‖X + ‖(ψN)y(φN)x‖X

≤ ‖(ψN)x‖X‖(φN)y‖L∞(Tα) + ‖(ψN)y‖X‖(φN)x‖L∞(Tα)

≤ (τ2C18 + τ1C19)‖1ψN‖L2(Tα),

then

‖1ψN‖L2(Tα) ≤ C1C5(τ2C18 + τ1C19)β
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is obtained. Therefore we have

‖PN1
−2ξ1‖X = R‖ψN‖X

≤ RC17‖1ψN‖L2(Tα)

≤ RC20β,

where

C20 := C17C1C5(τ2C18 + τ1C19).

Note that C17 = O(N), C1 = O(1/N3), C5 = O(1/N) and C18 = C19 = O(N2), then C20 = O(1/N).

5.3.2. Estimation of ‖PN1−2ξ2‖X

Setting ξ2 =
∑

(m,n)∈Q Amn cos(mαx+ ny), it can be shown that

‖PN1
−2ξ2‖

2
X ≤ ‖1

−2ξ2‖
2
X

=
2π2

α

∑
(m,n)∈Q

(α2m2
+ n2)−1A2

mn

≤ max
(m,n)∈Q

1
α2m2 + n2 ‖ξ‖

2
L2(Tα)

= α−2
‖ξ‖2

L2(Tα),

then

‖PN1
−2ξ2‖X ≤ α

−1
‖ξ2‖L2(Tα).

Hence ‖ξ2‖L2(Tα) should be estimated. Since

‖ξ2‖L2(Tα) ≤ R
(
‖J(ψ(2)

∗
,1φN)‖L2(Tα) + ‖J(ψ

(2)
N +ψ

(2)
∗

,1ψ
(1)
N +1ψ(1)

∗
)‖L2(Tα)

+‖J(ψ(1)
N +ψ

(1)
∗

,1ψ
(2)
N +1ψ(2)

∗
)‖L2(Tα)

)
,

for each L2-norm can be bounded as follows:
‖J(ψ(2)

∗
,1φN)‖L2(Tα) = ‖(ψ

(2)
∗

)x1(φN)y − (ψ(2)
∗

)y1(φN)x‖L2(Tα)
≤ ‖1(φN)y‖L∞(Tα)‖(ψ

(2)
∗

)x‖L2(Tα) + ‖1(φN)x‖L∞(Tα)‖(ψ
(2)
∗

)y‖L2(Tα)
≤ (τ4C2 + τ3C4)‖ψ

(2)
∗
‖X

≤ (τ4C2 + τ3C4)β,

‖J(ψ(2)
N +ψ

(2)
∗

,1ψ
(1)
N +1ψ(1)

∗
)‖L2(Tα)

≤ ‖(ψ
(2)
N )x1(ψ

(1)
N )y − (ψ

(2)
N )y1(ψ

(1)
N )x‖L2(Tα) + ‖(ψ

(2)
N )x1(ψ(1)

∗
)y − (ψ

(2)
N )y1(ψ(1)

∗
)x‖L2(Tα)

+‖(ψ(2)
∗

)x1(ψ
(1)
N )y − (ψ(2)

∗
)y1(ψ

(1)
N )x‖L2(Tα) + ‖(ψ

(2)
∗

)x1(ψ(1)
∗

)y − (ψ(2)
∗

)y1(ψ(1)
∗

)x‖L2(Tα)

≤ ‖(ψ
(2)
N )x‖L∞(Tα)‖1(ψ

(1)
N )y‖L2(Tα) + ‖(ψ

(2)
N )y‖L∞(Tα)‖1(ψ

(1)
N )x‖L2(Tα)

+‖(ψ
(2)
N )x‖L∞(Tα)‖1(ψ(1)

∗
)y‖L2(Tα) + ‖(ψ

(2)
N )y‖L∞(Tα)‖1(ψ(1)

∗
)x‖L2(Tα)

+‖(ψ(2)
∗

)x‖L∞(Tα)‖1(ψ
(1)
N )y‖L2(Tα) + ‖(ψ

(2)
∗

)y‖L∞(Tα)‖1(ψ
(1)
N )x‖L2(Tα)

+‖(ψ(2)
∗

)x‖L∞(Tα)‖1(ψ(1)
∗

)y‖L2(Tα) + ‖(ψ
(2)
∗

)y‖L∞(Tα)‖1(ψ(1)
∗

)x‖L2(Tα)

≤ (C13 + C15)γ
2
+ (C13 + C14 + C15 + C16)βγ + (C14 + C16)β

2,

and similarly

‖J(ψ(1)
N +ψ

(1)
∗

,1ψ
(2)
N +1ψ(2)

∗
)‖L2(Tα)

≤ (C13 + C15)γ
2
+ (C13 + C14 + C15 + C16)βγ + (C14 + C16)β

2.

Then

‖ξ2‖L2(Tα) ≤ R((τ4C2 + τ3C4)β+ 2(C13 + C15)γ
2
+ 2(C13 + C14 + C15 + C16)βγ + 2(C14 + C16)β

2).

5.3.3. Conclusion
Considering the circumstances mentioned above, Z1(U) > 0 can be determined satisfying

ρR
(
C20β+ α

−1
{
(τ4C2 + τ3C4)β+ 2(C13 + C15)γ

2
+ 2(C13 + C14 + C15 + C16)βγ + 2(C14 + C16)β

2
})

≤ Z1(U).
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5.4. Estimation of Y2

From Lemma 4.1 and the definition of F, it holds that

‖(I − PN)F(0)‖X ≤ C5‖f (0)‖L2(Tα).

Then Y2 > 0 can be determined satisfying

C5‖ −12φN − R J(φN,1φN)− cos(y)‖L2(Tα) ≤ Y2

using approximate solution φN ∈ XN .

5.5. Estimation of Z2(U)

From Lemma 4.1 and the definition of F, for all ψ1,ψ2 ∈ U

‖(I − PN)F
′
[ψ1](ψ2)‖X ≤ C5‖f

′
[ψ1](ψ2)‖L2(Tα)

holds. Since

f ′[ψ1](ψ2) = −R (J(φN,1ψ2)+ J(ψ2,1φN)+ J(ψ2,1ψ1)+ J(ψ1,1ψ2)) ,

the latter two L2-norm estimates have been obtained before. And we also get
‖J(φN,1ψ2)‖L2(Tα) = ‖(φN)x1(ψ2)y − (φN)y1(ψ2)x‖L2(Tα)

≤ ‖(φN)x‖L∞(Tα)‖1(ψ2)y‖L2(Tα) + ‖(φN)y‖L∞(Tα)‖1(ψ2)x‖L2(Tα)
≤ (τ1 + τ2)(β+ γ),

‖J(ψ2,1φN)‖L2(Tα) = ‖(ψ2)x1(φN)y − (ψ2)y1(φN)x‖L2(Tα)
≤ ‖1(φN)y‖L∞(Tα)‖(ψ2)x‖L2(Tα) + ‖1(φN)x‖L∞(Tα)‖(ψ2)y‖L2(Tα)

≤ τ4‖(ψ
(2)
N +ψ

(2)
∗

)x‖L2(Tα) + τ3‖(ψ
(2)
N +ψ

(2)
∗

)y‖L2(Tα)
≤ (τ4C2 + τ3C4)β+ (τ4α

−2
+ τ3C3)γ.

Then

‖f ′(ψ1)ψ2‖L2(Tα) ≤ R
(
(τ1 + τ2 + τ4C2 + τ3C4)β+ (τ1 + τ2 + τ4α

−2
+ τ3C3)γ

+ 2(C13 + C15)γ
2
+ 2(C13 + C14 + C15 + C16)βγ + 2(C14 + C16)β

2
)
. (55)

Therefore Z2(U) > 0 can be determined satisfying

C5 R
(
(τ1 + τ2 + τ4C2 + τ3C4)β+ (τ1 + τ2 + τ4α

−2
+ τ3C3)γ + 2(C13 + C15)γ

2

+ 2(C13 + C14 + C15 + C16)βγ + 2(C14 + C16)β
2
)
≤ Z2(U).

5.6. Verification algorithm

For the results stated above, we formulate the following verification algorithm. Here, assume the computation of φN , Y1,
Y2 and ρ have been done.
• k = 0

Set the initial values γ(0) > 0 and β(0) > 0.
• k ≥ 1

(1) For a fixed small constant ε > 0, set
γ̂(k)
:= (1+ ε)γ(k−1), β̂(k)

:= (1+ ε)β(k−1).

(2) The kth candidate set U(k) is defined by
U(k)

N := {vN ∈ XN | ‖vN‖X ≤ γ̂
(k)
},

U(k)
∗
:= {v∗ ∈ X∗ | ‖v∗‖X ≤ β̂

(k)
},

U(k)
:= U(k)

N + U(k)
∗

.

(3) Compute values Z1(U(k)) and Z2(U(k)) for kth iteration satisfying

ρR
(
C20β̂

(k)
+ α−1

{
(τ4C2 + τ3C4)β̂

(k)
+ 2(C13 + C15)(γ̂

(k))2
+ 2(C13 + C14 + C15 + C16)β̂

(k)γ̂(k)

+ 2(C14 + C16)(β̂
(k))2

})
≤ Z1(U

(k)),

C5 R
(
(τ1 + τ2 + τ4C2 + τ3C4)β̂

(k)
+ (τ1 + τ2 + τ4α

−2
+ τ3C3)γ̂

(k)
+ 2(C13 + C15)(γ̂

(k))2

+ 2(C13 + C14 + C15 + C16)β̂
(k)γ̂(k)

+ 2(C14 + C16)(β̂
(k))2

)
≤ Z2(U

(k)).
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Fig. 1. Shape of approximate solution.

(4) If Y1+ Z1(U(k)) < γ̂(k) and Y2+ Z2(U(k)) < β̂(k) hold then stop, and there exists a desired solution in U(k)
⊂ X uniquely.

(5) Setting k := k+1, γ(k)
:= Y1+ Z1(U(k)) and β(k)

:= Y2+ Z2(U(k)) and return to step 1. If k reaches a maximum iteration
number or if γ(k) and β(k) exceed a criterion then stop, and the verification fails.

In actual computation, almost all cost of verification procedures center on the estimation of ρ in (48). In our algorithm,
when the Reynolds number tends to be large, a larger truncation number N should be needed because each Z1(U(k)) and
Z2(U(k)) is in proportional to R.

6. Some verification results

We now show some verification results. The interval arithmetic in each verification step was implemented using Sun
ONE Studio 7, Compiler Collection Fortran 95 on FUJITSU PRIMEPOWER850 (CPU: SPARC64-GP 1.3 GHz, OS: Solaris8).
The approximate solutions were obtained by Newton–Raphson method using usual floating point arithmetic by double
precision.

6.1. Result 1

The Reynold number is R = 4 and aspect ratio is α = 0.7. In order to show concrete approximate solution, the obtained
approximate solution was translated to decimal digit. We adopt φN as each interval coefficient encloses the decimal value
rigorously. Fig. 1 shows the shape of approximate solution φN .

Fig. 2 shows the obtained parameters as the result of verified computation for N = 45. The computation (elapsed) time
is 38,196 s (10.61 h).

The verification algorithm executed successfully under the following values:

Y1 + Z1(U
(k)) = 0.2104483239393× 10−9,

Y2 + Z2(U
(k)) = 0.1195514641468× 10−9,

and we can assure that there exists a non-trivial solution φ around the approximate solution φN bounded

‖φ− φN‖X ≤ 0.32999978808611105× 10−9

with local uniqueness. Moreover the solution is unique for the bound of

‖φ− φN‖X ≤ 0.9603388265712344× 10−4.

6.2. Result 2

Fig. 3 shows obtained parameters as the result of verified computation for R = 13, α = 0.7 and N = 80. The computation
(elapsed) time is 2,328,377 s (646.77 h).

The verification algorithm executed successfully under the following values:

Y1 + Z1(U
(k)) = 0.2984666091441× 10−9,

Y2 + Z2(U
(k)) = 0.2550977301831× 10−9,

and we can assure that there exists a non-trivial solution φ around the approximate solution φN bounded

‖φ− φN‖X ≤ 0.5535643393271721× 10−9
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Fig. 2. Obtained parameters.

Fig. 3. Obtained parameters.

with local uniqueness. Moreover the solution is unique for the bound of

‖φ− φN‖X ≤ 0.12104328219862762× 10−3.
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For some fixed Reynolds number R, we can prove the existence of steady-state solutions for the Kolmogorov flows by
computer-assisted proof. We cannot say for certain the continuity of the verified solutions with respect to the Reynolds
number. These questions must be solved in our future works.
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